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Abstract

The notion of forgetting, as considered in the famous paper by
Lin and Reiter in 1994 has been extensively studied in clas-
sical logic and more recently, in non-monotonic formalisms
like logic programming. In this paper, we convey the idea
of forgetting to another major AI formalism, namely Dung-
style argumentation frameworks. Our approach is axiomatic-
driven and not limited to any specific semantics: we propose
semantical and syntactical desiderata encoding different cri-
teria for what forgetting an argument might mean; analyze
how these criteria relate to each other; and check whether the
criteria can be satisfied in general. The analysis is done for a
number of widely used argumentation semantics. Our investi-
gation shows that almost all desiderata are individually satis-
fiable. However, combinations of semantical and/or syntacti-
cal conditions reveal a much more interesting landscape. For
instance, we found that the ad hoc approach to forgetting an
argument, i.e., by the syntactical removal of the argument and
all of its associated attacks, is too restrictive and only compat-
ible with the two weakest semantical desiderata. Amongst the
several interesting combinations identified, we showed that
one satisfies a notion of minimal change and presented an
algorithm that given an AF F and argument x, constructs a
suitable AF G satisfying the conditions in the combination.

1 Introduction

Hiding relevant information as well as discarding irrelevant
information are tasks which are performed by humans in a
straightforward way. The need for a formalisation of the lat-
ter was recognised by Lin and Reiter in the context of rea-
soning about actions (Lin and Reiter 1994). Lin and Reiter
were concerned about how to update a given knowledge base
to remove (or “forget”) facts which no longer remained true
after actions were executed. Since then the topic, usually re-
ferred to as forgetting (and also known as variable elimina-
tion), has been extensively studied in the field of knowledge
representation and reasoning for many major formalisms
like propositional logic, first order logic and description
logics as well as non-monotonic formalisms such as an-
swer set programming (see (Eiter and Kern-Isberner 2018;
Delgrande 2017; Gonçalves, Knorr, and Leite 2016a) for re-
cent overviews). Applications of forgetting include query
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answering, belief update and decision making (see (Lang,
Liberatore, and Marquis 2003) for more details).

Forgetting for a logical formalism can be roughly de-
scribed as follows. Given a knowledge base K in this for-
malism and a variable x deemed irrelevant, the result of for-
getting x in K is a knowledge base K′, s.t.

LR1. The variable x does not occur in K′.

LR2. All logical consequences of K′ are logical conse-
quences of K.

LR3. All logical consequences of K that do not contain x
are logical consequences of K′.

Lin and Reiter showed that (LR1)–(LR3) can be fulfilled
via a simple syntactic transformation. For the case of propo-
sitional logic, a possible construction dating back to (Boole
1854) involves replacing every formula φ in K with the dis-
junction of the formulas obtained from φ by substituting x
by true and false, respectively.

In this paper we study the notion of forgetting in the
realm of Dung’s Abstract Argumentation Frameworks (AFs)
(Dung 1995), in which one of the chief concerns is the han-
dling of conflicts amongst arguments. A large number of se-
mantics expressing acceptable positions for AFs (so-called
extensions) have been subsequently introduced (see (Baroni,
Caminada, and Giacomin 2018) for a good overview). In re-
cent years, the community started to investigate the effects
of changes to an argumentation framework. One extensively
studied issue is the so-called enforcing problem (Baumann
and Brewka 2010; de Saint-Cyr et al. 2016; Wallner, Niska-
nen, and Järvisalo 2017), which is concerned with how to
manipulate an argumentation framework in such a way that a
certain desired set of arguments becomes an extension. An-
other closely related line of research is the principle-based
study of revision operators (Coste-Marquis et al. 2014;
Baumann and Brewka 2015; Diller et al. 2018) based on a
reformulation of the famous AGM postulates for belief revi-
sion (Alchourrón, Gärdenfors, and Makinson 1985).

Perhaps surprisingly, how to “forget” single arguments
has not yet received much attention. The most straight-
foward way of forgetting an argument is simply by remov-
ing it from the argumentation framework (as considered in
(Bisquert et al. 2011)). Whilst such a syntactical approach
obviously guarantees that the extensions of the resulting AF
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will not contain the argument, it leaves the precise seman-
tical relationship between the input and output frameworks
unclear. The following motivating examples show some un-
desired effects of the syntactical removal of arguments and
some possible alternatives. For an overview of argumenta-
tion semantics and reasoning modes, see Section 2.
Example 1 (Forgetting Everything Credulously Accepted).
The graph below represents two AFs F and Fx, s.t. x is an
argument in F but not in Fx. The preferred extensions of F
are {x, b} and {x, c}. Hence, b and c are credulously ac-
cepted in F . The syntactical removal of x guarantees the
semantical removal of x but has the side-effect that neither
the credulous acceptance of b nor that of c “survive” since
Fx’s sole preferred extension is empty.

