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Abstract

In the context of the Description Logic DL-Lite�=R, i.e.,
DL-LiteR without UNA and with inequality axioms, we ad-
dress the problem of adding to unions of conjunctive queries
(UCQs) one of the simplest forms of negation, namely, in-
equality. It is well known that answering conjunctive queries
with unrestricted inequalities over DL-LiteR ontologies is in
general undecidable. Therefore, we explore two strategies for
recovering decidability, and, hopefully, tractability. Firstly,
we weaken the ontology language, and consider the variant
of DL-Lite�=R corresponding to RDFS enriched with both in-
equality and disjointness axioms. Secondly, we weaken the
query language, by preventing inequalities to be applied to
existentially quantified variables, thus obtaining the class of
queries named UCQ �=,bs. We prove that in the two cases,
query answering is decidable, and we provide tight complex-
ity bounds for the problem, both for data and combined com-
plexity. Notably, the results show that answering UCQ�=,bs
over DL-Lite�=R ontologies is still in AC0 in data complexity.

1 Introduction

Description Logics (DLs) (Baader et al. 2003; 2017) al-
low for defining ontologies in terms of two components,
named TBox (general axioms on the concepts and rela-
tions in the domain of interest), and ABox (axioms about
instances of concepts and relations). In this paper we con-
sider DL-LiteR, which is the DL of the DL-Lite family (Cal-
vanese et al. 2004; 2007) underpinning the OWL2 profile
OWL2QL (Motik et al. 2012), and is arguably one of the
most important formalisms in Ontology-Based Data Ac-
cess (OBDA) (Poggi et al. 2008; Bienvenu 2016; Xiao et
al. 2018; Ortiz 2018), where the aim is to access a typi-
cally huge amount of data represented as an ABox, either
materialized or virtual. In particular, DL-LiteR has been
designed so that answering unions of conjunctive queries
(UCQs) posed to an ontology expressed in this language can
be reduced to evaluating first-order logic queries over the
database corresponding to the ABox, and therefore the prob-
lem is in AC0 in the size of the ABox, i.e., in the so-called
data complexity (Vardi 1982).

Although UCQs constitute the most popular class of
queries studied for both databases and ontologies, they have
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several limitations in expressive power. Notably, they do
not allow any form of negation, not even the one expressed
by the inequality (i.e., “not equal”) predicate. For instance,
the query computing all triangles in an undirected graph
cannot be expressed as a conjunctive query (CQ), whereas
it can be expressed as the following CQ with inequali-
ties {(x, y, z) | edge(x, y),edge(x, z),edge(y, z), x �=
y, x �= z, y �= z}, where the predicate edge represents the
connections between nodes in the graph.

The above example shows that inequalities are in-
deed necessary for expressing even very simple properties,
like triangle graphs. However, while answering UCQs in
DL-LiteR has been extensively studied in recent years (Xiao
et al. 2018), the problem of answering CQs with inequalities
(CQ �=s) and unions thereof (UCQ �=s) has been rarely inves-
tigated. To the best of our knowledge, the basic facts that are
known about such problem can be summarized as follows.

• In stark contrast to the UCQ case, answering UCQ �=s is
undecidable, even in the case of ontologies expressed in
DL-Litecore, which is the fragment of DL-LiteR without
role disjointness and role inclusion axioms (Gutiérrez-
Basulto, Ibáñez-Garcı́a, and Kontchakov 2012). For
DL-LiteR ontologies, undecidability holds already for
CQ �=s (Gutiérrez-Basulto et al. 2015). Looking at these
results, one can easily realize that the main of source of
undecidability stems from both the ability of the ontol-
ogy language to express incomplete information through
existential quantifiers, and the possibility of imposing in-
equalities between existential variables in the query.

