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Abstract

Classical model-based diagnosis uses a model of the system
to infer diagnoses – explanations – of a given abnormal ob-
servation. In this work, we explore how to address the case
where there is uncertainty over a given observation. This can
happen, for example, when the observations are collected by
noisy sensors, that are known to return incorrect observa-
tions with some probability. We formally define this com-
mon scenario for consistency-based and abductive models.
In addition, we analyze the complexity of two complete al-
gorithms we propose for finding all diagnoses and correctly
ranking them. Finally, we propose a third algorithm that re-
turns the most probable diagnosis without finding all possible
diagnoses. Experimental evaluation shows that this third al-
gorithm can be very effective in cases where the number of
faults is small and the uncertainty over the observations is not
large. If, however, all possible diagnoses are desired, then the
choice between the first two algorithms depends on whether
the domain’s diagnosis form is abductive or consistent.

1 Introduction

Model-based diagnosis (MBD) is a principled approach for
automated diagnosing the root cause of faults in systems (de
Kleer and Williams 1987; Reiter 1987; Stern et al. 2012).
In MBD, a model of the system is needed along with ob-
servations of the system’s behavior. These observations are
checked against the given model, and inference algorithms
are used to produce diagnoses, which are possible assump-
tions about which components are faulty that are consistent
with the given model and the observations.

Previous works assume the observations are certain. Un-
fortunately, this assumption is not always correct. Experi-
ments show that for some cases a completely different diag-
nosis is output when considering uncertainty.

In this paper, we address the MBD problem where there is
an uncertainty over the observations. This can happen when
a noisy sensor is used to collect the output. A noise can be
interpreted differently across domains. In the Boolean cir-
cuits domain, for instance, the sensor collecting the output
(1 or 0) might be affected by spontaneous electric pulses, in
addition to the original output, causing the observed output
to flip its value.
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We formalize the MBD problem with uncertain observa-
tions, both for abductive and consistency-based diagnosis.
An abductive model is a model where for each component,
all its behaviors are known and defined (Reiter 1987). For
instance, if for each component in a Boolean circuit model
(e.g. an OR gate), its output can be one of the three: (1)
healthy (i.e. logical OR) (2) flipped (i.e. logical NOR) or
(3) stuck at 1 (i.e. output is always 1), then we can say this
model is abductive. A diagnosis in an abductive model is an
assignment of a behavior mode for each component. A con-
sistent model is a model where there exist components with
an undefined behavior (Console, Dupré, and Torasso 1991).
This means that given an input to this component, there can
be multiple possible outputs. This is contrary to an abduc-
tive model, where a component and a behavior mode map to
a single possible output.

We propose three algorithms to solve the MBD with un-
certain observations problem. The first, O2D, reduces the
uncertainty into multiple MBD problems with certainty. The
second, D2O, saves the effort of applying an MBD solver
multiple times, by iterating all behavior modes assignment
combinations and for each - deriving the observation(s) it ex-
plains. Both algorithms ultimately find all of the diagnoses
and their probability. If only the most probable diagnosis is
desired, a third algorithm, MstLikeDiag, is proposed to han-
dle this case. This algorithm is similar to the first algorithm,
only that it stops after a certain condition is met. Meeting
this condition ensures no other unseen diagnosis can have a
probability larger than our current maximum.

Evaluation on Boolean circuit diagnosis for the abduc-
tive domain and software projects for the consistent domain,
compares the runtime over these algorithms under the influ-
ence of some independent variables. The results on the ab-
ductive domain show an unequivocal preference of D2O to
O2D, independently of other variables. In the consistency-
based domain, in the other hand, O2D outperforms D2O.
Also, we conclude that MstLikeDiag runs faster than the
other two under certain circumstances that will be discussed
later.

2 Related Work

MBD has been studied in a range of different settings and
models (Feldman, Provan, and Van Gemund 2010; Stern et
al. 2012; Metodi et al. 2014) including discrete event sys-
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tems (DES) (Pencolé and Cordier 2005), qualitative models
(Struss and Price 2003), incomplete causal models (Console,
Dupré, and Torasso 1989) and hybrid systems (Narasimhan
and Biswas 2007).