x

a1

a2F ,Fx ∶

a3

b

c

If we were to delete the argument a1 in addition to x we
would preserve the credulous acceptance of b and c since
the preferred extensions of (Fx)a1 would be {b} and {c}.
Example 2 (Forgetting Everything Sceptically Accepted).
F ’s sole preferred extension is {a, x, d1, d3}, and hence the
arguments a, x, d1, and d3 are all sceptically accepted un-
der the preferred semantics. The removal of x does not pre-
serve any sceptical acceptance since Fx’s sole preferred ex-
tension is empty. If we were to delete the argument a in-

aF ,Fx ∶

b1

b2

x c d1 d2 d3

stead, we would still be able to forget x semantically as
well as to preserve the sceptical acceptance of d1 and d3
since the preferred extensions of Fa would be {b1, d1, d3}
and {b2, d1, d3}.
Example 3 (Accepting the Unacceptable). The unique pre-
ferred extension of F is {a, x}. The syntactical removal of
x replaces the former extension with {a, c}. This means that
the removal prevents the acceptance of x but yields the scep-
tical and credulous acceptance of c (previously unaccepted).

b

aF ,Fx ∶

c

x

If we were to find an argument n which attacked both x
and c and added it to F , then we would end up with the
unique preferred extension {a} = {a, x} ∖ {x} which pre-
cisely does the job in terms of both acceptance modes.

The objective of the examples above is not to show how to
achieve the syntactical/semantical removal of an argument,
as there are multiple possibilities, but rather that we need to
reason about possible constraints on the result of the forget-
ting operation.

The rest of the paper is organized as follows. We provide
some background material in Section 2. This is followed by
our main contributions, summarised below.

• Inspired by forgetting in other logical formalisms we
identify reasonable semantical and syntactical properties
for Dung-style AFs, and then show how they relate to each
other. (Section 3)

• We then analyze the individual and joint satisfiability of
conditions. We consider all 24 suitable combinations of
syntactical and semantical criteria and identify that 9 are
non-trivial combinations that are simultaneously satisfi-
able. Moreover, we identify ⊆-minimal sets of conditions
that are not simultaneously satisfiable. These unsatisfiable
sets represent general restrictions on the simultaneous sat-
isfiablity of forgetting desiderata. (Section 4)

• We then single out one promising combination under one
of the most important argumentation semantics, namely
the stable semantics, and provide a sound algorithm that
given any AF F will compute an updated AF F ′ satisfying
the conditions in the combination as well as a particular
notion of minimal change to the AF. (Section 5)

The paper concludes with a discussion, comparisons with
related work and directions for future work in Section 6.

2 Background Argumentation Theory

Argumentation Frameworks and Semantics

In what follows, we fix an infinite background set U . An
abstract argumentation framework (AF) (Dung 1995) is a
directed graph F = (A,R) where A ⊆ U is a set of argu-
ments and R ⊆ A×A represents attacks between them. This
means, for a, b ∈ A, if (a, b) ∈ R we say that a attacks b or a
is an attacker of b. Moreover, a set E defends an argument
a if any attacker of a is attacked by some argument of E. In
this paper we consider finite AFs only and use the symbol F
to denote the set all finite AFs. Moreover, for a set E ⊆ A we
use E+ for {b ∣ (a, b) ∈ R,a ∈ E} and define E⊕ = E ∪E+.
Given an AF F = (B,S), we use A(F ) to refer to the set B
and R(F ) to refer to the relation S. For two AFs F and G ,
we define the expansion of F by G, in symbols F ⊔ G , as
expected: F ⊔G = (A(F)∪A(G),R(F)∪R(G)). Finally,
the restriction of an AF F to a set of arguments C ⊆ U is
defined as F ∣C = (A(F) ∩C,R(F) ∩ (C ×C)).

An extension-based semantics σ ∶ F → 22
U

is a func-
tion which assigns to any AF F a set of sets of argu-
ments σ(F) ⊆ 2A(F). Each set of arguments E ∈ σ(F)
is considered to be acceptable with respect to F and is
called a σ-extension. The most basic requirements of an
extension are called conflict-freeness (cf ) and admissibil-
ity (ad ). Other well-studied semantics include stage (stg),
stable (stb), semi-stable (ss), complete (co), preferred (pr ),
grounded (gr ), ideal (il ) and eager (eg). The requirements
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of each semantics are summarised below. A recent overview
of argumentation semantics can be found in (Baroni, Cami-
nada, and Giacomin 2018).
Definition 1. Let F = (A,R) be an AF and E ⊆ A.
1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,
2. E ∈ad(F) iff E ∈cf (F) and E defends all its elements,
3. E ∈ co(F ) iff E ∈ ad(F) and for any a ∈ A defended

by E , a ∈ E ,
4. E ∈ stg(F) iff E ∈cf (F) and for no I ∈cf (F),E⊕⊂I⊕,

5. E ∈stb(F) iff E ∈cf (F) and E⊕ = A,
6. E ∈ss(F) iff E ∈ad(F) and for no I ∈ad(F),E⊕⊂I⊕,
7. E ∈pr(F) iff E ∈co(F) and for no I ∈co(F), E ⊂I ,
8. E ∈gr(F) iff E ∈co(F) and for any I ∈co(F), E ⊆I ,
9. E ∈ il(F) iff E ∈ co(F), E ⊆ ⋂pr(F) and there is no
I ∈co(F) satisfying I ⊆⋂pr(F) s.t. E ⊂ I ,

10. E ∈ eg(F) iff E ∈ co(F), E ⊆ ⋂ss(F) and there is no
I ∈co(F) satisfying I ⊆⋂ ss(F) s.t. E ⊂I .

In this paper, we consider the semantics 4–10, that is, the
term considered semantics is used as a shorthand for the
stage, stable, semi-stable, preferred, grounded, ideal and ea-
ger semantics.