• In (Gutiérrez-Basulto et al. 2015) it is also proved that
for the subclasses of CQ �=s and UCQ �=s named local
CQ�=s and local UCQ�=s, respectively, query answer-
ing over DL-LiteR ontologies is decidable, but with a
CONEXPTIME upper bound in data complexity. Further-
more, it is provably intractable (in general coNP-hard in
data complexity) already for local CQ�=s. Local (U)CQs
are special (U)CQs with inequalities, designed in such a
way that each inequality atom in the query that contributes
to a certain answer with respect to a DL ontology has at
least one of its terms bound by an individual in the ABox.

The goal of this paper is to investigate under which con-
ditions, stronger than local UCQs, tractability of answering
queries with inequalities is recovered, or at least the com-
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plexity is lowered with respect to the one of local UCQs.
The basic idea to achieve this goal is to explore ontology
languages and query languages ensuring the following prop-
erty: each inequality atom α �= β that contributes to the
certain answer to a query with respect to a DL ontology, it
does so with both terms α and β bounded by individuals in
the ABox. In order to follow this path, we consider as basic
language DL-LiteR without the Unique Name Assumption
(UNA)1 and with inequality axioms, called DL-Lite �=R, and
explore two alternative strategies.

• The first strategy is to weaken the ontology language,
so as to eliminate all the constructs introducing in-
complete information resulting from existentially quan-
tified assertions. The outcome is a sublanguage of
DL-Lite�=R, that we call DL-Lite¬, �=

RDFS because it extends
DL-LiteRDFS (Cuenca Grau 2004; Rosati 2007; Cima,
Lenzerini, and Poggi 2019) with both inequality axioms
(in the ABox) and disjointness axioms (in the TBox).

• The second strategy is to keep DL-Lite�=R as ontology
language, but to weaken the query language by restrict-
ing the application of the inequality predicate to either
individuals or distinguished variables (variables repre-
senting output values) only, as done in (Poggi 2016;
Cima et al. 2017). The resulting query language is called
“(U)CQs with bounded inequalities”, and the correspond-
ing class is denoted by (U)CQ �=,b. Observe that, although
limited, the expressive power of (U)CQ �=,b allow interest-
ing queries to be expressed such as the one computing the
triangles in a graph.

For the case of DL-Lite¬, �=
RDFS, we show that answering

UCQ�=s is decidable, and in particular coNP-complete in
data complexity, and Πp

2-complete in combined complexity
(i.e., with respect to the size of the whole input, including the
query). We also investigate if the number of inequalities in
each disjunct plays a role in falling into intractability. We an-
swer positively to this question, by showing that if the query
has at most one inequality per disjunct, answering UCQ�=s
is PTIME-complete in data complexity, and NP-complete in
combined complexity (so, combined complexity class is the
same as in the case without inequalities), while it is coNP-
hard in data complexity if the query is conjunctive and has at
most two inequalities. We also show that going from one to
two inequalities causes the jump from NP-hardness to Πp

2-
hardness in combined complexity for (U)CQ �=s, and we con-
jecture that this holds already for CQ�=s.

For the case of (U)CQ�=,b, we show that answering
CQ �=,bs over DL-Lite�=R ontologies has the same complex-
ity of the UCQ case, i.e., it is in AC0 in data complexity
and NP-complete in combined complexity. However, per-
haps surprisingly, answering UCQ �=,bs over DL-Lite�=R on-
tologies is Πp

2-complete in combined complexity. Therefore,
unless NP = coNP, the presence of union makes the prob-

1Since the UNA can be enforced through suitable axioms in
DL-Lite�=R, such a language is a generalization of the classical
DL-LiteR, and it turns out to be much more interesting when deal-
ing with queries with inequalities.

lem of answering queries with inequalities over DL-Lite�=R
ontologies significantly different from the case of UCQs.