Previous work of Lamperti and Zanella (2000; 2010)
also address uncertain observations. However, their work fo-
cus on DES and the uncertainty is addressed to observable
events, which are the inputs to the system. Our work dis-
cusses the uncertainty of the outputs of the observations.
In addition, they do not use probabilistic measures to rank
the diagnoses in the new problem. A Bayesian network can
also solve an MBD problem with uncertainty (Lucas 2001;
Flesch, Lucas, and van der Weide 2007). In this setting,
the uncertainty is not over the observations, but over the
domain and behavior modes. This means that the observa-
tions are certain, but behavior modes of components are dis-
tributed and affected by the health modes of other compo-
nents. Cardoso et al. (2016) consider the case where soft-
ware components are not distinctly either healthy or faulty,
but could be also in between. This obviously causes sys-
tem tests to output a continuous value rather than a binary
response of pass/fail. The outputted value could indicate
to what extent the system is faulty. For example, high la-
tencies of responses to queries may indicate that servers
are overloaded. Cardoso et al. propose to model the uncer-
tain observation with a fuzzy error function and integrate
this information in spectrum-based fault localization diag-
nosis framework (Abreu, Zoeteweij, and van Gemund 2009;
Elmishali, Stern, and Kalech 2019). Notice that the uncer-
tainty in this case is not due to uncertain observation as ad-
dressed in our paper but due to uncertainty in the faulty state
of the component. To the best of our knowledge no other
work has addressed the problem of MBD with uncertain ob-
servations’ outputs.

3 Background

A system is composed of a set of components COMPS. Ev-
ery component c ∈ COMPS has a set of input and output
variables, denoted in(c) and out(c). Some of the components
inputs and outputs are observables, that is, it is possible to
observe their values when monitoring the system. Let O de-
note this set of values. An observation OBS is an assignment
of values for each o ∈ O. For an observation OBS and an
observable variable o ∈ O we denote by OBS(o) the value
assigned to o in OBS.

The behavior of component c represents a relation be-
tween values set to in(c) and the values to out(c). Ev-
ery component has a fixed set of possible behavior modes,
where every behavior mode represents a different behavior.
Every component has exactly one healthy behavior mode,
which corresponds to the normal behavior of that compo-
nent. All other behavior modes are referred to as faulty be-
havior modes. A system description (SD) is a formal model
that represents the possible behaviors of every component
in the system. A behavior mode assignment is a function
mapping a component to one of its behavior mode. If in a
behavior mode assignment ω a component c is mapped to its
healthy behavior mode then we say that c is healthy w.r.t ω.

MBD is designed for cases where an observation is in-
consistent with the assumption that all components are
healthy. More formally, an MBD problem is defined by
〈COMPS, SD,OBS〉 where COMPS is the set of system
components, SD is a system description, and OBS is an ob-
servation, for which it holds that

(SD ∧ OBS ∧
∧

c∈COMPS

h(c)) �⊥ (1)

where h(c) denotes that the behavior mode of c was healthy
when OBS was collected.

A diagnosis is a behavior mode assignment explaining the
observation. The literature on MBD proposes several def-
inition of what it means to explain an observation. In the
consistency-based diagnosis literature, a behavior mode as-
signment ω explains an observation OBS, i.e., ω is a diagno-
sis, iff SD ∧ OBS ∧ ω is consistent.

In the abductive diagnosis literature, a more detailed SD is
assumed. First, every behavior mode of a component c de-
fines a function that maps values assigned to the variables in
in(c) to the values assigned to the variables in out(c). Note
that in consistency-based diagnosis, a behavior mode of a
component c defines a relation between in(c) and out(c), in-
cluding non-deterministic relations in which for some input
values for in(c) there may be more than one possible output
values. Such non-determinism is not allowed in abductive
diagnosis.

A second difference between consistency-based diagnosis
and abductive diagnosis is that in abductive diagnosis, addi-
tional information is available about the state of the system
at the time when the observation was collected. This infor-
mation is referred to as the context and denoted Ctx. We
limit our scope to cases where the context includes all the
system inputs. The system inputs, denoted SYSIN, are all
the components’ inputs that are not outputs of any compo-
nent in the system. That is, Ctx = SYSIN =

⋃

c∈COMPS

in(c)\
⋃

c∈COMPS

out(c). The system outputs, denoted SYSOUT, are

all the observables that are not system inputs.
In abductive diagnosis, a behavior mode assignment (ω)

entails the observation, i.e., ω is a diagnosis, iff

SD ∧ Ctx ∧ ω → OBS (2)

For a comprehensive discussion about the relation be-
tween abductive diagnosis and consistent diagnosis, see Tor-
raso et al. (Console and Torasso 1991).