Definedness, Acceptance and Realizability

If σ(F) ≠ ∅ for any F ∈ F , then we say that the semantics
σ is universally defined, otherwise we say that σ collapses.
All considered semantics are universally defined, with the
exception of the stable semantics. This means that there are
AFs F s.t. stb(F) = ∅. If ∣σ(F)∣ = 1, for any F ∈ F , then we
say that σ is uniquely defined. The grounded, ideal and eager
semantics are uniquely defined (cf. (Baumann and Spanring
2015) for an overview).

With respect to the acceptability of arguments, we con-
sider two standard reasoning modes. Given a semantics σ,
an AF F , and an argument a ∈ A(F ), we say that a is cred-
ulously accepted w.r.t. σ if a ∈ ⋃σ(F) and that a is scepti-
cally accepted w.r.t. σ if σ(F) ≠ ∅ and a ∈ ⋂σ(F).

We say that a set of sets E ⊆ 2U is realizable w.r.t. a se-
mantics σ if there is an AF F s.t. σ(F) = E . In this paper,
we frequently use the facts that for any of the considered se-
mantics a realizable set E has to be a ⊆-antichain and that
only the stable semantics may realize ∅, due its ability to
collapse (Dunne et al. 2015).

3 Desiderata for Forgetting

As already mentioned in Section 1, apart from simply re-
moving an argument and all attacks involving it (Bisquert
et al. 2011), the notion of forgetting in AFs has never been
considered in a principled way as done in (Lin and Re-
iter 1994) and (Eiter and Wang 2008) for classical logic or
logic programming, respectively. We start our investigation
by proposing reasonable/desirable properties of a forgetting
operation. Given an AF F and an argument x ∈ U , we use
forgetσ(F , x) to denote the set of AFs representing “suit-
able” candidate AFs for the result of forgetting the argu-
ment x in F under the semantics σ. Formally, it is a function

forgetσ ∶ F × U → 2F mapping a pair (F , x) to a subset
forgetσ(F , x) of F .

Whenever the semantics σ and the AF F are clear from
the context, we will omit them and simply speak about for-
getting x. The notion of suitability will be made precise via
the following three blocks of desiderata, each considering a
different aspect of the problem. We want to emphasize that
the following lists do not express any preference amongst the
desiderata. In practice, different criteria will apply to differ-
ent contexts and there may be very good reasons to pick one
criterium over another. The first two blocks are semantical
in nature: e1–e4 concern the relationship between the old
and the new set of extensions of the AF and r1–r4 deal with
properties regarding sceptical and credulous reasoning. Fi-
nally, s1–s3 are purely syntactical. If a function forgetσ

always returns at least one suitable AF G w.r.t. desidera-
tum d (i.e. ∣forgetσ(F , x)∣ ≥ 1 for any F ∈ F and x ∈ U),
we say that forgetσ satisfies d or that the desideratum d
is satisfiable under σ.
Desiderata 1. Given an AF F and an argument x ∈ U . For
G ∈ forgetσ(F , x) we require:

e1. σ(G) = {E ∖ {x} ∣ E ∈ σ(F)}, (Reiter condition)
e2. for any AF H , s.t. x ∉ A(H ) we have: σ(G ⊔ H ) =
{E ∖ {x} ∣ E ∈ σ(F ⊔H )}. (strong Reiter condition)

e3. σ(G) = {T (E) ∣ E ∈ σ(F)} with T ∶ σ(F) → 2U and
E ↦ T (E) ⊆ E ∖ {x} (weak Reiter condition)

e4. σ(G) = σ(F) ∖ {E ∣ E ∈ σ(F), x ∈ E}
(remove “x-contaminated” extensions)

e1 requires that the only argument to be removed from
any of the previous extensions is x itself (if x is in the ex-
tension). This so-called Reiter condition can be strengthened
(e2) or weakened (e3) as follows. e2 stipulates that the Re-
iter condition carries over to any future expansion of F by
an AF H which does not contain x. e3 weakens e1 in the
sense that it allows other arguments besides x to be removed
from each of the previous extensions. Finally, e4 stipulates
that the extensions of the new AF should be exactly those in
σ(F ) that do not contain x.
Desiderata 2. Given an AF F and an argument x ∈ U . For
G ∈ forgetσ(F , x) we require:
r1. x ∉ ⋂σ(G) (x is not scept. accepted)
r2. x ∉ ⋃σ(G) (x is not cred. accepted)
r3. ⋂σ(G) = (⋂σ(F)) ∖ {x} (rigid scept. acceptance)
r4. ⋃σ(G) = (⋃σ(F)) ∖ {x} (rigid cred. acceptance)

The first two desiderata r1 and r2 say that the argument
x should not be sceptically (resp., credulously) accepted af-
ter it is forgotten. r3 and r4 strengthen r1 and r2, resp., in
the sense that they precisely determine the resulting set of
sceptically or credulously accepted arguments, i.e., except
for x, any former argument sceptically (resp., credulously)
accepted remains sceptically (resp., credulously) accepted
and only those arguments are sceptically (resp., credulously)
accepted.