We argue that the above results considerably improve our
understanding of the implication that the presence of in-
equalities in queries has in the context of lightweight on-
tologies. In particular, to the best of our knowledge, our in-
vestigation on DL-Lite¬, �=

RDFS provides the first results on rea-
soning with inequalities when querying DL-LiteRDFS ontolo-
gies, and they also contribute a new result on containment
of UCQs with inequalities in databases (Kolaitis, Martin,
and Thakur 1998; Koutris et al. 2017): the problem is in
NP (and therefore NP-complete) in the case of at most one
inequality for each disjunct, and Πp

2-complete, in the case
of at most two inequalities for each disjunct. On the other
hand, our results on (U)CQ �=,bs posed to DL-Lite�=R ontolo-
gies show that this class is currently the only class of queries
with inequalities that can be answered with AC0 data com-
plexity. Indeed, the only previously result known for this
class was the PTIME algorithm described in (Poggi 2016).
We also observe that all the results on CQ �=,bs presented in
this paper easily extend to UCQ �=s posed to OWL2QL on-
tologies interpreted under the Direct Semantics Entailment
Regime (Glimm 2011), that is the regime usually adopted
for SPARQL queries. So, we are improving on a result re-
ported in (Cima et al. 2017), where it is shown that answer-
ing UCQ �=s over OWL2QL ontologies can be polynomially
reduced to the evaluation of a Datalog program, and there-
fore is in PTIME in data complexity, and in EXPTIME in
combined complexity.

The paper is organized as follows. In Section 2 we provide
some details on the notions used in the paper. In Section 3
we illustrate the notion of chase that we use for DL-Lite �=R,
which is the basis for some of the technical results presented
in this paper. In Section 4 and Section 5 we present our re-
sults on DL-Lite¬, �=

RDFS, and (U)CQ�=,bs, respectively. Finally,
in Section 6 we conclude the paper with a discussion on fu-
ture work.

2 Preliminaries

We define the syntax and the semantics of DL-Lite�=R, and
present the query languages considered in the paper.

DL-LiteR and its variants. Essentially, DL-Lite �=R general-
izes DL-LiteR by removing the UNA, and adding axioms
asserting inequalities of individuals2.

Formally, starting with an alphabet including symbols for
individuals, atomic concepts, and atomic roles, and the bi-
nary relation symbol �=, a DL-Lite �=R ontology, or simply an
ontology, is a pair O = 〈T ,A〉, such that T , called a TBox,
and A, called an ABox, are sets of axioms, that have, respec-

2In principle, the axiom a �= b can be expressed by the axioms
A1(a), A2(b), A1 � ¬A2, for two new atomic concepts A1, A2.
However, we prefer to keep the inequality predicate, both for avoid-
ing changing the TBox, and for being coherent with OWL2QL.
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tively, the following forms:

T : B1 � B2 R1 � R2 (inclusion)
B1 � ¬B2 R1 � ¬R2 (disjointness)

A : A(a) P (a, b) (membership)
a �= b (inequality)

where a, b denote individuals, A and P denote an atomic
concept and an atomic role, respectively, B1, B2 are ba-
sic concepts, i.e., expressions of the form A, ∃P , or ∃P−,
and R1 and R2 are basic roles, i.e., expressions of the form
P , or P−. In this paper we also consider other variants of
DL-LiteR, obtained by progressively restricting DL-Lite �=R.
The first one is obtained by disallowing existential quanti-
fiers to occur in the right-hand side of inclusion axioms, and
it is named DL-Lite¬, �=

RDFS, since it corresponds to DL-LiteRDFS

extended with both inequality axioms and disjointness ax-
ioms. Other variants are DL-Lite¬RDFS and DL-Lite�=RDFS, which
are obtained by further disallowing inequality and disjoint-
ness axioms, respectively.

As for the semantics of DL-Lite �=R, an interpretation for O
is a pair I = 〈ΔI , ·I〉, where the interpretation domain ΔI
is a non-empty set of objects, and the interpretation function
·I assigns to each individual a an object aI ∈ ΔI , to each
atomic concept A a set of objects AI ⊆ ΔI , to each atomic
role a set of pairs of objects P I ⊆ ΔI × ΔI , and to the
special predicate “ �=” the set of all pairs of distinct objects,
i.e., �=I= {(o1, o2) | o1, o2 ∈ ΔI ∧ o1 �= o2} (so, we often
write (o1, o2) ∈�=I as oI1 �=I oI2 , or even oI1 �= oI2 ). The
interpretation function extends to the other basic concepts
and the other other basic roles as follows: (i) (∃P )I = {o |
∃o′.(o, o′) ∈ P I}, (ii) (∃P−)I = {o | ∃o′.(o′, o) ∈ P I},
and (iii) (P−)I = {(o, o′) | (o′, o) ∈ P I}.

