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Abstract

High-consequence decisions often require a detailed investi-
gation of a decision maker’s preferences, as represented by a
utility function. Inferring a decision maker’s utility function
through assessments typically involves an elicitation phase
where the decision maker responds to a series of elicitation
queries, followed by an estimation phase where the state-of-
the-art for direct elicitation approaches in practice is to ei-
ther fit responses to a parametric form or perform linear in-
terpolation. We introduce a Bayesian nonparametric method
involving Gaussian stochastic processes for estimating a util-
ity function from direct elicitation responses. Advantages in-
clude the flexibility to fit a large class of functions, favorable
theoretical properties, and a fully probabilistic view of the de-
cision maker’s preference properties including risk attitude.
Through extensive simulation experiments as well as two real
datasets from management science, we demonstrate that the
proposed approach results in better function fitting.

Introduction & Related Work
Making decisions under uncertainty using decision theory
requires that beliefs about uncertainties be represented by
probabilities and preferences over outcomes be summarized
by utilities. It is often easier in practice to justify learning
probabilities from historical data, which is reasonable when
the decision maker believes that the future will resemble the
past, than it is to learn preferences using other decision mak-
ers’ choices. This is particularly true for high-consequence
decisions such as a potentially life-changing medical deci-
sion, a new product launch, a government policy decision
involving numerous stakeholders, etc. In these situations, a
decision maker’s preferences should be represented through
their utility function either over a single attribute (such as
monetary units) or over multiple attributes, depending on the
decision situation under consideration.

The vast literature on assessing utility functions describes
schemes where the decision maker responds to elicitation
queries; these responses are then subsequently used to es-
timate the decision maker’s utility function. We distinguish
between these phases and refer to them as elicitation and es-
timation respectively. Posing elicitation questions and then
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estimating the functional form that best represents the deci-
sion maker’s preferences often go hand in hand.

The elicitation phase could of course be conducted in var-
ious ways. We distinguish between direct and indirect ap-
proaches. In the former, elicitation directly results in out-
comes with their utilities, whereas in the latter, utilities are
typically inferred through choices – the most popular ap-
proach across domains (including AI) is to use pairwise
comparisons between alternatives. Both these approaches
have their respective drawbacks. The behavioral literature
demonstrates that people are plagued with cognitive biases
while responding to questions that aim to assess their pref-
erences, and that they construct their preferences accord-
ing to the situational context, including the method of elic-
itation, and often in an inconsistent manner (Lichtenstein
and Slovic 2006). Systematic biases from choice incon-
sistencies arising from indirect elicitation approaches are
well known in this literature (Fischer, Jia, and Luce 2000;
Bleichrodt, Pinto, and Wakker 2001).

In this paper, we contribute to the literature on estima-
tion by introducing a Bayesian nonparametric approach for
modeling utility functions from direct elicitation. Specifi-
cally, we demonstrate the advantages of using a Gaussian
stochastic process (henceforth GaSP) over the state-of-the-
art in this space, where parametric methods and the non-
parametric method of linear interpolation are most popular.
We show that linear interpolation corresponds to a subclass
of our GaSP model using a specific covariance function in
which the process turns out to be a Wiener process (Mörters
and Peres 2010); moreover, parametric methods can be in-
corporated into the GaSP model through the mean function.

The GaSP model is popular in domains such as nonlin-
ear regression and classification in machine learning (Ras-
mussen and Williams 2006), spatial statistics (Gelfand et al.
2010), computer model emulation and calibration (Sacks et
al. 1989). It has also been applied to preference modeling.
For instance, Chu and Ghahramani (2005), Birlutiu, Groot,
and Heskes (2009) and Bonilla, Guo, and Sanner (2010) use
GaSP models for preference learning in the indirect elicita-
tion case involving pairwise comparisons.

There is substantial AI literature on Bayesian models
for preference elicitation in general, where uncertainty in
utilities is typically exploited for the purpose of adap-
tive elicitation for specific decisions (Jimison et al. 1992;
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Poh and Horvitz 1993; Chajewska, Koller, and Parr 2000;
Boutilier 2002; Bhattacharjya and Kephart 2014). In con-
trast, our work is based on direct elicitation schemes, where
the observations are assessed tuples (see Definition 2 for
details). Direct elicitation is more popular in areas such as
operations research, behavioral economics and management
science, see e.g. Farquhar (1984). To the best of our knowl-
edge, we are not aware of GaSP being deployed for such
schemes, and it appears that direct elicitation has not been
actively explored in the AI community, barring early work
such as Chajewska, Koller, and Parr (2000).