Notice that e1–e4 and r1–r4 do not necessarily enforce
the removal of the argument to be forgotten from the AF.
They are in nature semantical desiderata and even allow the
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potential addition of new arguments. The addition of new
arguments is completely reasonable in the context of argu-
mentation because it is what normally happens during a de-
bate, where in general arguments do not simply disappear.
Instead, opponents aim to obliterate an adversarial argument
by putting forward a new argument that directly or indirectly
undermines it (this was illustrated in Example 3). Moreover,
from a technical point of view, constructing an AF yielding
a given set of extensions E typically requires additional ar-
guments different from those in E (Baumann et al. 2016).
However, in practice, it is the context of the application that
will determine what criteria are appropriate and we do not
express any preference here.

Finally, we present the syntactical desiderata s1–s3. As
before, s1 does not prevent the addition of new arguments,
but s2 and s3 do. All of s1–s3 require the actual removal of
the argument to forget from the argumentation framework.
In the same token as the addition of a new argument, removal
of an argument could be justifiable for many reasons, e.g.,
questions about its legitimacy, the reliability of its source,
or inconsistency (in the case of arguments expressed in a
logical language).

Desiderata 3. Given an AF F and an argument x ∈ U . For
G ∈ forgetσ(F , x) we require:

s1. x ∉ A(G) (x is not contained)
s2. A(G) = A(F ) ∖ {x} (precise set of arguments)
s3. G = F ∣A(F)∖{x} (rigid AF)

More precisely, s1 only requires that x does not belong
to the set of arguments of the new AF. s2 strengthens s1
by requiring that nothing except x is removed from the set
of arguments of the previous AF and no new arguments are
added. Neither s1 nor s2 stipulate any conditions on the at-
tack relation. s3 strengthens s2 further by also requiring the
preservation of all attacks not involving x.

The previous syntactical conditions become progressively
stronger. Indeed there are further relationships between all
introduced conditions as shown next.

Proposition 1. For σ ∈ {stg , stb, ss,pr , gr , il , eg} and con-
ditions c and c′ in the diagram below, a path from c to c′

indicates that any function forgetσ satisfying c under σ
also satisfies c′ under σ. Moreover, only these relations hold.

s3 s2

s1

e2 e1

e3 r2

r4

e4

r1

r3

σ≠stb

Figure 1: Dependencies

Proof: We start with the valid relations. Since
A (F ∣A(F)∖{x}) = A(F) ∖ {x} we immediately ob-
tain s3⇒ s2 and moreover, since x ∉ A(F) ∖ {x}, s2⇒ s1

holds. Furthermore, since extensions of G are necessarily
subsets of A(G), x ∉ A(G) implies that x ∉ ⋃σ(G), and
hence s1⇒ r2.

If for any AF H s.t. x ∉ A(H ) we have σ(G ⊔ H ) =
{E ∖ {x} ∣ E ∈ σ(F ⊔ H )} (e2), then taking H = (∅,∅)
gives us σ(G) = {E ∖{x} ∣ E ∈ σ(F)}, so clearly e2⇒ e1.
Moreover, e1 guarantees e3, if we take T (E) = E ∖ {x}.
Thus, e1⇒ e3. For any suitable function T , ⋃{T (E) ∣ E ∈
σ(F)} ⊆ ⋃{E ∖ {x} ∣ E ∈ σ(F)} and obviously we have
that x ∉ ⋃{E ∖ {x} ∣ E ∈ σ(F)}, so e3 ⇒ r2. Similarly,
x ∉ ⋃σ(F) ∖ {E ∣ E ∈ σ(F), x ∈ E}, so e4⇒ r2.

If σ(G) is non-empty, then ⋂σ(G) ⊆ ⋃σ(G). Hence,
r2 ⇒ r1 for any of the considered semantics with the
exception of stb. Finally, x ∉ (⋂σ(F)) ∖ {x} and x ∉
(⋃σ(F)) ∖ {x}, and hence r3⇒ r1 and r4⇒ r2.

In order to complete the proof, one would need to show
that the non-existence of a path from condition c to condition
c′ implies the existence of a function forgetσ satisfying
c under σ, but not c′. For example, let G = (∅,∅) and
consider the constant function forgetσ(F , x) = {G}. Ob-
viously, forgetσ satisfies s1 as x ∉ ∅ = A(G). However,
the AF F = ({y},∅) shows that forgetσ does not satisfy
s1, since A(F) ∖ {x} = {y} ∖ {x} = {y} ≠ ∅ = A(G). For
space reasons, we will not show all of these cases in this
paper.