An interpretation I satisfies an axiom α � β (resp., α �
¬β) if αI ⊆ βI (resp., αI ∩βI = ∅), an axiom A(a) (resp.,
P (a, b)) if aI ∈ AI (resp., (aI , bI) ∈ P I), and an axiom
a �= b if aI �= bI). It satisfies a set γ of axioms if it satisfies
all axioms in γ. Finally, O = 〈T ,A〉 is satisfiable if there
exists a model of O, i.e., an interpretation for O that satisfies
both the TBox T and the ABox A.
Queries over DL-Lite �=R. A conjunctive query with inequal-
ities (CQ �=) over an ontology O is an expression of the form
q = {�x | φ(�x, �y)}, where �x and �y are tuples of variables,
called distinguished and existential variables of q, respec-
tively, and φ(�x, �y), called the body of q, is a finite conjunc-
tion of DL-Lite �=R ABox assertions with variables that can
appear in predicate arguments, i.e., atoms of the form A(t1),
P (t1, t2), or t1 �= t2, where each tj is either an individual
of O, or a variable in �x or �y. We impose that every variable
in �x or �y appears in some atom of φ(�x, �y), as usual (Abite-
boul, Hull, and Vianu 1995). If �x is empty, then the query is
called boolean. A CQ�= q without atoms of the form x1 �= x2

in its body is called a conjunctive query (CQ). An inter-
mediate class of queries that lies between CQs and CQ�=s
is the class of conjunctive queries with bound inequalities
(CQ �=,b). Specifically, a CQ �=,b q = {�x | φ(�x, �y)} is a CQ �=
whose inequalities involve only individuals or distinguished
variables, i.e., for every atom z1 �= z2 appearing in φ(�x, �y),
both z1 and z2 are not in �y. A UCQ (resp., UCQ�=,b, UCQ�=)

is a union of a finite set of CQs (resp., CQ �=,bs, CQ�=s) with
same arity.

The set cert(q,O) of certain answers of a UCQ �= q over
O is the set of n-tuples �t = 〈t1, . . . , tn〉 of individuals in O
such that O |= q(�t), i.e., 〈tI1 , . . . , tIn〉 ∈ qI , also written I |=
q(〈tI1 , . . . , tIn〉), for every model I of O, where qI denotes
the extension of q in I. When q is a boolean query, we write
O |= q if qI = {〈〉} (i.e., q is true in I, also denoted by
I |= q) for every model I of O. Observe that, when I is
finite it can be seen as a relational database (Abiteboul, Hull,
and Vianu 1995), and qI simply denotes the evaluation of
the UCQ q over I.

When we talk about the problem of answering a query
belonging to a class of queries Q over an L-ontology, i.e.,
an ontology expressed in the DL L, we implicitly refer to
the following decision problem: Given a query q ∈ Q, an
L-ontology O, and an n-tuple �t of individuals of O, check
whether �t ∈ cert(q,O).

From results of (Calvanese et al. 2007), it is well known
that checking whether a DL-LiteR ontology O = 〈T ,A〉 is
satisfiable can be done by evaluating a suitable query over
the ABox A seen as a relational database, in particular it can
be done in AC0 in data complexity and in PTIME in the size
of the TBox T . Furthermore, when a UCQ q is posed over a
satisfiable DL-LiteR ontology O = 〈T ,A〉, it is possible to
compute the set cert(q,O) of certain answers by first refor-
mulating q w.r.t. T , and then by evaluating the reformulated
query (which is again a UCQ) over the ABox A seen as a re-
lational database. This yields the well-known result that an-
swering UCQs over DL-LiteR ontologies is in AC0 in data
complexity and NP-complete in combined complexity. Ob-
serve that, since DL-LiteR is insensitive to the adoption of
the UNA for UCQ answering (Artale et al. 2009), the same
complexity results hold for the problem of answering UCQs
over satisfiable DL-Lite�=R ontologies.