Contributions. This work can be viewed as an application
of AI/ML to an important problem in management science –
utility elicitation & estimation. A fundamental challenge is
that the number of assessed queries is often very small, since
elicitation burden increases significantly and responses be-
come less reliable when more questions are posed. Here we
propose a robust estimation approach using GaSP models
that quantify uncertainty associated with the utility elicita-
tion process. While the application of GaSP to the problem
is relatively straightforward, our novel contributions include
showing that our method: 1) effectively handles limited ob-
servations through use of the Matérn kernel and robust pos-
terior mode estimation, 2) generalizes linear interpolation,
which is most widely used in practice, 3) more accurately
assesses risk attitudes of decision makers, 4) reduces pre-
dictive error in comparison with baseline approaches, in-
cluding a new strong baseline, and 5) is also applicable for
multi-attribute problems. We conduct experiments with syn-
thetic data, and perhaps more importantly, with real-world
data from the management science literature.

Utility Elicitation
Consider outcomes x in a separable metric space X (e.g.
R

n). Debreu (1954) showed that preferences over uncertain
outcomes in such a space are complete, transitive and contin-
uous in X iff there exists a continuous utility function repre-
sentation U : X → R. Since people often provide inconsis-
tent responses to queries, a decision maker’s utility function
U should perhaps be considered an approximate representa-
tion of their preferences; for this and other reasons we shall
discuss shortly, we make the following distinction:
Definition 1 (Noise-free vs. noisy assessment) When a de-
cision maker answers all the preference elicitation ques-
tions consistently with the same underlying (and typically
unknown) utility function, the assessment is said to be noise-
free, otherwise it is noisy.

The notion of a ‘true’ underlying utility function can be
viewed as a theoretical construct and one that is often dis-
cussed in the literature. One could model the uncertainty
in preference elicitation responses as a random response er-
ror to a systematic component or to treat the utility func-
tion as inherently stochastic. Making a noise-related distinc-
tion enables us to express different sources of uncertainty in
the elicitation process. One source of uncertainty is predic-
tion uncertainty, representing the system’s uncertainty about
the decision maker’s utility at an unassessed x. The second

source of uncertainty depends on the decision maker – when
they consistently answer questions with the same underlying
utility function, the elicited utility u(x) is identical to U(x)
at each assessed x. We refer to an estimation method that
agrees with the elicited utility at each assessed x as an in-
terpolator. It is ideal for a method to be an interpolator for
a consistent decision maker. Note that the second source of
uncertainty only appears when decision makers do not an-
swer questions consistently, leading to noisy assessments.

Preference elicitation for decision making under risk
is typically conducted using gambles. Consider gamble
(xa, p;xb) that results in outcome xa with probability p and
outcome xb with probability 1 − p, where xa,xb ∈ X . In
an elicitation query, the decision maker must evaluate two
or more gambles presented to them, e.g. they may be asked
to compare gamble (xa, p;xb) with the degenerate gamble
(xc). If the assessment is noise-free and if the evaluation is
done by expected utility theory (EUT), they prefer the first
gamble iff VEUT (xa, p;xb) = pU(xa) + (1 − p)U(xb) ≥
U(xc), for some underlying utility function U (von Neu-
mann and Morgenstern 1947). A subsequent estimation task
must be performed to infer U from the responses.

There is significant empirical evidence from the descrip-
tive literature on prospect theory (PT) demonstrating that
people tend to overweight low probabilities and underweight
high probabilities. Thus, under prospect theory, the gam-
ble (xa, p;xb) evaluates to VPT (xa, p;xb) = ω(p)U(xa) +
ω(1− p)U(xb), where ω(.) is a probability weighting func-
tion and the reference point is assumed to be 0 (Kahneman
and Tversky 1979; Tversky and Kahneman 1992). Prospect
theory explains observed behavior such as loss aversion and
diminishing sensitivity relative to the reference point.

Bleichrodt, Pinto, and Wakker (2001) and others argue
that descriptive violations of expected utility bias utility elic-
itation; therefore the design of elicitation schemes and esti-
mation of utility functions should be conducted based on PT
rather than EUT, resulting in more accurate estimates of U .
We are sympathetic to this view but as we explain in the
next section, our research goal is purely that of estimating
U , provided elicitation responses in the following form:
Definition 2 (Assessed tuples) Assessed tuples are assess-
ments of points on the utility function, (xi, u(xi)) for i =
1, . . . , n, xi ∈ X .

We propose a GaSP approach for estimating a utility func-
tion given assessed tuples as input. Our method can thus
be applied to different data sets and is agnostic to the un-
derlying theory. In fact, we demonstrate GaSP estimation
using elicitation schemes based on both EUT and PT. Fur-
thermore, it is also agnostic to the generative structure of
randomness in the case of probabilistic preferences, i.e. any
stochastic utility model. In this work, we consider both
noise-free and noisy assessments. Note that for noise-free
assessments, assessed tuples (xi, u(xi)) = (xi, U(xi)) for
an underlying utility function U .