Whenever there is no path from the condition c to the con-
dition c′ in the diagram of Figure 1, we will say that c′ is
non-trivial w.r.t. c. Otherwise we will say that the combina-
tion of c and c′ is trivial.

4 Individual and Combined Satisfiability

Clearly, the strong Reiter condition e2 is a very desirable
property for any forgetting operation. Its logic program-
ming analogue (so-called strong persistence) was firstly in-
troduced in (Knorr and Alferes 2014) and further investi-
gated in (Gonçalves, Knorr, and Leite 2016b). They showed
that it is not always possible to forget variables from a pro-
gram while obeying this property. In the same spirit, we
start by analysing the individual satisfiability of all condi-
tions from the outset. However, unlike (Gonçalves, Knorr,
and Leite 2016b), which concentrated on the study of neces-
sary and sufficient conditions for the satisfiability of strong
persistence, we will focus on the simultaneous satisfiabil-
ity of criteria and possible constructions of forgetting oper-
ations.

Satisfiability of Individual Conditions

The following proposition shows that the majority of the
desiderata is individually satisfiable under all semantics con-
sidered in this paper.
Proposition 2. Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and d ∈
{e3, r1, r2, r3, r4, s1, s2, s3}. It holds that desideratum d is
satisfiable under σ.

Proof: In order to prove this assertion it suffices to present
a specific function forgetσ , s.t. for any F ∈ F and x ∈ U ,
there is an AF G ∈ forgetσ(F , x) fulfilling desidera-
tum d. By Proposition 1, the satisfiability of s3 implies the
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satisfiability of s1, s2 and r2 and the satisfiability of r3 im-
plies the satisfiability of r1. Therefore, it suffices to show
that desiderata s3, r3, r4 and e3 are satisfiable under σ.
(s3): It is easy to see that the AF G = F ∣A(F)∖{x} satisfies
s3, and there are no conditions on σ, so s3 is satisfiable un-
der σ.
(r3,r4): Consider the AFs Gr3 = ((⋂σ(F)) ∖ {x},∅)
and Gr4 = ((⋃σ(F)) ∖ {x},∅). We have that σ(Gr3) =
{(⋂σ(F)) ∖ {x}} and σ(Gr4) = {(⋃σ(F)) ∖ {x}}. Re-
call that for any set E, ⋂{E} = ⋃{E} = E. Hence,
⋂σ(Gr3) = ⋂{(⋂σ(F)) ∖ {x}} = (⋂σ(F)) ∖ {x} as re-
quired. Therefore, Gr3 ∈ forgetσ(F , x), and hence r3 is
satisfiable under σ. forgetσ(F , x) = {Gr4} can be con-
structed analogously and proves r4’s satisfiability under σ.

(e3): If σ(F ) = ∅ we define F = G and there is nothing
to show. Otherwise, σ(F) = {E1, ...,En} for some natural
number n. Define Ge3 = (⋂1≤i≤nEi ∖ {x},∅). We have
σ(Ge3) = {⋂1≤i≤nEi ∖ {x}}. This means, we consider
the constant function T (E) = ⋂1≤i≤nEi ∖ {x}. Obviously,
⋂1≤i≤nEi ∖ {x} ⊆ Ej ∖ {x} for any 1 ≤ j ≤ n proving the
satisfiability of e3 under σ.

Condition e1 can only be satisfied under certain seman-
tics.
Proposition 3. Given σ ∈ {gr , il , eg}, τ ∈ {stb, stg , ss,pr}.
Desideratum e1 is satisfiable under σ, but not under τ .

Proof: The satisfiability of e1 under σ is quite straigthfor-
ward. The semantics gr , il and eg have a unique extension.
So let σ(F ) = {E}. Then the function forgetσ(F , x) =
{(E ∖ {x},∅)} does the job.

In order to show e1’s unsatisfiability under τ we
use the representational limits of the considered ar-
gumentation semantics τ . Consider the AF F =
({a, b, x},{(a, x), (x, a)}), with τ(F) = {{a, b},{x, b}}.
For the Reiter condition e1 to be satisfied, a candidate
AF G would have to have τ(G) = {{a, b},{b}}, but
this is not possible, since τ(G) does not happen to be a
⊆-antichain and hence cannot be realized w.r.t. τ . There-
fore, forgetτ(F , x) = ∅, so e1 is not satisfiable under τ .

Proposition 4 shows that the strong Reiter condition e2 is
unsatisfiable for any of the considered semantics, and it is
hence arguably too strong.
Proposition 4. Let σ ∈ {stg , stb, ss,pr , gr , il , eg}. Condi-
tion e2 is unsatisfiable under σ.

Proof: From Proposition 1, we know that the satisfiabil-
ity of e2 under semantics σ ∈ {stg , stb, ss,pr} implies the
satisfiability of e1 under semantics σ ∈ {stg , stb, ss,pr}.
But by Proposition 3, e1 is not satisfiable under semantics
σ ∈ {stg , stb, ss,pr}. Therefore, e2 is also not satisfiable
under semantics σ ∈ {stg , stb, ss,pr}.