We end the section with the notion of homomor-
phism (Chandra and Merlin 1977), that will be used in the
following. A homomorphism h from a CQ�= q to a struc-
ture B is a function from variables and individuals of q
to elements of B such that (i) h(a) = a for each indi-
vidual a occurring in q; (ii) for each atom of the form
A(t1) (resp., P (t1, t2)), there is an atom A(h(t1)) (resp.,
P (h(t1), h(t2))) occurring in B; and (iii) for each atom of
the form t1 �= t2, we have that h(t1) �= h(t2).

3 The chase

The conceptual tool that we use for addressing the prob-
lem of answering UCQ�=,bs over DL-Lite�=R ontologies is a
modification of the chase used for DL-LiteR (Calvanese et
al. 2007). Specifically, given a DL-Lite�=R ontology O =
〈T ,A〉, we build a (possibly infinite) structure, starting from
Ch0(O) = A, and repeatedly computing Chj+1(O) from
Chj(O) by applying suitable rules, where each rule can be
applied only if certain conditions hold. In doing so, we make
use of a new infinite alphabet V of variables for introducing
fresh unknown individuals, and we follow a deterministic
strategy that is fair, i.e., it is such that if at some point a
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rule is applicable then it will be eventually applied. Finally,
we set Ch(O) =

⋃
i∈N

Chi(O). Note that we make use of
the additional binary predicate symbol ineq , whose intended
role is used to record all inequalities logically implied by O.

The rules we use include all the ones illustrated in (Cal-
vanese et al. 2007). For example, if A1 � ∃P ∈ T ,
A1(e1) is in Chj(O), and no e2 exists such that P (e1, e2) ∈
Chj(O), then we set Chj+1(O) = Chj(O) ∪ {P (e1, s)},
where s ∈ V does not appear in Chj(O). There are, how-
ever, crucial additions related to the ineq predicate. In what
follows, when we say R(e1, e2) holds in Chj(O), where R

is a basic role, we mean (i) P (e1, e2) ∈ Chj(O), if R = P ,
or (ii) P (e2, e1) ∈ Chj(O), if R = P−. Also, when we say
that B(e1) holds in Chj(O), where B is a basic concept, we
mean (i) A(e1) ∈ Chj(O) if B = A, and (ii) R(e1, e2)

holds in Chj(O) for some e2, if B = ∃R. The additional
rules are as follows:

• If e1 �= e2 is in Chj(O), and ineq(e1, e2) is not in
Chj(O), then Chj+1(O) = Chj(O) ∪ {ineq(e1, e2)};

• If ineq(e1, e2) is in Chj(O), and ineq(e2, e1) is not in
Chj(O), then Chj+1(O) = Chj(O) ∪ {ineq(e2, e1)};

• if B1 � ¬B2 ∈ T , B1(e1) and B2(e2) hold in Chj(O),
and ineq(e1, e2) is not in Chj(O), then Chj+1(O) =

Chj(O) ∪ {ineq(e1, e2)};

• if R1 � ¬R2 ∈ T , either R1(e3, e1) and R2(e3, e2),
or R1(e1, e3) and R2(e2, e3) hold in Chj(O), and
ineq(e1, e2) is not in Chj(O), then Chj+1(O) =

Chj(O) ∪ {ineq(e1, e2)}.

From Ch(O) it is immediate to define an interpretation
IO for O, extended in order to deal with predicate ineq :

• ΔIO = VO ∪V , where VO is the set of individuals occur-
ring in O;

• eIO = e for every individual e ∈ VO;

• AIO = {e | A(e) occurs in Ch(O)} for every atomic
concept A;

• P IO = {(e1, e2) | P (e1, e2) occurs in Ch(O)} for every
atomic role P ;

• ineqIO = {(e1, e2) | ineq(e1, e2) occurs in Ch(O)}.