Utility Estimation
The goal of any estimation task associated with preference
elicitation is to use responses to the elicitation queries to
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infer the decision maker’s utility function U(x). Here we
discuss parametric estimation and linear interpolation, high-
lighting their limitations, along with a novel baseline.

Parametric Estimation
Parametric estimation is a popular approach for estimating
utility functions involving a single attribute x (Eliashberg
and Hauser 1985; Kirkwood 2004). The most common para-
metric forms are the exponential and power functions. The
exponential utility function follows a−b sgn(ρ) exp (−x/ρ),
where a and b > 0 are constants and sgn(ρ) is the sign of the
risk tolerance parameter ρ �= ∞. The power utility function
is of the form a + b sgn(α) sgn(x) |x|α, with constants a
and b > 0, where sgn(α) and sgn(x) are the signs of α �= 0
and x. The limiting cases for the exponential and power
functions are the linear and logarithmic functions; these two
families of functions are the only ones that satisfy constant
risk aversion and constant relative risk aversion respectively
(Pratt 1964). It is not hard to see that a parametric method
will not be an interpolator unless the underlying utility func-
tion follows the parametric class being used.

Linear Interpolation
An alternate approach that is popular in the empirical litera-
ture on estimating single-attribute utility functions is that of
piece-wise linear interpolation across assessed tuples (Ab-
dellaoui 2000; Abdellaoui, Bleichrodt, and Paraschiv 2007).
Such an approach is essentially equivalent to the predictive
mean of the extended Wiener process, defined as a stochas-
tic process Wt with independent, normally distributed incre-
ments Wt−Ws ∼ N (0, t−s) for t ≥ s ≥ 0 with continuous
sample paths (Karlin 1975). A Wiener process is typically
defined to have initial value W0 = 0 but we may relax this
assumption. The predictive distribution is formalized in the
following lemma.
Lemma 1 (Theorem 2.1 in (Karlin 1975)) Assume Wt, t ∈
T follows a Wiener process. Assume we have observations
Wt1 , ...,Wtn with 0 < t1 < t2 < ... < tn. For any ti ≤
t∗ ≤ ti+1, for any 1 ≤ i < n and i ∈ N, the predictive dis-
tribution of Wt∗ given Wt1 , ...,Wtn is Wt∗ |Wt1 , ...,Wtn ∼
N (μ∗, V∗), where μ∗ =

(ti+1−t∗)Wti
+(t∗−ti)Wti+1

ti+1−ti
and

V∗ = (ti+1−t∗)(t∗−ti)
ti+1−ti

.

Lemma 1 states that if the utility function is modeled
as a Wiener process for a single attribute t, the posterior
mean μ∗ = E[Wt∗ |Wt1 , ...,Wtn ] for assessing the util-
ity at a point t∗ (that has not been assessed) is equiva-
lent to linear interpolation between two nearby assessed tu-
ples. Indeed, a Wiener process is a special case of GaSP
(which we will formally define in the next section) with
initial value W0 = 0, mean zero and covariance function
Cov(Ws,Wt) = min(s, t) at any s, t ≥ 0, and continuous
sample path. However, a Wiener process is not differentiable
everywhere and consequently using the posterior mean (i.e.
linear interpolation) poses problems for estimating the risk
aversion coefficient, since it relies on computing derivatives.
Example 1 (Linear interpolation and overconfidence)
Figure 1 displays the function y = 3sin(5πt) + cos(7πt)
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Figure 1: Interpolation of the function y = 3sin(5πt) +
cos(7πt) plotted as black curves with 12 assessments
equally spaced in [0, 1] (black dots). Predictions by the ex-
tended Wiener process (left panel) and the GaSP model
(right panel) are plotted as blue curves. 95% predictive con-
fidence intervals are shown by the grey area.

(treated as unknown) with assessments on 12 equally
spaced points in [0, 1]. The left panel shows the prediction
(blue curves) by the extended Wiener process (for which
we do not assume W0 = 0). Not only does the prediction
show discrepancy at places where the derivatives of the
function change, it is also clearly overconfident as the 95%
confidence interval covers regions that are a lot smaller
than the nominal 95%. In comparison, the right panel is
the prediction by the method we propose with the same 12
assessed points, using the default setting in the RobustGaSP
R Package (Gu, Palomo, and Berger 2019). While this
example illustrates a shortcoming of linear interpolation
using a generic function that is measured at a finite number
of values in its domain, the above weakness is relevant
to our objective of estimating a utility function using
experimentally assessed tuples.