Consider a semantics σ ∈ {gr , il , eg} and the AF
F = ({a, x},{(x, a)}). Striving for a contradiction we
assume the existence of an AF G , s.t. for any AF H with
x ∉ A(H ) we have: σ(G ⊔H ) = {E∖{x} ∣ E ∈ σ(F ⊔H )}.
Let us consider first H1 = ({a, b},{(a, b)}).
σ(F ⊔H1) = {{x, b}}. Consequently, σ(G ⊔H1) = {{b}}.
Since {b} has to be admissible in G ⊔ H1, we have that

(b, b) ∉ R(G) (due to conflict-freeness) and moreover,
(b, a) ∈ R(G) (due to defence). Furthermore, a, b ∈ A(G)
follows.
Consider now H2 = ({a},{(a, a)}). Thus, σ(F ⊔ H2) =
{{x}} implying that σ(G ⊔ H2) = {∅}. Since {b} is not
admissible in G ⊔ H2 we deduce that there is a further
argument c attacking b without being counterattacked. Note
that the argument c cannot coincide with a since we already
know that (b, a) ∈ R(G). This means, we further conclude
c ∈ A(G), (c, b) ∈ R(G) (attacker) and (b, c) ∉ R(G) (not
counterattacked).
Finally, let us consider again H1. We already know that
σ(G ⊔ H1) = {{b}} which cannot be true since {b} does
not defend itself against c. This is a contradiction!

The last proposition of this section is about the removal
of extensions. It turns out that the elimination of extensions
containing a given argument can be only successfully ac-
complished under the stable semantics.
Proposition 5. Given σ ∈ {stb}, τ ∈ {stg , ss,pr , gr , il , eg}.
Condition e4 is satisfiable under σ, but not under τ .

Proof: The satisfiability of e4 under the stable semantics
is an immediate consequence of Proposition 8 (see its
proof for more details). All of the other semantics τ do not
possess witnessing functions forgetτ because they are
all universally defined. In case of the AF F = ({x},∅) the
condition e4 would require the realizability of the empty set
of extensions. Consequently, forgetτ(F , x) = ∅ proving
the unsatisfiability of e4 under τ .

Due to limitations in space we will omit all subsequent
proofs with the exception of the proof of Proposition 8,
which is required by the above proof.

Combining Syntactical and Semantical Conditions

We have seen from Figure 1 that the satisfiability of some
conditions imply the satisfiability of others. For example,
the satisfiability of s3 implies the satisfiability of s2. This
means that the combination {s2, s3} is also satisfiable (re-
call we called these combinations trivial). We now consider
the satisfiability of some non-trivial combinations.

Proposition 6 shows the compatibility of all combinations
of a semantical and syntactical condition. The strongest syn-
tactical condition s3 is incompatible with most of the seman-
tical conditions and can only be trivially combined with r1
and r2 (for forgetting x under sceptical and credulous rea-
soning, respectively).

Its weaker counterpart s2, which unlike s3 does not con-
strain the attack relation, can however be combined with all
reasoning conditions r1–r4. The weakest syntactical con-
dition s1 can in addition satisfy the weak Reiter condition
e3 under any of the considered semantics as well as condi-
tion e4 (the forgetting of extensions containing the argument
to forget) under the stable semantics. Under the grounded,
ideal and eager semantics, s1 and s2 can also be combined
with e1, and s2 can be combined with e3.
Proposition 6. Figure 2 summarizes the compatibility un-
der semantics σ ∈ {stg , stb, ss,pr , gr , il , eg}. A “✓”/“×”
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in cell (l,c) indicates whether or not the conditions in line
l and column c are simultaneously satisfiable under σ. The
symbol “τ” restricts the satisfiability to the semantics gr , il
and eg and the symbol stb to the stb semantics only, respec-
tively. The combinations in a dark background are trivial.

r1 r2 r3 r4 e1 e2 e3 e4
s1 ✓ ✓ ✓ ✓ τ × ✓ stb
s2 ✓ ✓ ✓ ✓ τ × τ ×
s3 ✓ ✓ × × × × × ×

Figure 2: Compatibility of syntactical/semantical conditions

Limits of Non-trivial Combinations

A subsequent question is whether one may add further crite-
ria to a compatible syntactical and semantical combination
taken from Figure 2. It turns out that there are serious inher-
ent restrictions applying to any semantics. More precisely,
there are minimal sets of criteria that cannot be simultane-
ously satisfied.
Proposition 7. No set of conditions in the set UNSAT =
{{e2},{e4, e1},{e4, e3},{e4, r3},{e4, r4},{r3, r4}} is
satisfiable under any of the considered semantics.

We already know from Proposition 6 that e4 is not com-
patible with s2 or s3 and it is only compatible with s1 under
the stable semantics. The proposition above goes one step
further to state that e4 is not compatible with any form of
the Reiter conditions e1, e2 and e3 (e2 being itself inde-
pendently unsatisfiable, by Proposition 4). In addition, the
proposition states that e4 is not compatible with the rigid
forms of sceptical and credulous acceptance r3 and r4, re-
spectively. Finally, the proposition also states that in the for-
getting of an argument x, it is not possible to simultaneously
preserve both the sceptical and credulous acceptances of all
other arguments. As a corollary we have that no superset of
any of the sets of conditions in UNSAT is satisfiable either.