3.1 Diagnosis Likelihood

When there is more than one diagnosis (either abductive or
consistent) for a given MBD problem, one needs a way to
compute the likelihood that a given diagnosis is correct. A
diagnosis is correct if it assigns to every component the be-
havior mode that it had when the system was observed. We
denote by P (ω|OBS) the likelihood that the diagnosis ω is
correct given that OBS was observed. Many diagnosis algo-
rithms output, in addition to a set of diagnoses, an estimate
of their likelihoods.
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One way to estimate the likelihood of a diagnosis ω is
as follows. Assume diagnosis ω, and let ω+ be the set of
components assigned a healthy behavior mode, and ω− the
complementing set of components. Let p(c) be the a-priori
probability that component c is healthy. If we assume that
components fail independently, then the a-priori probabil-
ity that a diagnosis ω is correct, denoted P (ω), is given by:
P (ω) =

∏
c∈ω+ p(c) ·∏c∈ω−(1− p(c)).

Let Ω be the set of diagnoses, if we assume that for
every pair of diagnoses ω, ω′ ∈ Ω the observation OBS
is not more likely for one diagnosis over another, i.e.,
P (OBS|ω) = P (OBS|ω′), then the posterior probability
P (ω|OBS) is given by: P (ω|OBS) = P (ω)∑

ω′∈Ω P (ω′) .
We use the above to compute the diagnosis likelihood, as

was done by many prior works (de Kleer and Williams 1987;
Stern et al. 2017).

4 Uncertainty over Observations

In this work, we assume that a subset of the observables
O’⊆ O cannot be observed accurately. For example, if an
observable corresponds to reading the value of some sensor,
then the sensor manufacturer may provide information about
that sensor’s expected accuracy.

We formalize this by defining the notion of an uncertain
observation, as follows. Let dom(o) be the domain of an
observable o ∈ O, i.e., the set of values that may be assigned
to o in an observation. We assume throughout the paper that
each observable can have discrete values only, thus dom(o)
is finite.

An uncertain observation is a function that maps every
observable o and value v ∈ dom(o) to the probability that
the value of o is v. That is, an uncertain observation defines
for every observable o ∈ O a distribution over its values. For
an uncertain observation UOBS, an observable o ∈ O, and a
value v ∈ dom(o), we denote by UOBS(o, v) the probability
that the value of o is v. Note that there may be an observable
o for which there is no uncertainty over its values. This can
be expressed by setting UOBS(o, v) = 1.

In this work, we make the simplifying assumption that
distributions of values for observables are independent. This
means the probability that an observable o has a value
v ∈ dom(o) is independent from the probability that a
different observable o′ has some value v′ ∈ dom(o′).
Therefore, for a given uncertain observation UOBS we
can compute the probability that the observation is in fact
OBS, denoted UOBS(OBS) as follows: UOBS(OBS) =∏

o∈O UOBS(o,OBS(o)). An observation OBS is called fea-
sible w.r.t an uncertain observation UOBS iff UOBS(OBS) >
0. Let F (UOBS) be the set of feasible observations for
UOBS. We define the notion of abductive diagnosis and con-
sistent diagnosis for an uncertain observation as follows.

Definition 1 (Diagnosis for an Uncertain Observation). A
behavior mode assignment ω is a consistent diagnosis for
an uncertain observation UOBS iff

∃OBS ∈ F (UOBS) s.t. : SD ∧ ω ∧ OBS � ⊥ (3)

A behavior mode assignment ω is an abductive diagnosis for

an uncertain observation UOBS iff

∃OBS ∈ F (UOBS) s.t. : SD ∧ Ctx ∧ ω → OBS (4)

Given an uncertain observation UOBS and a diagnosis ω
for this respective MBD problem, the likelihood that ω is
correct is given by:

P (ω|UOBS) =
∑

OBS∈F (UOBS)

P (ω|OBS) · P (OBS) (5)

We refer to the problem of finding diagnoses and their
likelihoods for a given UOBS as the UO-MBD problem.

4.1 The Relation Between Observations and
Diagnoses

For a given uncertain observation UOBS, it is interesting to
consider the relation between its feasible observations and
its set of diagnoses.

By definition (Eq. 3 and 4), for every diagnosis ω of UOBS
there exists at least one feasible observation OBS for which
ω is a diagnosis for. But can there be other diagnoses that are
also diagnoses of OBS? and vice versa, can ω be a diagnosis
to other observations? As we discuss later in this paper, these
questions have an impact on how one can compute diagnosis
likelihoods.