Another limitation of a Wiener process estimation ap-
proach is that it is only defined in a one-dimensional domain
and thus is limited to single-attribute utility function esti-
mation. Although there is some literature on interpolation in
multi-attribute problems, e.g. Bell (1979), it is challenging
due to the curse of dimensionality. A more general GaSP ap-
proach with suitable covariance functions built on the space
of multiple attributes may be more suitable.

Quantile-Parameterized Distributions
Quantile-parameterized distributions (QPD) have recently
been introduced for modeling uncertainties (Keelin and
Powley 2011). This approach characterizes a continuous
probability distribution based on a number of assessed quan-
tile/probability pairs. Although QPDs have not been dis-
cussed in the context of utility elicitation, it is straightfor-
ward to apply the approach conceptually, since assessed tu-
ples are analogous to quantile/probability pairs. Denoting
these assessed tuples as (xi, ui) for i = 1, .., n, where ui

is the assessed utility scaled from [0, 1], the inverse CDF of
a QPD takes the form:

F−1(u) =

⎧⎨
⎩

L0 u = 0∑q
i=1 aigi(u) 0 < u < 1

L1 u = 1
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with left handed limit L0 = lim
y→0+

F−1(u), right handed

limit L1 = lim
y→1−

F−1(u), and gi(·) referring to basis func-

tions for i = 1, ..., q, q ≤ n. When the domain of x is
a real line, a simple choice is the Q-normal distribution,
where the basis functions are g1(u) = 1, g2(u) = Φ−1(u),
g3(u) = yΦ−1(u), g4(u) = u, with Φ being the normal
CDF. Note that the results depend entirely on the choice of
basis functions; further research is required to explore suit-
able models for utility elicitation. Here we consider QPDs
solely as another benchmark for comparison, since they pro-
vide some flexibility to model a curve ranging from [0, 1].

Estimation with GaSP
We introduce a Bayesian nonparametric method that takes
assessed tuples as training data input, regardless of the un-
derlying theory and assumptions used to derive them, and
provide an estimated utility function û(x), where x could
either be a single attribute or multiple attributes.

Model Formulation
To set notation, let x = (x1, ..., xp)

T be a vector of p differ-
ent attributes and let u(x) be the utility evaluated at x. Let
us consider a random utility function modeled in a general
regression way with the form u(x) = m(x) + z(x). m(x)
is the mean function, modeled as:

E[u(x)] = m(x) = h(x)θ =

q∑
j=1

hj(x)θj , (1)

where h(x) is assumed to be a q dimensional domain depen-
dent basis function for any x ∈ X , with unknown regression
parameters θj for each basis function hj(x). hj(x) could be
chosen, e.g., as a particular parametric form or as a polyno-
mial function in x. For the additive residual term, instead of
taking z(x) as independent measurement errors as in Eliash-
berg and Hauser (1985), we model z(·) as a stationary GaSP:

z(·) ∼ GaSP (0, σ2c(·, ·)) , (2)

with variance σ2 and pair-wise correlation function c(·, ·). In
return, the joint distribution of any n inputs {x1, . . . ,xn} ∈
X , follows a multivariate normal distribution,(

(z(x1), . . . , z(xn))
T | (σ2, C)

)
∼ N (0, σ2C) , (3)

i.e. a normal distribution that is conditional on the un-
known variance σ2 and the Gram (correlation) matrix C
(Rasmussen and Williams 2006) whose (i, j) element is
c (xi,xj). By definition, the covariance of the utility is:

Cov(u(xa), u(xb)) = σ2c(xa,xb),

for any xa,xb ∈ X . If p = 1 (i.e. single attribute),
c(xa, xb) = min(xa, xb) on input domain [0,+∞) and ini-
tial value 0, GaSP becomes a Wiener Process . To extend the
definition to the case when p > 1, the isotropic assumption
is sometimes made for modeling a spatial process (Gelfand
et al. 2010), meaning that the correlation function c(xa,xb)
is a function of ||xa − xb|| where || · || is the Euclidean dis-
tance. However, the domain of attributes typically varies on

cl(dl)
Power Exponential exp{−(dl/γl)

νl}, νl ∈ (0, 2]

Spherical
(
1− 3

2

(
dl

γl

)
+ 1

2

(
dl

γl

)3)
1[dl/γl≤1]

Rational Quadratic
(
1 +

(
dl

γl

)2)−νl

, νl ∈ (0,+∞)

Matérn 1
2νl−1Γ(νl)

(
dl

γl

)νl

Kνl

(
dl

γl

)
, νl ∈ (0,+∞)