5 Construction Method

The choice of the combination of the conditions depends on
the particular application in mind. In this section we illus-
trate how to construct a desired forgetting operation for one
selected combination dealing with the popular stable seman-
tics. The investigation of the construction of other valid com-
binations is left for future work. Before showing the con-
struction method, we discuss the principle of vacuity which
is a well-known concept in belief contraction (Alchourrón,
Gärdenfors, and Makinson 1985). Roughly speaking, the ax-
iom of vacuity requires that a knowledge base is left un-
touched by any contraction by a belief that is not included in
it. In the context of the forget operation, the vacuity principle
requires that the intial AF F is not changed if the argument
x to forget is irrelevant to the imposed conditions. This of
course may mean different things. We consider the follow-
ing principles: that x is not sceptically (resp. credulously)
accepted in F ; and that x is not contained in A(F) at all.

Desiderata 4. Given an AF F and an argument x ∈ U . For
G ∈ forgetσ(F , x) we require:
v1. If x ∉ ⋂σ(F), then F = G . (scept. vacuity)
v2. If x ∉ ⋃σ(F), then F = G . (cred. vacuity)
v3. If x ∉ A(F), then F = G . (argument vacuity)

We have already shown that Desiderata s1 and e4 are si-
multaneously satisfiable under the stable semantics (Propo-
sition 6). On top of s1 and e4, we could choose to add one
of the vacuity conditions v1–v3. However, it turns out that
v1 and v2 are too strong. This can be seen as follows: If
x ∈ A(F ), but it is not sceptically or credulously accepted in
F , then v1 and v2 would force F = G , and hence x ∈ A(G),
violating s1. This means, the only viable option would be
v3. Although we do not explore this issue further in this pa-
per, v1 and v2 are indeed compatible with some other non-
trivial combinations.

Algorithm 1 shows how a function forgetstb that simul-
taneously satisfies s1, e4 and v3 can be constructed.

Algorithm 1: Construct G ∈ forgetstb(F , x)

Input : AF F ; argument x ∈ U
Output: AF G satisfying {s1,e4,v3}

1 Function compute G(F , x)
2 if x /∈ A(F ) then G ← F ;
3 else
4 G0 ← F ∣A(F)∖{x};
5 A = A(G0); R ← R(G0);
6 foreach Ei ∈ stb(G0) ∖ stb(F ) do
7 Let ai be a fresh argument s.t.

ai /∈ A(F )∪A;
8 A← A ∪ {ai}; R ← R ∪ {(ai, ai)}
9 foreach y ∈ ⋃ stb(G0) ∖Ei do

10 R ← R ∪ {(y, ai)};

11 G ← (A,R);

12 return G ;

Before formally proving that Algorithm 1 indeed does
what promised we start with an exemplifying run.
Example 4. Consider the AF F whose restric-
tion to {a, b, c, d, e} results in G0. stb(F) =
{{b, x, e},{a, c, d},{a, c, e}} and stb(G0) =
{{b, e},{b, d},{a, c, d},{a, c, e}}. Since stb(G0) ∖
stb(F ) = {{b, e},{b, d}} = {E1,E2} the algorithm goes
through the loop in lines 6–10 twice.

Let n1 be the fresh argument chosen for E1 (line 7). We
obtain A = {a, b, c, d, e, n1} and R = R(G0) ∪ {(n1, n1)} ∪
{(a,n1), (c, n1), (d,n1)} (lines 8 and 9–10), depicted in
G1. Proceeding to E2, we take the new argument n2. As
before, this cycle sets A = {a, b, c, d, e, n1, n2} and R =
R ∪ {(n2, n2), (a,n2), (c, n2), (e, n2)} as shown in G2 =
(A,R) which is returned by the function as the AF G
(lines 11 and 12). Note that stb(G) = {{a, c, d},{a, c, e}}
as required.
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Proposition 8. Let G = compute G(F , x). Then G satis-
fies conditions s1, e4 and v3 under the stable semantics.

Proof: s1 is satisfied by the construction of G in Algo-
rithm 1, lines 4–11. Moreover, condition v3 is ensured by
line 2. The proof that G also satisfies e4, i.e., stb(G) =
stb(F)∖{E ∣ E ∈ stb(F), x ∈ E}mainly relies on two well-
known properties listed below.1 Let us consider the disjoint
union stb(F) = E x̄ ∪ Ex, where E x̄ = {E ∈ stb(F) ∣ x ∉ E}
and Ex = {E ∈ stb(F) ∣ x ∉ E}.
1.Preservation of extensions not containing x. Given an

AF F and its restriction F ∣A(F)∖{x}. We have E x̄ ⊆
stb (F ∣A(F)∖{x}).

