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Abstract

Research on human emotion cognition revealed that con-
nections and pathways exist between spatially-adjacent and
functional-related areas during emotion expression (Adolphs
2002a; Bullmore and Sporns 2009). Deeply inspired by
this mechanism, we propose a heuristic Variational Path-
way Reasoning (VPR) method to deal with EEG-based emo-
tion recognition. We introduce random walk to generate a
large number of candidate pathways along electrodes. To en-
code each pathway, the dynamic sequence model is further
used to learn between-electrode dependencies. The encoded
pathways around each electrode are aggregated to produce
a pseudo maximum-energy pathway, which consists of the
most important pair-wise connections. To find those most
salient connections, we propose a sparse variational scaling
(SVS) module to learn scaling factors of pseudo pathways
by using the Bayesian probabilistic process and sparsity con-
straint, where the former endows good generalization ability
while the latter favors adaptive pathway selection. Finally, the
salient pathways from those candidates are jointly decided
by the pseudo pathways and scaling factors. Extensive ex-
periments on EEG emotion recognition demonstrate that the
proposed VPR is superior to those state-of-the-art methods,
and could find some interesting pathways w.r.t. different emo-
tions.

Introduction

Emotion recognition has become an active topic of affective
computing in recent years and drawn wide attention due to
its huge potential applications including humanoid robots,
driver monitoring, etc. Externally, human emotion is usu-
ally expressed as non-physiological signals including facial
expressions, body actions, speeches, etc. In contrast, bio-
electrical signals, e.g., electroencephalograph (EEG) and
galvanic skin response (GSR), internally reflect the intrinsic
emotion states. Specifically, EEG signals of electrodes at-
tached on scalps are rather reliable to capture brain-emotion
variations with high temporal resolution. Therefore, EEG
signals have become increasingly important in analysing hu-
man emotion.
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Numerous algorithms (Zheng et al. 2014; Shi, Jiao, and
Lu 2013; Li et al. 2016; Zheng and Lu 2015; Li et al. 2018a;
2018b; Song et al. 2018) have been proposed to tackle
with EEG emotion recognition. In early time, these meth-
ods (Zheng et al. 2014; Shi, Jiao, and Lu 2013) mostly fo-
cus on the sophisticated signal processing techniques of fre-
quency band filtering. To boost recognition performance,
recently, discriminative representation learning techniques
are used to extract more effective emotion features. For in-
stances, Zheng (Zheng 2016) formulated EEG signals as
sparse channel selection to suppress those electrodes with
negative effects to emotion analysis. More recently, deep
networks, such as deep belif network (DBN) (Zheng and
Lu 2015) and recurrent neural network (RNN) (Zhang et
al. 2018; Song et al. 2019), are adopted to encode high-
level features. Furthermore, in view of the non-gridded lay-
out of EEG signals, graph convolutional neural network
(GCNN) (Song et al. 2018) was introduced to model EEG
signals, and achieved the state-of-the-art performance. All
these methods are mostly inspired from the algorithms of
machine learning, but emotion mechanisms or principles are
seldom introduced in EEG emotion task.

Psychology study (Adolphs 2002a; Bullmore and Sporns
2009) on human emotion perception revealed that connec-
tions and pathways exist between spatially-adjacent and
functional-related areas during emotion expression. This
discovery is great interesting to encourage us to design
some new-type algorithms that use pathways to boost per-
formance. Conversely, those pathways are expected to be
detected for emotion variation explanation. To this end, we
need to solve two critical problems: i) how to model this
perception mechanism of existing pathways into emotion
recognition algorithms; ii) how to detect those salient inter-
esting pathways w.r.t. different emotions.