For consistency-based diagnosis, a single diagnosis may
be consistent with multiple feasible observations. Similarly,
a single observation may have multiple consistent diagnoses.
So, there is a many-to-many relationship between diagnoses
and feasible observations.

This is not the case for abductive diagnosis. There, a diag-
nosis entails exactly one feasible observation. On the other
hand, more than one diagnosis may entail the same feasible
observation. Hence, there is a many-to-one relation between
diagnoses to feasible observations. This is useful, for exam-
ple, to compute diagnosis likelihood (Eq. 5), since once a
single observation is found for a given diagnosis, we have
the exact likelihood.

5 Solving UO-MBD

5.1 From Observations to Diagnoses

The first approach we propose for solving a UO-MBD prob-
lem is straightforward: create an MBD problem for every
feasible observation, solve it with an off-the-shelf MBD al-
gorithm, and aggregate the diagnoses likelihoods obtained
for each feasible observation using Eq. 5. We call this ap-
proach observations to diagnoses (O2D). Algorithm 1 lists
a pseudo code for O2D.

O2D maintains two data structures Ω and p. Ω is the
set of diagnoses that were found so far. p is a dictionary,
mapping every found diagnosis to the current estimate of
its likelihood. Initially, both Ω and p are empty (line 1 in
Alg. 1). For every feasible observation OBS ∈ F (UOBS),
O2D executes an off-the-shelf MBD algorithm to obtain the
set of diagnoses and their likelihoods with respect to OBS
(line 3). The former is denoted by ΩOBS and latter by pOBS.
Every diagnosis in ΩOBS is added to Ω, since by definition
it is also a diagnosis for UOBS. For every such diagnosis
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Algorithm 1: Pseudo-code for O2D.
Input: UOBS, an uncertain observation
Input: SD, the system description
Input: COMPS, the system components
Output: Ω, a set of all diagnoses
Output: p, a dictionary mapping diagnoses to their

likelihoods
1 Ω← ∅; p← empty dictionary
2 for OBS ∈ F (UOBS) do
3 (ΩOBS, pOBS)← DIAGNOSE(SD,COMPS,OBS)
4 for ω ∈ ΩOBS do
5 if ω ∈ Ω then
6 p(ω)← p(ω) + UOBS(OBS) · pOBS(ω)

7 else
8 p(ω)← UOBS(OBS) · pOBS(ω)
9 Ω← Ω ∪ {ω}

10 return (Ω, p)

ω ∈ ΩOBS that was not added before to Ω, we set its likeli-
hood in p to UOBS(OBS) · pOBS(ω) (line 8). Otherwise, we
add UOBS(OBS) ·pOBS(ω) to the current likelihood estimate
for ω in p (line 6). This way, when O2D returns p (line 10),
the likelihood of every diagnosis is exactly the summation
defined in Equation 5. This O2D algorithm works exactly
the same for consistency-based diagnosis and for abductive
diagnosis.

5.2 From Diagnoses to Observations

The second approach we propose for solving a UO-MBD
problem can be viewed as the reversed version of O2D. In-
stead of computing for every observation its set of diag-
noses, we compute for every possible behavior mode assign-
ment the set of observations that are consistent with it. Then,
we collect the assignments that are consistent with feasible
observations. We call this approach diagnoses to observa-
tions (D2O).

Algorithm 2 lists a pseudo code for D2O. For every fea-
sible observation OBS ∈ F (UOBS), we create an empty
set ΩOBS (line 3). This set will later contain all the diag-
noses consistent with OBS. Let B be the set of all possi-
ble behavior mode assignments. For every possible behav-
ior mode assignment ω ∈ B, the function FINDOBS returns
the set of observations that are consistent with ω. This is
denoted as Oω in the pseudo code. For every such observa-
tion OBS ∈ Oω , we check if it is feasible. If so, we add ω
to ΩOBS. After going over all bevahior mode assignments,
we go over every feasible observation OBS and compute the
likelihoods of its diagnoses. Finally, we aggregate for every
diagnoses its scores over all observations.