Note that, by definition, �=IO is the set of all pairs of distinct
individuals in VO ∪ V , i.e. �=IO= {(e1, e2) | e1, e2 ∈ VO ∪
V ∧ e1 �= e2}.

Obviously, for a DL-Lite�=R ontology, Ch(O) can be in-
finite, due to the presence of existential quantifiers in the
right-hand side of inclusion axioms, which, by introducing
fresh unknown variables, can trigger an infinite number of
rule applications. It is easy to see that, on the contrary, for a
DL-Lite¬, �=

RDFS ontology O, Ch(O) is finite, and can be com-
puted in polynomial time in the size of O.

We next show that IO enjoys some crucial properties for
DL-Lite�=R ontologies O.

Proposition 1. If M = 〈ΔM, ·M〉 is a model of a DL-Lite �=R
ontology O, then there exists a function Ψ from ΔIO to ΔM
such that:
1. for every e ∈ ΔIO , if e ∈ AIO , then Ψ(e) ∈ AM;
2. for every pair e1, e2 ∈ ΔIO , if (e1, e2) ∈ P IO , then

(Ψ(e1),Ψ(e2)) ∈ PM;
3. for every pair e1, e2 ∈ ΔIO , if (e1, e2) ∈ ineqIO , then

Ψ(e1) �= Ψ(e2).
The above proposition shows the importance of distin-

guishing between �= and ineq . Indeed, while by definition
of IO two different individuals e1, e2 satisfy e1 �=IO e2, it
may happen that for some model M of O, eM1 = eM2 , im-
plying that no function Ψ exists from ΔIO to ΔM such that
Ψ(e1) �= Ψ(e2). In other words, condition 3 in Proposition 1
does not hold if we replace ineq with �=.

Note that if IO satisfies all the axioms of O, then it is a
model of O, and therefore O is satisfiable. Otherwise, it can
be easily seen that IO violates at least one disjointness or
one inequality axiom of O. In particular, it can be proved
that IO violates some inequality axiom if and only if e �= e
occurs in O for some e in VO. As a result, we can devise
a satisfiability checking algorithm for DL-Lite�=R by slightly
modifying the so-called violation query for DL-LiteR, and
this shows that, similarly to the “canonical interpretation” of
a DL-LiteR ontology, IO is instrumental for checking the
satisfiability of a DL-Lite�=R ontology O. In turn, this implies
that checking the satisfiability of a DL-Lite�=R ontology O =

〈T ,A〉 can be done in AC0 in the size of A and in PTIME in
the size of T , exactly like in DL-LiteR.

A reasonable question to ask is whether IO is also the
right tool for query answering. The next theorem provides a
positive answer to this question for the class CQ�=,b. In what
follows, δ(q) denotes the query obtained by replacing each
inequality atom t1 �= t2 in q with the atom ineq(t1, t2).

Theorem 1. Let �t be a tuple of individuals of a satisfiable
DL-Lite�=R ontology O, and let q be a CQ�=,b over O. We have
that �t ∈ cert(q,O) if and only if �t ∈ δ(q)IO .

The above theorem states that IO is instrumental also for
answering CQ �=,bs over DL-Lite �=R ontologies. However, we
will see in the next two sections that this theorem is no
longer valid when we move from CQ�=,bs to either UCQ �=,bs,
or CQ�=s.

From now on, we implicitly assume to deal with satisfi-
able ontologies. Moreover, unless otherwise stated and with-
out loss of generality, we consider only boolean UCQ �=s. In-
deed, given an n-ary UCQ �= q, a DL-Lite�=R ontology O =

〈T ,A〉, and an n-tuple �t of individuals of O, checking
whether �t ∈ cert(q,O) is equivalent to checking whether
O |= q(�t), where q(�t) denotes the boolean UCQ �= ob-
tained by replacing appropriately the distinguished variables
of each disjunct of q with the individuals of �t.