To address the two problems above, here we propose
a heuristic Variational Pathway Reasoning (VPR) method
for EEG emotion recognition. We specially introduce ran-
dom walk to generate a large number of candidate path-
ways along electrodes. Considering spatial adjacency and
functional region, we assign possible connections to spa-
tially adjacent electrodes and constrain pathways in local
functional regions, which may largely decrease the explo-
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sive magnitude of pathways. To represent each pathway,
dynamic sequence models, e.g., long-short term memory
(LSTM), could be used to encode their ordered connectivity
that indicates between-electrode dependency. The encoded
pathways around each electrode are aggregated to a pseudo
maximum-energy pathway. As this pseudo pathway indi-
cates the most salient pair-wise connections in a local re-
gion anchored around the center electrode, so the contribu-
tion strength of each candidate to this pseudo pathway deter-
mines its some saliency degree in emotion analysis. More-
over, the saliency of candidate pathways depends on the im-
portance of pseudo pathways in the holistic brain region. To
reason those salient pathways, mathematically, we formu-
late it as a Bayesian probabilistic learning process and pro-
pose sparse variational scaling (SVS) to learn scaling factors
of pathways, which is different from previous determinis-
tic methods suffering from instability due to the low gener-
alization ability. Considering the high distribution variation
among different subjects, we design an adaptive selection by
constraining the sparse structure of those scaling factors. As
a result, our proposed VPR possesses two advantages. First,
the stochastic variational scaling for pathway selection en-
dows VPR with good generalization ability, and makes the
model more interpretable. Second, the sparsity on scaling
factors well favors the adaptive pathway selection. We eval-
uate our VPR on two EEG emotion datasets. Extensive ex-
periments demonstrate that our proposed VPR is superior to
those state-of-the-art methods, and could find some interest-
ing pathways w.r.t. different emotions.

In summary, our main contributions are three folds:
(i) The pathway mechanism is first introduced to the

field of EEG emotion task, and framed into a well-
constructed model to boost recognition performance.

(ii) We proposed a salient pathway reasoning method,
which includes two basic modules named pathway ag-
gregation and sparse variational scaling. It can adap-
tively determine salient pathways to facilitate EEG
emotion recognition, and meanwhile provide some ex-
planation for emotion analysis.

(iii) The proposed VPR achieves state-of-the-art perfor-
mance on two public EEG emotion datasets, and mean-
while finds some interesting observation of pathways
about different emotions.

Related work

Below we first briefly overview EEG emotion recognition
methods, then we introduce literatures about random walk
based graph embedding and variational auto-encoder (VAE),
which are technically related to our work.

EEG emotion recognition methods. Various methods
have been proposed to deal with EEG-based emotion recog-
nition. These methods generally contain two crucial steps,
feature extraction and emotion classification. In order to
extract robust features from raw EEG signals with low
signal-to-noise ratio, various EEG descriptors were pro-
posed (Zheng et al. 2014; Shi, Jiao, and Lu 2013; Zheng
and Lu 2015) such as power spectral density (PSD), dif-
ferential entropy (DE) and differential asymmetry (DASM).

According to these descriptors, the existing methods built ei-
ther global or local models through feature extraction algo-
rithms as well as classic classifiers. For instances, Zheng et
al. (Zheng and Lu 2015) employed support vector machine
(SVM) on features of either all electrodes (aka channels) or
a part of selected ones, while group sparse canonical correla-
tion analysis (GSCCA) (Zheng 2016) attempted to automat-
ically select salient electrodes by using group sparse con-
strain. In recent years, accompanying with great successes of
deep learning in various computer vision tasks, researchers
also attempted to employ deep networks on EEG signals in
order to extract more robust features. In the relative early
stage, deep belief networks (DBN) (Zheng and Lu 2015) di-
rectly gathered all electrodes together as the input and con-
structed multiple hidden layers to learn high-level features.

Random walk based graph embedding. Various
graph embedding techniques based on random walk have
been proposed to obtain node representations, where
node2vec (Grover and Leskovec 2016) and DeepWalk are
two representative works. Node2vec maximizes the proba-
bility of occurrence of subsequent nodes in random paths
of fixed length to preserve higher order proximity be-
tween nodes. DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) learns latent representations by using local informa-
tion obtained from truncated random walks, where a node
and a walk path are treated as a word and a sentence in
Word2Vector (Mikolov et al. 2013) respectively. Motivated
by the success of DeepWalk, many subsequent studies which
apply deep learning models on the sampled paths, e.g. Skip-
Gram (Mikolov et al. 2013) or Long-Short Term Memory
(LSTM) (Gers, Schmidhuber, and Cummins 1999), are pro-
posed on the sampled paths for graph embedding.