5.3 Complexity Analysis

Let us define the following notations: 1. |Ω|: the number
of diagnoses. 2. F (UOBS): the set of feasible observations
3. Bmax: the maximal number of behavior modes for a
single component. 4. Ωmax: the maximal number of diag-

Algorithm 2: Pseudo-code for D2O.
Input: UOBS, an uncertain observation
Input: SD, the system description
Input: COMPS, the system components
Input: B, all possible behavior mode assignments
Output: Ω, a set of all diagnoses
Output: p, a dictionary mapping diagnoses to their

likelihoods
1 Ω← ∅; p← empty dictionary
2 for OBS ∈ F (UOBS) do
3 ΩOBS ← ∅
4 for ω ∈ B do
5 Oω ← FINDOBS(SD,COMPS, ω)
6 for OBS ∈ Oω do
7 if OBS ∈ F (UOBS) then
8 if ω /∈ Ω then
9 Ω← Ω ∪ {ω}

10 ΩOBS ← ΩOBS ∪ {ω}

11 for OBS ∈ F (UOBS) do
12 pSumOBS ←

∑
ω∈ΩOBS

p(ω)

13 for ω ∈ ΩOBS do
14 pOBS(ω)← Pr(ω)/pSumOBS

15 if p contains ω then
16 p(ω)← p(ω) + UOBS(OBS) · pOBS(ω)

17 else
18 p(ω)← UOBS(OBS) · pOBS(ω)

19 return (p,Ω)

noses for a single feasible observation. 5. Omax: the maxi-
mal number of observations consistent with a single behav-
ior mode assignment. 6. CD: the computational complexity
of running a diagnosis algorithm. 7. CF : the computational
complexity of finding all consistent observations.

The computational complexity of O2D is simply:

|F (UOBS)| · CD (6)

The computational complexity of D2O is:

|F (UOBS)| · Ωmax + (Bmax)
|COMPS| · (CF +Omax) (7)

.
It is reasonable to assume that Ωmax � CD since the

complexity of finding a diagnosis is usually much larger than
just enumerating them.

To provide a deeper understanding of the above complex-
ities, let us assume that the DIAGNOSE call in O2D corre-
sponds to a brute force search for diagnoses, and for each it
performs a consistency check, whose cost is CC , to check if
the set of behavior mode assignments is a diagnosis. Thus,
CD = (Bmax)

|COMPS| · CC .
Similarly, let us assume that the FINDOBS call in D2O

corresponds to a brute force search for all feasible observa-
tions, and for each it performs a consistency check, costs CC

as well. Thus, CF = |F (UOBS)| · CC .
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So, we have that the complexity of O2D is

|F (UOBS)| · (Bmax)
|COMPS| · CC (8)

and the complexity of D2O is

|F (UOBS)| · Ωmax + (Bmax)
|COMPS|

·(|F (UOBS)| · CC +Omax

)
(9)

It is reasonable to assume that Ωmax � (Bmax)
|COMPS|,

since the diagnoses consistent with a single observation are a
subset of all possible behavior mode assignments. Similarly,
Omax � |F (UOBS)| since the observations consistent with
a single behavior mode assignment are a subset of all feasi-
ble observations. Thus, the main factor in the complexity of
D2O is

|F (UOBS)| · (Bmax)
|COMPS| · CC (10)

Therefore, D2O and O2D are equally complex.

Analysis for Abductive Diagnosis: For abductive diag-
nosis, CF = |COMPS| since we can propagate values from
inputs to outputs to obtain the observation corresponding to
a given diagnosis. For the same reason, Omax = 1. So, the
complexity of D2O becomes:

|F (UOBS)| · Ωmax + (Bmax)
|COMPS| · |COMPS| (11)

A brute-force implementation of DIAGNOSE is to iterate
over all possible behavior mode assignment, and for each
to check if it is consistent with the given observation. Since
CC = |COMPS| in abductive diagnosis, we have that in this
case the complexity of O2D is

|F (UOBS)| · (Bmax)
|COMPS| · |COMPS| (12)

It is reasonable to assume that Ωmax � (Bmax)
|COMPS|.

Therefore, for this brute-force implementation of DIAG-
NOSE the O2D approach is a factor of |F (UOBS)| slower
than D2O in this setting.

6 Finding the Most Probable Diagnosis

The number of diagnoses can be exponential in the num-
ber of components. Even the number of minimal-cardinality
diagnoses may be prohibitively large. As such, finding all
diagnoses may be too time consuming. A reasonable alter-
native is to return the most probable diagnosis. A naive ap-
proach is to find all diagnoses, sort them according to their
likelihood, and return the most likely one. This, however,
will also be very time consuming. Algorithm 3 is an ex-
tension of O2D, called most likely diagnosis (MstLikeDiag),
that returns the most probable diagnoses without finding all
diagnoses.