Table 1: Popular choices of correlation functions, when
cl(xal, xbl) = cl(dl) with dl = |xal − xbl| for l = 1, ..., p.
Here νl is the roughness parameter, γl is the range param-
eter, Γ(·) is the gamma function and Kνl

(·) is the modified
Bessel function of second kind of order νl.

completely different scales (e.g. between the price and com-
fort of a car), so the effect of the attributes on the correla-
tions will be highly variable. Consequently, the assumption
of isotropy may not be reasonable. Instead, the product cor-
relation function is often assumed:

c(xa, xb) =

p∏
l=1

cl(xal, xbl), (4)

where cl(·, ·) is a one-dimensional correlation function for
the lth attribute. We list several frequently used correlation
functions in Table 1. The difference between the above prod-
uct correlation function and the isotropic assumption is that
for the former, there are parameter(s) in each correlation
cl(·, ·) that can control the size of correlation and smooth-
ness of the utility function on this attribute (which could be
learned from the data), whereas the isotropic correlation is a
function of the Euclidean distance between two attributes.

The power exponential covariance and the Matérn co-
variance have been used in many applications. When νl =
(2k + 1)/2 where k ∈ N, Matérn correlation has a closed
form. For example, when the roughness parameter νl = 5/2,
the Matérn correlation is:

cMat(dl) =

(
1 +

√
5dl
γl

+
5d2l
3γ2

l

)
exp

(
−
√
5dl
γl

)
, (5)

where dl = |xal − xbl|. As the roughness parameter (νl)
is fixed at a chosen value, we only need to estimate the
range parameters (γl) in the correlation function. The sample
path of GaSP with the Matérn correlation defined in equa-
tion (5) is twice mean square differentiable (Rasmussen and
Williams 2006), allowing one to infer the risk attitude using
twice derivatives of the GaSP as discussed later. We found
the GaSP model with the Matérn correlation in equation (5)
performs well in both simulated and real studies of utility
elicitation, but we do not preclude the use of other corre-
lation functions with suitable differentiable results in future
applications.

Posterior Predictive Distribution
Denote assessed tuples as

(
xD,u(xD)

)
, where xD ={

xD
1 ,x

D
2 , . . . ,x

D
n

}
are n points in the domain of the multi-

attributes. As we are empirically limited by a small num-
ber of assessed utility values, we seek the posterior predic-
tive distribution of the utility function u∗(x∗) at any input
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x∗ ∈ X based on the assessed tuples
(
xD,u(xD)

)
. For sim-

plicity, denote uD =
(
u(xD

1 ), u(x
D
2 ), ..., u(x

D
n )
)T

as the as-
sessed utility points in the design. As per the chosen GaSP
model, the likelihood is a multivariate normal likelihood:

L(uD|θ, σ2,γ) = (2πσ2)−n/2|C|−1/2

× exp

{
− (uD − h(xD)θ)TC−1(uD − h(xD)θ)

2σ2

}
,

where h(xD) is the n× q basis design matrix with (i, j) el-
ement hj(x

D
i ). The model parameters for posterior estima-

tion are the mean parameter θ = (θ1, θ2, ..., θq)
T , variance

parameter σ2 and range parameters γ = (γ1, γ2, ..., γp)
T in

the correlation function in equation (5).
We take an objective Bayesian approach using the refer-

ence prior for the model parameters (Berger, De Oliveira,
and Sansó 2001), and estimate γ by the maximum marginal
posterior mode with robust parameterization (Gu, Wang,
and Berger 2018; Gu 2018). We use robust estimation as
the number of assessed tuples is typically small, a scenario
where some routinely used methods (e.g. the maximum like-
lihood estimator) are unstable, leading to a large predictive
error; see e.g. Figure 1 in Gu, Wang, and Berger (2018).

The predictive distribution of u(x∗) at a new point x∗ ∈
X , given the assessed tuples and the estimated range param-
eter γ̂, is a t-distribution with n− q degrees of freedom:

u(x∗) | uD, γ̂ ∼ t(û(x∗), σ̂2c∗∗, n− q). (6)

The closed form expressions for û(x∗), σ̂2 and c∗∗ are given
in Gu, Wang, and Berger (2018).

The predictive mean û(x∗) will be used for estimation of
a utility function at any x∗. The predictive mean estimator
at any xD

i is an interpolator meaning that û(xD
i ) = u(xD

i )
(Gu and Berger 2016). For noisy assessments, we do not
expect the prediction of GaSP to be exact at the assessed
points. In this scenario, an independent noise can be added
in the model by defining z̃(x) = z(x) + ε, where ε is inde-
pendent white noise. The objective Bayesian inference for
such a GaSP model is similar to the method discussed above
(Ren, Sun, and He 2012).