VAE variants. VAE models the underlying probability
distribution of observations using variational inference in a
probabilistic way, which makes itself more stable and inter-
pretable than deterministic methods. In recent years, it has
drawn much attention in the field of artificial intelligence (Pu
et al. 2017; Higgins et al. 2017; Li et al. 2017; Walker et
al. 2016) and multiple variants, e.g. β-VAE (Higgins et al.
2017), variational graph auto-encoders (VGAE) (Kipf and
Welling 2016) and Stein VAE (Pu et al. 2017), have been
developed to adapt different tasks. Now VAE is flourishing
in many pattern recognition tasks including object recog-
nition (Zhao et al. 2019), recommendation system (Kara-
manolakis et al. 2018), and document summarization (Li
et al. 2017).

Variational Pathway Reasoning

In this section, we first give an overview on the proposed
VPR, and then introduce main modules and details.

Overview The entire architecture of VPR is shown in
Fig. 1. The input is EEG signal produced from brain re-
gions. In view of spherical-shape structure, EEG signals
are modeled as graphs, where each electrode is regarded
as one node. According to emotion perception mecha-
nism (Adolphs 2002a; Bullmore and Sporns 2009) that there
are connections and pathways during emotion activation,
we introduce random walk to generate a mass of pathway
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Figure 1: The proposed VPR framework. The introduction is given in the subsection ”Overview”. Specifically, the sparse
variational factors endow the structure of sparsity to the scaled PSP which favors the adaptive pathway selection. The dotted
lines mean that the PSP and holistic scaling factors are employed to reversely calculate the contribution of each candidate
pathway.

candidates. To reduce the exponential magnitude of walk
paths, we constrain walk scopes within local regions through
the partition of five brain function regions (‘Frontal’ (F),
‘Temporal’ (T), ‘Parietal’ (P), ‘Occipital’ (O) and ‘Cen-
tral’ (C)) (Adolphs 2002a), and define direct connections
only between spatially-adjacent electrodes. For each elec-
trode as a start node, we may sample multiple candidate
pathways within a predefined walk length. Considering the
sequence property of walk paths, we introduce the dynamic
sequence model LSTM to encode between-electrode depen-
dencies and further extract high-level features of pathways.
For each electrode, we maximumly aggregate the encoded
pathways therein to derive a pseudo salient pathway, each
edge of which actually denotes the salient connection at a
hopping step. To further purify pseudo pathways, we pro-
pose a sparse variational scaling (SVS) module to learn scal-
ing factors imposed on those pathways. In contrast to the
local aggregation, the variational scaling is shared on all
electrodes, thus may be understood as a holistical weighting
strategy. The scaling factors could be not only used for gen-
erating more discriminative features for final emotion pre-
diction, but also fed-back into those candidate pathways to
decide the final salient pathways.

Pathway Candidates Generation For the input EEG sig-
nals, multiple pathways are sampled for every electrode
(node) in each local brain region. Formally, for a random
walk of a certain length l, the ordered nodes denoted as
[u0,u1, · · · ,ul] are generated by the following distribution:

P (ui = v2|ui−1 = v1) =

{ e(v1,v2)

Z , if (v1,v2) ∈ Er;
0, otherwise.

(1)

where e(v1,v2) denotes the unnormalized adjacency between
nodes v1 and v2 with its value being set to 1 if v1,v2 are
spatially adjacent (more details in Fig. 2) or 0 otherwise,

Z is the normalizing constant, and Er represents the set of
pairs of adjacent electrodes enclosed in the r-th brain region
(r ∈ {F, T, P,O,C}). Note that, in this paper, the symbols
ui and vi are abusively used as nodes or node signals for the
simplification description. They could be easily understood
according to the context statement.