There are two differences between O2D and MstLike-
Diag. First, it maintains an additional variable P to store the
probability mass of the feasible observations processed so
far. That is, the sum of UOBS(OBS) over every feasible ob-
servation OBS for which we have computed diagnoses. P is
initially zero (line 1 in Alg. 3) and updated after processing
each observation (line 12).

The second difference between O2D and MstLikeDiag is
that it returns only the most likely diagnosis (lines 14

Algorithm 3: Pseudo-code MstLikeDiag.
Input: UOBS, an uncertain observation
Input: SD, the system description
Input: COMPS, the system components
Output: ω1, the most likely diagnosis

1 Ω← ∅; p← empty dictionary; P ← 0
2 for OBS ∈ F (UOBS) do
3 (ΩOBS, pOBS)← DIAGNOSE(SD,COMPS,OBS)
4 for ω ∈ ΩOBS do
5 if ω ∈ Ω then
6 p(ω)← p(ω) + UOBS(OBS) · pOBS(ω)

7 else
8 p(ω)← UOBS(OBS) · pOBS(ω)
9 Ω← Ω ∪ {ω}

10 ω1 ← argmaxω∈Ω p(ω)
11 ω2 ← argmaxω∈Ω\{ω1}p(ω)
12 P = P + UOBS(OBS)
13 if p(ω1)-p(ω2)≥1-P and p(ω1)≥1-P then
14 return ω1

15 return argmaxω∈Ω p(ω)

and 15). To do so, after processing every feasible observa-
tion, MstLikeDiag finds the diagnoses with the highest and
seconds highest p values, denoted by ω1 and ω2, respec-
tively. Finally, MstLikeDiag halts and returns ω1 if the dif-
ference between ω1 and ω2 is greater than or equal to 1− P
and p(ω1) ≥ 1−P (line 14) or if all observations have been
processed (line 15).

For every diagnosis ω, the most an observation OBS can
add to p(ω) is UOBS(OBS) (see lines 6 and 9). Thus, if p(ω1)
is larger than p(ω2) by more than 1− P , then the diagnosis
likelihood of ω1 is larger than the diagnosis likelihood of
any other ω ∈ Ω. Since we require also that p(ω1) ≥ 1−P ,
it also proves that any diagnosis not already in Ω will have a
lower likelihood than ω1.

Observe that for abductive diagnosis, every diagnosis has
exactly one observation that it is consistent with. Therefore,
in every iteration of Algorithm 3, for every diagnosis ω ∈ Ω
it holds that p(ω) is indeed the diagnosis likelihood of ω w.r.t
UOBS. Therefore, there is no need to compare ω1 to ω2, and
only the right-hand condition in line 13 needs to be checked.

7 Evaluation

7.1 Abductive Form

To evaluate our algorithms for the abductive diagnosis form,
we used a system from the 74XXX benchmark Boolean cir-
cuit - an ALU called 74182, having |O| = R = 5 outputs,
SYSIN = 9 inputs and COMPS = 18 components. An ab-
ductive diagnosis states which gates are healthy and which
are in a flipped mode. All observations were selected from
Feldman et al.’s (2010) known benchmark, a total of 250 ob-
servations, equally divided to five minimal cardinality values
of 1-5.

To adapt the observations to have uncertainty, observed
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Figure 1: Average runtime over P and cardinality.

outputs from the benchmark were treated as candidate out-
puts for each observation. Then, we set a probability P for
an observed output to be wrong.

For each algorithm, O2D (Alg. 1), D2O (Alg. 2) and Mst-
LikeDiag (Alg. 3), observation and value of P , we collected
the average execution runtime. Figure 1 visualizes these re-
sults. The runtime in the y-axis is presented in logarith-
mic scale to show the relative differences between the al-
gorithms. The x-axis combines 2 parameters: the value of
P (up) and the minimal cardinality over the most probable
diagnoses (down).

As can be seen, O2D’s runtime is constant (i.e. indepen-
dent of the minimal cardinality diagnosis and of the value
of P) and runs in an average time of 392 seconds. D2O’s
runtime is also constant. It runs in an average time of 26
seconds, performing better than O2D by multiple orders of
magnitude. MstLikeDiag is the most interesting one. As we
can see, its runtime is dependent on both parameters. For
each cardinality the runtime decreases as P decreases. In
addition, for each value of P the runtime decreases as the
cardinality decreases.