Derivatives of the Utility Function
Differentiability is an important property of utility functions,
e.g. the Arrow-Pratt measure of local risk aversion is defined
as λ(x) = −u′′(x)/u′(x). Our proposal to use GaSP is help-
ful in this regard since the derivative processes are also GaSP
when the covariance function is mean square differentiable
(Rasmussen and Williams 2006).

For demonstration purposes, we derive the first and sec-
ond order derivative processes of the Matérn class correla-
tion with roughness parameter equal to 2.51. The result can
be easily extended to directional derivative processes with
regard to each attribute in the multi-attribute case, i.e. ∂u(x)

∂xl
,

for l = 1, ..., p. The risk attitude can be assessed using the
predictive distribution of the derivative processes. Unlike the

1Please see the arXiv version for closed form expressions of the
derivative processes: https://arxiv.org/abs/1807.10840

estimation by linear interpolation (Abdellaoui, Bleichrodt,
and Paraschiv 2007), our approach for estimating the risk
attitude enables full assessment of the uncertainty.

Synthetic Data Experiments
In this section, we explore practical ramifications through
experiments with synthetic data. In preference elicitation,
only a limited number of questions can be posed, thus the
number of assessed tuples is typically small: n = 7 and
10 are considered herein. Out of sample mean squared error
MSE =

∑n∗

i=1 {û(x∗
i )− u(x∗

i )}
2
/n∗ is utilized for com-

parison, where x∗
i ∈ X is the ith equally spaced held-out

point and n∗ = 1, 001 is used for testing throughout this
section. We assume U(xmin) = 0 and U(xmax) = 1, where
xmin = 0 and xmax = 105 are lower and upper bounds of
X in simulated studies. Assuming ground truth of a power
utility function, we compare the exponential function (Exp),
linear interpolation (LI) and quantile-parameterized distri-
bution (QPD) method with GaSP. The experiments were re-
peated with other functions, yielding similar results; these
are omitted due to space limitation.

For the parametric methods and QPD method, we esti-
mate the parameters with the minimum least squares error.
For the QPD, we choose the basis function to be g1(u) = 1,
g2(u) = Φ−1

∗ (u), g3(u) = uΦ−1
∗ (u), g4(u) = u. As the do-

main of x is [0, 105], the usual Q-normal distribution is not
a sensible choice. Instead, we let Φ−1

∗ (u) be a normal dis-
tribution truncated at 0 and 105 centered at 0 with standard
deviation 5× 104. This seems to perform the best among all
basis functions we explored.

Comparing Utility Function Estimates
First we assume that assessments are noise-free. Table 2 dis-
plays the out of sample MSE when the underlying utility
function U is power. Since the power utility function is a
subclass of models contained within the GaSP framework
with mean basis h(x) = xα and variance σ = 0, we choose
the mean function of the GaSP to be misspecified by select-
ing an inconsistent mean basis (x0.5), to highlight that GaSP
performs well even in this scenario. GaSP outperforms the
other methods and the discrepancy is usually several orders
of magnitude less than that for parametric fitting, and it is
usually ten to hundred times better than LI.

Method α = 0.7 α = 1.5 α = 2.5
Exp 5.6× 10−4 3.2× 10−4 6.9× 10−4

LI 9.5× 10−6 4.8× 10−5 3.8× 10−4

GaSP 2.8× 10−7 5.5× 10−6 5.0× 10−6

QPD 2.2× 10−5 2.8× 10−4 2.8× 10−3

Table 2: Out of sample MSE for noise-free assessments with
n = 7. U is assumed to be power with different α.

Next we assume noisy assessments, specifically that util-
ities are random with additive noise:

u(x) = U(x) + ε; ε | σ2
ε ∼ N (0, σ2

ε ), (7)
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Method α = 0.7 α = 1.5 α = 2.5
Exp 5.6× 10−4 3.2× 10−3 6.9× 10−4

LI 1.8× 10−5 3.4× 10−5 1.9× 10−4

GaSP 9.7× 10−6 1.7× 10−5 1.3× 10−4

QPD 2.4× 10−5 2.1× 10−4 2.1× 10−3

Table 3: AvgMSE for noisy assessments with n = 10 and
when U is assumed to be power, with σε = 0.005.

where U(x) is the underlying utility function and σ2
ε is the

variance of the Gaussian noise. Since the assessed points
are noisy, we simulated N = 200 experiements to aver-
age out the design effect, and calculate the average MSE:
AvgMSE = 1

N

∑N
j=1 MSEj . Here the total held-out test-

ing points for each case is thus n∗ ×N = 200, 200.
Compared to the results of noise-free assessments, all

methods have comparatively large MSE for noisy assess-
ments, as shown in Table 3. Indeed, if the elicited utilities
are dominated by noise, none of the methods works as well
as the noise-free cases. Compared to all baselines, GaSP still
has the smallest predictive error.