Pathway Coding For the candidate pathways, the se-
quence recursive model LSTM (Gers, Schmidhuber, and
Cummins 1999) is employed to encode the dependencies on
walking nodes and obtain their embedding representation.
Formally, for a given pathway [u0,u1, · · · ,ul], the encod-
ing process is defined as follows:

it = σ(Wuiut +Whiht−1 +Wcict−1 + bi), (2)
ft = σ(Wufut +Whfht−1 +Wcfct−1 + bf ), (3)
ct = ft � ct−1 + it � tanh(Wucut +Whcht−1 + bc),

(4)
ot = σ(Wuout +Whoht−1 +Wcoct + bo), (5)
ht = ot � tanh(ct). (6)

where it, ft denote the input and forget gates respectively, ct
is the memory cell, ht is the hidden state, ot is the output re-
sponse, and t means the position of the node in the pathway.
The operators � and σ(·) denote the element-wise prod-
uct and the non-linear activation function (we use sigmoid
here). Wαβ(α ∈ {u, h, c}, β ∈ {i, f, c, o}) is the transfor-
mation matrix allowing LSTM to utilize both the current and
past information to determine the output, and bβ is the bias.
Among them above, Wαβ and bβ are the parameters to be
optimized. Then, the generated output responses, denoted as
q = [ot

1, · · · ,oT
l ]

T , are used as the embedding representa-
tion of the given pathway.

Local Pathways Aggregation To find those salient con-
nections between eletrodes, we use max-aggregation to
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those local candidate pathways with the same starting nodes.
Concretely, for the j-th electrode, the k-th associated path-
way is embedded as qjk(k ∈ Fj , k = 1, · · · ,K), where Fj

means the pathway set starting from the j-th electrode. The
aggregated pathway can be calculated by taking the maxi-
mum value of each dimension among the embedded codes:

sj = max
k∈Fj

qjk . (7)

Note that one aggregated pathway might not be a true walk
because of inconsistency of max positions, but this pathway
recorded those most salient connections between electrodes.
Thus, we refer the aggregated pathways as pseudo salient
pathways. After max-aggregation, all pseudo salient path-
ways w.r.t. electrodes are collected as the d-dimensional vec-
tor set S = {s1, · · · , sn} where sj ∈ R

d, j ∈ [1, · · · , n].
One candidate pathway highly correlates to the corre-

sponding pseudo salient pathway therein. Formally, the local
saliency of one candidate pathway is derived as

ak→j =< qjk, sj > /
√
(qT

jkqjk)
√
(sTj sj), k ∈ Fj ,

(8)

where < ·, · > denotes the inner product of two vectors,
ak→j is the importance degree of the k-th pathway to the
local region around the j-th electrode.

Holistic Pathway Scaling The above aggregation process
is used to calculate the local saliency of candidate pathways
as shown in Eqn. 8. More holistically, we propose the SVS
module to derive scaling factors of pseudo pathways. In-
stead of a deterministic way, we introduce the variational
inference model with sparse constraints. Due to good math-
ematical property on data distribution fitting, SVS tends to
be stable and interpretable. Moreover, the structure of those
scaling factors is constrained to be sparse so as to adaptively
select the salient pathways.

Given the pathway saliency set S = {s1, · · · , sn}(sj ∈
R

d), we aim to derive the latent variable set Z =
{z1, · · · , zn}(zj ∈ R

d) based on the posterior distribution
p(Z|S), where zj is the scaling factor to be learnt. Each
pseudo pathway saliency sj will be re-scaled based on the
corresponding latent variable zj :

s′j = sj � z′j = sj � σ(zj), (9)

where s′j represents the final saliency of the pseudo pathway
after scaling, z′j = σ(zj) is the scaling vector, σ(·) is a non-
linear transformation function on zj and is set as the sigmoid
function here, and � means element-wise product.

Let X (i) = {x(i)
1 , · · · ,x(i)

n } denote the EEG signals
of the i-th sample with the corresponding emotion label
yi, where x

(i)
j is the signal on the j-th electrode, we in-

troduce how to learn the corresponding latent variable set
Z(i) based on S(i). For notation simplicity, s