These results support our hypothesis. First, we can see
that D2O performs much better than O2D and produces the
same results, regardless of the cardinality of the diagnoses
nor P . This is because O2D calls DIAGNOSE 2R times,
each with runtime of 2|COMPS|, resulting in total runtime of
2R+|COMPS|, while D2O iterates only the components, result-
ing in total runtime of 2|COMPS|. Second, we can see that for
low values of cardinality and P , MstLikeDiag outperforms
D2O.

These results show that retrieving the diagnoses by
traversing on all subsets of components from COMPS is al-
ways better than using a naı̈ve diagnoser for each possible
outputs combination. Also, it shows that for small values
of P or for observations with low cardinality diagnoses, re-
trieving only the maximum probability diagnoses can save
time while ensuring correctness. Since it is safe to assume
the probability for a faulty output is small and most real
observations imply a single fault, we can derive that this
method is generally better.

Figure 2: Algorithms average runtime over the number of
components and the number of tests with uncertainty.

7.2 Consistent Form

To evaluate our algorithms for the consistency-based diag-
nosis form, we run experiments on the software diagnosis
domain. Here, a diagnosis corresponds to the software com-
ponents (e.g. classes, methods, blocks or lines of code) that
are faulty (i.e. contain a bug), and the observation is given
by the result of tests. This domain is considered consistency-
based since a test can pass even though a buggy component
is involved in it.

We have used Barinel (Abreu, Zoeteweij, and van
Gemund 2009) algorithm, which combines MBD and
Spectrum-based Fault Localization (SFL). Barinel also as-
signs a score to every diagnosis, that roughly corresponds to
its likelihood. Using Barinel as our diagnoser, we were able
to implement all three algorithms.

Here we define an uncertain output as a chance for a bug
in the test, causing the test to fail or pass though it should do
the opposite. A bug in the test is not so rare and can happen
from multiple reasons, such as (1) attempting to write a test
for a legacy, barely understandable code, (2) requirements
had been changed and the test was forgotten to be changed
accordingly, and (3) the test was written by a less experi-
enced developer.

Each execution trace vector is stored in a matrix file, con-
taining: (1) all components names, (2) the components in-
volved in each test, and (3) all tests outcomes. Since there are
many independent variables affecting the algorithms’ run-
time in this domain, we constructed synthetic trace matrices
to control as much of them as we can and evaluate their ef-
fect on the runtime. In addition, we run experiments on real
buggy source codes.

To do this, we created a combination of n components
and m tests, where 7 ≤ n,m ≤ 13. For each combination
we created 20 random matrices and error vectors having the
combination properties. For each matrix file with m tests,
we executed all three algorithms with a fixed number of u
tests with uncertain observation over the result of the test,
where 7 ≤ u ≤ m. In addition, the third algorithm was ex-
ecuted with different faulty output probabilities ([0.1, 0.5]).
Preliminary results showed that the number of failing tests
has insignificant influence on runtime, so we have not varied
this parameter.

2771



Synthetic Experiments: Figure 2 visualizes the effects of
both the number of components and the number of tests with
uncertainty (x-axis). The y-axis is the average runtime in
logarithmic scale. Both parameters are in direct correlation
with all three algorithms’ runtime. If we fix the number of
components (tests with uncertainty), the average runtime of
all algorithms becomes higher as the number of tests with
uncertainty (components) becomes larger. We can also see
that the number of tests with uncertainty have much more
influence on the runtime than the number of components.

We evaluated also the effect of P on MstLikeDiag’s run-
time. for P values of 0.1,0.2,0.3,0.4,0.5, the average run-
time was 0.43,1.13,2.6,4.36,5.71, respectively. The results
suggest a linear correlation between them.

A significant difference with the abductive case is the per-
formance ratio between O2D and D2O. In this case, O2D
seems to perform better than D2O by an order of magni-
tude. This can be explained by diving into the algorithms
implementation in this domain.

In O2D (Algorithm 1), The DIAGNOSE function, which is
Barinel in our case, is being called as the number of feasible
observations (line 3), which is 2u (with u being the number
of tests with uncertainty). Inside Barinel implementation, a
minimal-hitting-set (MHS) algorithm is called to find sets of
components hitting all failing tests. being an NP-complete
problem, the asymptotic runtime of this implementation to
MHS is exponential. However, using some optimizations,
the real runtime of this implementation is usually almost lin-
ear in the number of components (n). Being the dominant
part of O2D, the runtime of this algorithm is close to the
sum of runtimes of all Barinel calls, which is n ∗ 2u.