Comparing Derivatives
In Abdellaoui, Bleichrodt, and Paraschiv (2007) and Ab-
dellaoui, Bleichrodt, and l’Haridon (2008), the curvature of
utility functions is classified as either concave, convex or
of mixed type, using LI or parametric fitting. Such classifi-
cation is global and characterizes the dominant risk attitude
implied by the assessed utility function throughout the entire
domain. In the LI method, empirical derivatives of assessed
utility points are utilized for estimation of curvature. Let Pi

be an observed utility middle point between two neighbor-
ing elicited utility points Pi−1 and Pi+1. Denote S−(Pi) and
S+(Pi) as slopes of the straight line between Pi to Pi−1

and Pi to Pi+1 respectively. ΔS(Pi) = S+(Pi) − S−(Pi)
is used as the estimate of convexity at point Pi. The util-
ity function is typically estimated to be concave (convex) if
more than ≈ 2/3 elicited utility points are estimated to be
concave (convex), otherwise it is denoted as a mixed type.

In the GaSP method, one can compute the posterior
distribution of the second derivative for any point x∗ in
the domain as mentioned previously. When Pr(u′′(x∗) ≤
0|u(x1), . . . , u(xn)) > 0.5, the utility function is predicted
to be concave at x∗, otherwise convex. In the following sim-
ulations, we compute the predictive distribution on n∗ =
10, 000 equally spaced inputs x∗

i , i = 1, ..., n∗, and use the
proportion of points that are predicted to be concave/convex
to predict the overall curvature of the function.

The results for estimating global concavity by LI and
GaSP are shown in Figure 2. In the top row of Figure 2,
the underlying utility functions are all concave. Due to the
effect of noisy assessment, the proportion of concave points
by LI is between 1/3 to 2/3 in most of the experiments,
meaning that LI fails to identify the concavity of the func-
tions, classifying them of mixed type instead. In the bottom
row of Figure 2, when the underlying utility function is con-
vex, LI fails to identify the convexity of the utility functions
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Figure 2: Boxplot of the proportion of points predicted as
concave for N = 500 experiments. Upper figures show re-
sults for noisy assessment of concave exponential utilities
with σε = 0.01, ρ = 2/3 (left) and σε = 0.02, ρ = 1/3
(right). Lower figures show results for noisy assessment of
convex exponential utilities with σε = 0.01, ρ = −1/2
(left) and σε = 0.02, ρ = −1/4 (right). n = 15 for all.

and again classifies a majority of points as the mixed type.
Compared to LI, GaSP predicts curvature more accurately.
In the top row, the proportions of concavity points are almost
all close to 1 across N = 500 experiments. In the bottom
row, most points are predicted to be convex for a majority
of experiments. Using 2/3 as the threshold would correctly
classify most of the utility functions using GaSP.

There are two main reasons why GaSP performs better.
First, GaSP prediction of concavity of point x∗ utilizes in-
formation from all assessed tuples rather than just the two
neighboring points as in LI. Second, prediction of concavity
by GaSP is averaged by many predictive samples of second
derivatives (n∗ = 10, 000 chosen here) over the entire attri-
bution domain rather than the limited number of n assessed
tuples in LI. GaSP estimation is therefore better at analyzing
preference properties like risk attitude.

Real Data Experiments
Single Attribute Dataset
Let us compare the parametric and nonparametric meth-
ods using a real dataset from Abdellaoui, Bleichrodt, and
Paraschiv (2007), collected from a prospect theory based
scheme. k = 48 people answered a series of questions about
comparisons between risky gambles. Due to the effect of
loss aversion, the range of the loss domain (negative out-
comes) is assumed to be [−1, 0] and the range of the gain
domain (positive outcomes) is constructed to be [0, 0.25],
with 11 and 7 assessed tuples in each domain respectively.
See Abdellaoui, Bleichrodt, and Paraschiv (2007) for details
about the design and elicited scheme.

To test the predictive performance of different methods,
we randomly sample n∗

loss = 4 and n∗
gain = 3 assessed

tuples in the loss and gain domains for each person respec-
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AvgMSE GaSP LI Pow Exp
Loss 8.9× 10−4 9.7× 10−4 1.5× 10−3 1.7× 10−3

Gain 7.4× 10−5 8.2× 10−5 1.1× 10−4 1.1× 10−4

Table 4: Average out of sample MSE for losses and gains us-
ing GaSP, linear interpolation (LI), power (Pow) and expo-
nential (Exp) in the single attribute dataset. MSE is averaged
over n∗

losskN = 96K and n∗
gainkN = 72K respectively.

tively, saving them as the test set, while the remaining as-
sessed tuples are used as the training set. We repeat this ex-
periment N = 500 times, and fit each method for each ex-
periment. We see in Table 4 that the average out of sample
MSE for GaSP is similar to but better than LI. It is much
smaller than those for the power and exponential functions.
The parametric fit, albeit straightforward in interpretation,
induces extra assumptions and may lead to poor estimates.