(i)
j , z

(i)
j in

S(i),Z(i) are directly denoted as sj , zj below. For a given
sj , the true posterior distribution of zj is difficult to infer
by the Bayes rule p(zj |sj , yi) = p(zj)p(sj , yi|zj)/p(sj , yi)
due to the intractability. In variational inference, an ap-
proximation to the intractable true posterior p(zj |sj , yi)

is introduced as qφ(zj |sj , yi) to solve the problem above.
Also, the Kullback-Leibler (KL)-divergence is employed
to estimate the distribution distance between qφ(zj |sj , yi)
and p(zj |sj , yi). Then, minimizing KL-divergence may re-
sult into a good approximation of p(zj |sj , yi) by using
qφ(zj |sj , yi). Considering the non-negative property of KL-
divergence and supervised information of yi, the varia-
tional lower bound (VLB) Lvlb(sj , yi, φ) may be derived,
thus minimizing KL-divergence is equivalent to maximizing
Lvlb(sj , yi, φ) as follows:
Lvlb(sj , yi, φ) = log p(yi|sj)−DKL(qφ(zj |sj , yi)||p(zj |sj , yi))
= Eqφ(zj |sj ,yi)[log p(yi|sj , zj)]−DKL(qφ(zj |sj , yi)||p(zj |sj))

(10)
where p(zj |sj) ∼ N(0, I). Here different from the previ-
ous VAE method (Walker et al. 2016), we derive the scal-
ing factors only depending on the data distribution, which
means qφ(zj |sj , yi) = qφ(zj |sj). To make the variational
lower bound above be optimized through stochastic gradient
strategy, the reparameterization trick (Kingma and Welling
2013) is introduced into the Gaussian case: zj = f(φ, εj) =
uj + εj · σj , εj ∼ N(0, I), where uj and σj are the mean
and standard deviation (s.d.) vectors.

To find those most important connections between dif-
ferent electrodes, we impose the sparsity constraint on the
scaling factors. Formally, given the factor vector set Z ′ =
{z′1, · · · , z′n}, we define the sparsity loss as follows:

Lsparse(Z ′) =
n∑

j=1

d∑
m=1

(z′jm)2, (11)

where z′jm denotes the m-th element of z′j . Minimizing
Lsparse may lead to a group sparse structure on Z . In other
words, it means that only a part of pathways will be retained
while others are suppressed.

The Loss Function For the input X (i), the pathway
saliency set S(i) is firstly learnt. Then, after holistic pathway
scaling, the obtained final saliency vectors are concatenated
spatially and fed into a fully connected layer, based on which
the term denoted as log p(yi|sj , zj) of Lvlb(X (i), yi, φ) in
Eqn. 10 can be calculated.

In training the whole VPR , we minimize the whole loss
function defined as follows
L(X (i), yi, φ) = −Lvlb(X (i), yi, φ) + λ ∗ Lsparse(Z ′(i)),

(12)
where λ is the trade-off parameter to balance the VLB term
and the sparse term.

Decision of Salient Pathways To determine the salient
pathways, we combine both the contribution strength of each
candidate to its corresponding pseudo pathway (ak→j in
Eqn. 8) and the importance of pseudo pathway (z′j = σ(zj)
in Eqn. 9). Formally, for the k-th candidate pathway around
the j-th anchor, the overall contribution denoted as cjk to the
final emotion analysis is defined as

cjk = ak→j ∗ ||z′j ||2. (13)
Until now, we can select those salient pathways as an ex-
planation of emotion activation as shown in the following
experiments.
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Experiments
We evaluate the VPR by conducting experiments on two
EEG emotion datasets named SJTU Emotion EEG Dataset
(SEED) and multi-modal physiological emotion database
(MPED). To achieve a comprehensive evaluation, our pro-
posed VPR is compared with multiple state-of-the-art meth-
ods by following the wide used subject dependent protocols
on these two datasets. In the following parts, we first de-
scribe the experiment setup including the protocols and im-
plemental details, then we compare the experimental results
of our VPR with those state-of-the-art methods, finally we
analyse our VPR model by conducting additional ablation
experiments as well as visualizing the salient pathways.