As for D2O (Algorithm 2), The FINDOBS function is be-
ing called 2n times (line 5). Here we have used a somewhat
”reverse MHS” algorithm - given a set of components c, find
all sets of tests whose c is a MHS of them. The runtime of
this implementation is exponential in u. Thus, the total run-
time of D2O is close to 2n+u, an order of magnitude worse
than O2D.

Real-World Experiments: Next, we evaluated our algo-
rithms using real bugs from Apache Commons-Lang, an
open-source software project. This project includes a test
package. For every experiment, we chose a package and a
known bug that occurred in this package. Then, we chose a
subset of the automated tests that test this package and ran
them to record their trace. The trace and error vector were
then stored as a matrix file, allowing us to follow the same
pipeline as before, with a minor difference. Here, as opposed
to with the synthetic matrices, we assumed that only initially
observed failed tests can have uncertainty, while passed tests
are certain. This assumption addresses the high complexity
of real-world problems which includes hundreds of compo-
nents and tests. We believe this is a fair assumption, as ex-
perience shows that a bug in the test code usually causes it
to fail, not pass when it should not.

Figure 3 presents the runtime of all three algorithms. We
can see that O2D performs as good as MstLikeDiag. We can
also clearly see that D2O performs significantly worse than
the other two. This is due to the change discussed above,

Figure 3: Algorithms runtime on several matrices.

greatly reducing the number of tests with uncertainty but still
keeping a large number of components. Knowing that only
D2O’s runtime is exponential in the number of components
explains why it performs poorly, relative to the other two.

As for the outputs, MstLikeDiag returned a different most
probable diagnosis for P = 0.1 and for P > 0.1, for every
evaluated matrix. This shows that the level of uncertainty
indeed affects the algorithms output.

The results of both the real and synthetic matrices show
us that if only the most probable diagnosis is desired, us-
ing a method to find it explicitly is always the best option,
performance-wise, no matter the nature of software being
diagnosed. If, however, all diagnoses are required, then iter-
ating all feasible observations is probably the best choice.

8 Discussion

One may consider solving the UO-MBD problem using a
reduction to (certain) MBD. We demonstrate the reduction
in the Boolean circuits domain, but a similar reduction can
be made in any domain: The reduction will create a new sys-
tem s.t. for each output o ∈ O, a Buffer gate bo is placed s.t.
in(bo) = in(o), out(bo) = o. We define the a-priori faulty
likelihood for this buffer as the faulty probability of its at-
tached output. Informally speaking, we separate the uncer-
tainty of an output from the output itself, and turning it into
a buffer component which can be faulty. This way we get
a new system where all outputs are certain, and we can use
any off-the-shelf standard diagnoser.

Unfortunately, this solution does not quite solve our prob-
lem. A diagnosis in the new system is a union of compo-
nents from the initial system and buffers created by the re-
duction algorithm. In the consistent form, since a diagno-
sis can explain several observations, different diagnoses can
constitute the same diagnosis after filtering the buffers. As
adding new components might cause the likelihood comput-
ing (e.g. Barinel) to act differently, a future work is needed
to research this area.

Even in the abductive form its efficiency is doubtful.
Using a brute-force diagnoser for a Boolean circuit do-
main for example, O2D’s main factor is executing this diag-
noser for each feasible observation, resulting in a runtime of
2|COMPS|+|O| . Using the reduction, we can execute the diag-
noser one time only but the system now has |COMPS|+ |O|,
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resulting also in a runtime of 2|COMPS|+|O|. D2O’s runtime,
however, is 2|COMPS|, performing better than the reduction.

9 Conclusion and Future Work

In this paper, we addressed an extension of the classic MBD
problem, where there is an uncertainty over the observed val-
ues. We proposed two algorithms for solving this problem:
(1) O2D - for each possible observation compute the con-
sistent diagnoses, and (2) D2O - for each possible diagnosis
compute the observation(s). We proved their correctness and
analyzed their runtime. In addition, we focused on a third
algorithm, MstLikeDiag, that provides the most probable di-
agnosis.

Followed experiments were conducted to compare the al-
gorithms runtime in abductive and consistent forms. We con-
cluded that finding the most probable diagnosis has the best
performance in both forms, assuming the probability for
a faulty observed output or the diagnosis’s cardinality are
likely to be small. In the abductive form, we concluded that it
is always preferable to find all diagnoses by D2O than O2D.
In the consistent form however we concluded the opposite,
as iterating all observations always gave us better results,
runtime-wise.
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