2.Elimination of single extensions. For any H and any
E ∈ stb(H ) we have stb(H ′) = stb(H ) ∖ {E} where
A(H ′) = A(H ) ∪ {n} and R(H ′) = R(H ) ∪ {(a,n)∣a ∈
(⋃ stb(H) ∪ {n}) ∖ E} for a fresh argument n, i.e. n /∈
A(H ).
Given these two points, it is easy to see that i) any addi-

tional occurring stable extension Ei of G0, i.e. an Ei that is
not stable in F will be removed (lines 6–10) and ii) every
stable extension in E x̄ is preserved as a stable extension of
G. This is because E x̄ ⊆ stb(G0) and for every addition of a
new argument ni, there exists an attack from every argument
y ∈ ⋃ stb(G0) ∖ Ei into ni. Consequently, since stb(G0)
forms a ⊆-antichain it is guaranteed that every extension
of E x̄ contains an argument attacking ni in G (lines 9–10).

6 Discussion and Conclusion

The paper takes previous work on forgetting in propositional
logic and logic programming as a basis and studies the no-
tion of forgetting in the context of abstract argumentation in
general. In particular, we introduced several semantical and
syntactical desiderata for a forgetting operation, provided a
rigorous investigation of the satisfiability of combinations of
these conditions as well as some impossibility results, and
illustrated how a forgetting operation for a particular combi-
nation of conditions and semantics can be constructed. We
considered seven well-known argumentation semantics and
showed that many of our results hold independently of the
particular semantics employed. In addition, we investigated
a number of relevant issues arising in specific semantics.

1A procedure to eliminate unwanted stable extensions was first
presented in (Dunne et al. 2015) and studied in a principled way in
(Baumann and Brewka 2019).

In the area of logic programming many approaches to for-
getting have been proposed. In (Zhang and Foo 2006) forget-
ting is implemented by simply removing from a logic pro-
gram all rules containing the atom to be forgotten. This is
purely syntactical in nature, and hence similar to our con-
dition s3. (Eiter and Wang 2008) provided a comprehen-
sive and principled study of forgetting in answer set pro-
gramming, proposing five desirable properties covering se-
mantical and syntactical aspects of the operation as well as
different construction methods. Eiter and Wang observed
that the Reiter condition e1 is unsatisfiable in the con-
text of ASP and proposed the use of the so-called min-
imal answer sets. This approach guarantees the antichain
property of the resulting set which leads to the realizabil-
ity under the stable model semantics. However, this idea
is not directly applicable to Dung-style AFs. For example,
the set {{a1, a2, x},{a1, a4, a5},{a2, a3, a5}} under e1 be-
comes {{a1, a2},{a1, a4, a5},{a2, a3, a5}}, which is real-
izable for ASP, but not under the stable semantics, because
it violates the so-called tightness (Dunne et al. 2015). In
(Knorr and Alferes 2014), the notion of strong persistence
was introduced. As mentioned in Section 4, strong persis-
tence is analogous to our condition e2 in the context of
logic programming. A good overview of the study of the
forgetting in the area of Answer Set Programming is given
in (Gonçalves, Knorr, and Leite 2016b). The same authors
showed that strong persistence is not satisfiable in general
in (Gonçalves, Knorr, and Leite 2016a), and discussed some
alternatives.

In the context of abstract argumentation, the most simi-
lar work to ours is that of (Bisquert et al. 2011). There, the
so-called expansive and narrowing changes were proposed
that result from the purely syntactical removal of an argu-
ment and its corresponding attacks (this corresponds to our
desideratum s3). Although the authors provided a prelimi-
nary investigation of these changes, the investigation did not
consider any further semantical desiderata nor any syntac-
tical strengthenings of s3. Our paper therefore provides the
first systematic and comprehensive account of the study of
the forgetting operation in abstract argumentation.

Our function forgetσ(F , x) returns a set of suitable
candidates for the result of forgetting the argument x in F .
This is akin to the famous postulates in belief revision, for
example, which dictate the behaviour of revision operations
in general without uniquely defining any particular opera-
tion (Alchourrón, Gärdenfors, and Makinson 1985). In the
same spirit, our desiderata do not determine one unique for-
getting operation. A specific forgetting operation may be de-
fined in several ways, the most obvious of which is the “hard
encoding” of the operation via the addition of an axiom en-
forcing uniqueness. Alternatively, one could simply redefine
the range of the forgetting function or consider a two-step
procedure whereby some of the conditions we introduced
would lay the foundations of the operation and a selection
function guided by specific desirable criteria, e.g., some no-
tion of minimality, etc, would pick exactly one AF from the
candidate options.

A further natural question to ask is how to extend our
results to the forgetting of sets of arguments. Obviously,
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one could iteratively forget each argument in the set, but
this would not necessarily constitute an efficient or infor-
mationally economical way to perform the operation. Fi-
nally, a further in-depth analysis of construction methods
for interesting combinations of forgetting conditions is also
worthwhile. (Baumann et al. 2017) recently proposed the
notion of relativized equivalence which allows one to spec-
ify untouchable arguments, i.e., arguments that cannot be
disputed, and ask for simplifications. This seems to be an
interesting feature that would allow the forgetting of argu-
ments while simultaneously protecting others.
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