Experiment Setup

Dataset and protocols Both SEED (Zheng and Lu 2015)
and MPED (Song et al. 2019) are collected by using an ESI
NeuroScan System at a sampling rate of 1000 Hz from 62-
channel electrode cap according to the International 10-20
system. In total, there are fifteen subjects participating in the
experiment of SEED including 7 males and 8 females, and
23 subjects participating in MPED. During the experiment,
emotional film clips are shown to the participants to elicit
multiple kinds of target emotion. After collection, SEED
contains three emotion categories (positive (POS), negative
(NEG) and neutral (NEU) while MPED contains seven emo-
tion categories in total.

For comprehensive performance evaluation, we conduct
widely employed subject-dependent experiments on both
SEED and MPED datasets. For SEED, each subject con-
ducts two times of experiments which yields totally 30
times of experiments. Following the cross session protocol
in (Zheng and Lu 2015), the training and testing samples are
respectively taken from different sessions of one experiment.
As each time of experiment contains fifteen sessions, nine of
them are used for training and the remaining six for testing.
Metrics including accuracy and standard deviation are em-
ployed to evaluate the performance. Similarly for the “Proto-
col two” of MPED (Song et al. 2019), each subject conducts
28 trials where 7 trials are used as testing data while the rests
are used as training data. Moreover, the original seven emo-
tion categories are divided into three ones , i.e. positive, neu-
tral and negative, as SEED. This process causes large class
imbalance, which also makes the emotion recognition task
rather challenging.

Preprocessing. For EEG emotion recognition, the prepro-
cessing step is rather necessary because raw EEG signals
are always with low signal-to-noise ratio. For EEG signals
of both SEED and MPED, the component in five frequency
bands (delta: 1-3 Hz, theta: 4-7 Hz, alpha: 8-13 Hz, beta: 14-
30 Hz, gamma: 31-50 Hz) of 62 channels is first filtered and
then used for feature extraction. For SEED, DE feature is
extracted by applying a 256-point short-time Fourier trans-
form with a nonoverlapped Hanning window of 1s. While
for MPED, the feature named short-time Fourier transform
(STFT) feature is extracted.

Regional Connection. For a given EEG signal, consider-
ing the regional functional connectivity revealed in (Adolphs

Figure 2: Exhibition of regional connection in EEG signals.

Table 1: The comparisons on SEED following cross session
protocol.
Feature Method training

/ testing
accuracy

/ (%)
DE SVM (Zheng and Lu 2015) 9/6 84.0 / 9.7
DE SVM* (Zheng and Lu 2015) 9/6 86.7 / 8.3
DE CCA (Hardoon and Szedmak 2004) 9/6 77.6/13.2
DE GSCCA (Zheng 2016) 9/6 83.0 / 10.0
DE DBN (Zheng and Lu 2015) 9/6 86.1 / 8.3
DE STRNN (Zhang et al. 2018) 9/6 89.5 / 7.6
DE GCNN (Song et al. 2018) 9/6 87.4 / 9.2
DE DGCNN (Song et al. 2018) 9/6 90.4 /8.5
DE BiDANN (Li et al. 2018b) 9/6 92.4 /7.0
DE R2G-STNN (Li et al. 2019) 9/6 93.4/6.0
DE VPR 9/6 94.3/6.5

2002a), we first separate the electrodes into five regions (‘F’,
‘T’, ‘P’, ‘O’ and ‘C’) according to the International 10-20
system (Scharbrough et al. 1990). Then for each brain re-
gion, according to (Bullmore and Sporns 2009), spatially
close electrodes are assigned with the adjacency relation-
ship, while nodes from different regions are not connected.
The detail of the regional connection is shown in Fig. 2.

Implemental details. For both SEED and MPED, the ar-
chitectures of the proposed VPR framework are set the same,
which are determined by cross-validation on selected valida-
tion set (i.e., a part of training set). For random walk, four
pathways are generated for each starting node (yielding 268
pathways in total) with the path length of 4, where every
electrode is treated as the starting node in the process of ran-
dom walk. Besides, the dimension of hidden state of LSTM
for pathway embedding is traversed in the range of [8, 16,
32, 64], and finally set to 16. The value of λ in Eqn.12 is
set to 0.5. In the training stage, we run the our VPR model
for 20 epochs with a learning rate of 0.001 for tuning the
network parameters, where the batch size is set to 64.

Experiment on SEED.