Multiple Attribute Dataset
To demonstrate the performance of the GaSP model for util-
ity functions with multiple attributes, we study a real dataset
with three attributes (Fischer, Jia, and Luce 2000). This ex-
periment was conducted among 22 students at Duke about
decisions pertaining to course selection involving three at-
tributes. The attributes x = (x1, ..., x3) include the degree
of interest, expected teaching quality and the average grade,
each of which has 5 levels. The output u(x) is the utility rat-
ing of a course given a set of attributes. Each volunteer is
asked to rate the same 20 courses along the three attributes.

Fischer, Jia, and Luce (2000) proposed RandMAU
as a sampling model to capture the stimulus proper-
ties of attribute conflict and attribute extremity. The
model is intended to characterize potentially incon-
sistent responses to preference elicitation questions
through a stochastic model of the assessed util-

ity. It is defined as u(x1, ..., xp) =
p∑

i=1

ωiui(xi) +

ω
p∑

i=1

p∑
j>i

ωiui(xi)ωjuj(xj) + ... + ωp−1
p∏

i=1

ωiui(xi),

where 1 + ω =
p∏

i=1

(1 + ωωi) and ωi ∼ind Beta(ri, ui).

p = 3 is the number of attributes and ui(xi) =
[
xi−xi0

x∗
i −xi0

]αi

with xi0 and x∗
i as the lower and upper limits for attribute

xi. This model has 7 parameters (ω1, ω2, ω3, ω, α1, α2, α3)
but when (ω1, ω2, ω3) are known, ω can be uniquely solved,
which leaves the model with 6 degrees of freedom. The
authors specify two ways of estimating parameters, namely
the corner point and nonlinear least squares estimation
methods. The first approach uses only 7 out of the 20 data
points for each participant to fit the model while the second
minimizes the squared error using all assessed tuples.

We compare the afore-mentioned two approaches with
our proposed GaSP approach for modeling the average rat-
ings (shown in Table 1 in Fischer, Jia, and Luce (2000))
based on the attributes. We compute the out of sample
MSE and R2 from our proposed GaSP estimation from
the RandMAU-based methods of corner point and nonlin-

corner point nonlinear least square GaSP
MSE 0.0084 0.0056 0.0017
R2 0.9087 0.9391 0.9813

Table 5: Out of sample performance using corner point, non-
linear least square and GaSP estimation in the multiple at-
tribute dataset.

ear least squares estimation, using the 13 data points that are
not used in the corner points approach. Since the sample size
is very small, each time we only leave a data point out and
compute the MSE and R2 for this point. The average out of
sample MSE and R2 are shown in Table 5.

In Table 5, we find that the prediction by the GaSP model
is several times better than the previous inference methods
because it is flexible, while RandMAU is restrictive since
each ui(xi) is assumed to be the power utility function and
thus cannot capture other shapes. For the RandMAU meth-
ods, we find that nonlinear least square estimates are better
than corner point estimates in terms of MSE and R2. This is
because only 7 observations are used for prediction in corner
point estimation, which is inefficient in estimation.

Conclusions
We have presented a nonparametric Bayesian approach in-
volving GaSP for inferring a decision maker’s utility func-
tion using assessed tuples as training data, regardless of
the choice of elicitation protocol and underlying theory.
We describe theoretical benefits over parametric approaches
around the desired property of interpolation for noise-free
assessment. Unlike the linear interpolation approach, the
proposed method guarantees the differentiability of the esti-
mated utility function by choosing an appropriate correlation
function, Our nonparametric estimation approach is flexible
to fit a large class of functions, and the predictive distribution
provides probabilistic quantification of the decision maker’s
preference properties, such as the risk attitude.

Simulated experiments confirm that the GaSP model has
lower predictive error than parametric method, as well as the
quantile parametrized distribution method and linear inter-
polation, even when the simulated data are corrupted with
additive Gaussian noise. Our approach also has a smaller
out-of-sample predictive error of estimating utility functions
and risk attitudes using real data sets from the literature,
which demonstrates the effectiveness of our method.

Utility functions have specific functional characteristics.
For instance, a utility function is often assumed to be mono-
tonic in its arguments. A potential avenue for future work
is around constrained GaSPs, which would extend the pro-
posed approach to respect monotonicity.
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