The performance of our VPR is shown in Table 1, and it
is also compared with various existed algorithms including
SVM (Zheng and Lu 2015), canonical correlation analysis
(CCA) (Hardoon and Szedmak 2004), GCNN (Song et al.
2018), etc. All these methods follow the same cross session
protocol with our VPR. In general, our VPR achieves the
highest performance with the accuracy of 94.1% compar-
ing with all previous state-of-the-art methods with a rela-
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Figure 3: The confusion matrices of VPR on SEED (left)
and MPED (right).

Table 2: The comparisons on MPED following “Protocol
two” in (Song et al. 2019).

Feature Method training
/ testing acc /F1

STFT SVM (Zheng and Lu 2015) 21/7 57.06/24.43
STFT KNN (Hochreiter 1997) 21/7 43.96/34.39
STFT DBN (Duda, Hart, and Stork 2012) 21/7 65.98/59.19
STFT STRNN (Zhang et al. 2018) 21/7 66.84/60.57
STFT DGCNN (Song et al. 2018) 21/7 68.02/61.11
STFT LSTM (Song et al. 2019) 21/7 71.92/65.12
STFT A-LSTM (Song et al. 2019) 21/7 71.57/67.74
STFT VPR 21/7 75.06/68.64

tively low standard deviation, which verifies the superiority
of our VPR. Relatively high performances are also achieved
by deep learning methods including R2G-STNN (Li et al.
2019), BiDANN (Li et al. 2018b) and GCNN (Song et al.
2018) with the accuracies of 93.4%, 92.4%, and 90.4%
respectively. It should be specifically noted that although
R2G-STNN and BiDANN seem to obtain high performance
which is only a little lower than VPR, however, they belong
to domain adaptive methods which involve test data for net-
work optimization. And very different from them, our VPR
does not use any information from test data during training,
while still achieves better performance. This verifies the su-
periority and high generalization ability of our VPR.

The confusion matrix of all evaluated experiments of
SEED is shown in Fig. 3(a), where the element located in
the i-th row and jth column shows the percentage of those
samples belonging to the class i while predicted as the class
j. Diagonal elements mean the accuracies of each class and
others mean the confusion. As it is shown, our algorithm
performs well in recognizing all three types of emotions as
the accuracies of them are more than 93.0%. In this dataset,
positive emotion are more easier to be recognized, while rel-
ative high confusion appears between negative and neutral
emotions.

Experiment on MPED. Table 2 shows the comparison
between our VPR and other existing methods on MPED.
In general, our VPR outperforms all those compared meth-
ods, including KNN (Hochreiter 1997), STRNN (Zhang et
al. 2018), DGCNN (Song et al. 2018), LSTM (Song et al.
2019) and A-LSTM (Song et al. 2019). Among the com-
parison methods, LSTM based methods, i.e. LSTM and A-
LSTM, achieve better performance with the accuracies of
71.92% and 71.57%, and our VPR outperforms them with

Table 3: The experimental results of PSN, non-sparse VPR,
and VPR on MPED and SEED datasets.

Dataset Method Accuracy

SEED
PSN 91.8

non-sparse VPR 93.5
VPR 94.3

MPED
PSN 72.17

non-sparse VPR 73.95
VPR 75.06

the accuracy which is about 3 percent higher. Moreover, due
to the large class imbalance, F1 score is also employed to
evaluate these methods. According to Table 2, the F1 score
of our VPR, which is 66.8%, is also the highest among all
the compared methods, which indicates the robustness of our
VPR to the variation caused by class imbalance.

Fig. 3(b) shows the confusion matrix of MPED, which ex-
hibits a large difference comparing to that of SEED. Highest
accuracy is obtained on negative emotion while high confu-
sion appears between both pairs of neutral versus positive
and neutral versus positive. This large difference may at-
tribute to the heavy class imbalance, which may cause bias
to the network during training.

Ablation study

As promising performance has been achieved by our VPR,
we want to know how the modules, e.g. SVS and sparse con-
straints, promote the emotion recognition. For this purpose,
we conduct two additional experiments to dissect our frame-
work based on SEED and MPED datasets as follows:

(1) Comparing the performance between VPR and the path-
way saliency network (PSN). This aims to evaluate the
benefit of our designed SVS module, where PSN can be
easily obtained by removing the SVS module from our
VPR.

(2) Comparing the performance between VPR and non-
sparse VPR. To specifically evaluate the effect of sparse
constraint imposed on the variational scaling factors, we
test the performance of non-sparse VPR by removing
the sparse term in Eqn.12 and test the performance.

The results are shown in Table 3, and we have the following
observations:

(1) Our designed SVS module effectively promotes the per-
formance. On both datasets, VPR outperforms PSN with
the accuracies which are more than 2.5 percent higher.

(2) The sparse constraints on latent variables are effective
and meaningful. According to Table 3, the sparse con-
straint brings performance gain on both datasets through
an adaptive salient pathway selection.

(3) The performance of PSN verifies the effectiveness of
combining regional random walk and pathway embed-
ding (without SVS module) inspired by the perception
mechanism, as it is comparable with most state-of-the-
art methods shown in Table 1 and 2.
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Figure 4: Visualization of salient pathways (positive emo-
tion) of different subjects on SEED and MPED. The first
row comes from different subjects in MPED, while the sec-
ond row comes from different subjects in SEED. Yellow
electrodes denote starting nodes, green electrodes are non-
starting nodes, and orange dots are reused in different path-
ways as both starting and non-starting nodes.

Figure 5: Visualization of salient pathways of different emo-
tion types on SEED. Pathways of all subjects w.r.t. each
emotion are gathered and salient pathways are chosen based
on statistics of their contribution values.

Visualization of salient pathways.

Aforementioned experiments verify the competitive perfor-
mance of our proposed VPR and the critical role that the
pathways play in emotion recognition. For further intuitive
understanding of the pathway selection, we here visualize
those salient pathways which are adaptively highlighted by
imposing scaling factors of higher values. Meantime, we ex-
hibit the ordered connection variations among different sub-
jects and emotion classes in Fig. 4 and Fig. 5, which may
also be rather meaningful from the view of human emo-
tion cognition. In this process, the contribution of candidate
pathways to emotion recognition are calculated according to
Eqn. 13 and then ranked, where pathways of top-6 contri-
bution values are shown together with additional pathways
with very close contribution to the top-6th.

According to those shown salient pathway samples, we
have the following observations:

(1) Fig. 4 demonstrates large variation of salient pathways
among subjects, where the pathways appear in different
positions with different connection patterns.

(2) In statistics of positions, salient pathways appear fre-
quently in emotion related brain regions, i.e. ‘Frontal’
(F) and ‘Temporal’ (T). This coincides with the previ-

ous neuroscience finding in (Adolphs 2002b).
(3) The locations of salient pathways differ in different

emotion types (Adolphs 2002b). Positive emotion addi-
tionally involves salient pathways in ‘Frontal’ (which is
related to high level cognition) comparing with negative
and neutral, which is reasonable as it may involves more
deliberate processings like cognitive appraisal and eval-
uation, which is supported by (Vytal and Hamann 2010)
.

Conclusion.

In this paper, a novel perception mechanism inspired frame-
work named VPR is proposed to deal with EEG emo-
tion recognition. Considering spatial adjacency and func-
tional region, random walk was introduced along spa-
tially closed electrodes within each brain region to gener-
ate candidate pathways. To encode each pathway, consid-
ering the ordered connection, the LSTM model was em-
ployed to learn between-electrode dependencies. To cap-
ture the most important pair-wise connections, the encoded
pathways around each electrode were aggregated to pro-
duce a pseudo maximum-energy pathway. For further se-
lecting salient pathways, the SVS module was proposed
using Bayesian probabilistic process and the sparsity con-
straint to endow the module with good generalization abil-
ity meanwhile favor the adaptive pathway selection. Finally,
the salient pathways from those candidates were jointly de-
cided by the pseudo pathways and scaling factors. Extensive
experiments on EEG emotion recognition demonstrated the
superiority of our proposed VPR, and some salient pathways
w.r.t. different subjects and emotions are shown for intuitive
understanding, which may also be rather meaningful from
the view of human emotion cognition.
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