4 UCQ�=s over DL-Lite¬, �=
RDFS

ontologies

We study the problem of answering UCQ�=s over satisfiable
DL-Lite¬, �=

RDFS ontologies.
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Theorem 1 tells us that the certain answers to a CQ �=,b q

over a DL-Lite¬, �=
RDFS ontology O coincide with δ(q)IO . How-

ever, the following example shows that the problem drasti-
cally changes as soon as we consider general CQ�=s.
Example 1. Consider the DL-Lite¬RDFS ontology
O = 〈T ,A〉, where T = {A1 � ¬A2} and A =
{A1(a1), A2(a2), P (b, c1), P (b, c2), P (c1, a1), P (c2, a2)}.
For the boolean CQ �= q = {() | P (x, y1)∧ P (x, y2)∧ y1 �=
y2}, we have that δ(q)IO is false because ineq(c1, c2)
is not in Ch(O). However O |= q, because in each
model M where cM1 = cM2 the query is true with
the bindings x, y1, y2 → c1, a1, a2, whereas in each
model M where cM1 �= cM2 , q is true with the bindings
x, y1, y2 → b, c1, c2.

The above example provides a hint on how to design
an algorithm for our problem. Intuitively, given a boolean
UCQ�= q, and a DL-Lite¬, �=

RDFS ontology O = 〈T ,A〉, we
check whether O �|= q by searching for a database that can
be obtained from Ch(O) by equating some of the individu-
als, and that falsifies q. We thus derive the upper bounds for
the problem of answering UCQ�=s in DL-Lite¬, �=

RDFS.

Theorem 2. Answering UCQ �=s over DL-Lite¬, �=
RDFS ontolo-

gies is in coNP in data complexity and in Πp
2 in combined

complexity.
We now provide matching lower bounds for both data and

combined complexity, showing that they hold already for the
case of CQ �=s. We start with data complexity.

Theorem 3. Answering CQ�=s over DL-Lite¬, �=
RDFS ontologies

is coNP-hard in data complexity.
The proof of the above theorem has two interesting im-

plications. (i) coNP-hardness in data complexity holds even
for CQ2, �=s over both DL-Lite¬RDFS and DL-Lite�=RDFS, where
CQk, �= denotes the class of CQ�= including at most k in-
equalities (and UCQk, �= the class of unions of finite sets
of CQk, �=s with same arity). (ii) Answering UCQ2, �=s over
DL-LiteRDFS ontologies is coNP-hard too, and this corrects
an erroneous statement in (Rosati 2007, Theorem 11), where
it is claimed that answering UCQ�=s over DL-LiteRDFS on-
tologies is in LOGSPACE in data complexity regardless of
whether the UNA is adopted or not. It turns out that this lat-
ter statement is true only under the UNA.

The following theorem provides the matching lower
bound for combined complexity.

Theorem 4. Answering CQ�=s over DL-Lite¬, �=
RDFS ontologies

is Πp
2-hard in combined complexity.

By looking at the proof of the theorem, one can see that
Πp

2-hardness holds already in the case of both DL-Lite¬RDFS,
and DL-Lite�=RDFS. However, the reduction builds a CQ �=
whose number of inequalities depends on the input of the
reduction, and therefore is not fixed a priori. It is thus nat-
ural to ask which is the minimum number of inequalities in
CQ�=s that makes the problem Πp

2-hard in combined com-
plexity. Similarly to the case of the coNP-hardness result in
data complexity, we conjecture that such number is 2. Even
though we have not been able to prove this conjecture, we
show next that Πp

2-hardness holds for UCQ2, �=s.

Algorithm CheckGood(O, q, F )

Input: DL-Lite¬, �=
RDFS ontology O = 〈T ,A〉, UCQ1, �= q,

sequence of functions F = {f1, . . . , fm}
Output: true or false
begin

Compute B := Ch(O)
for each i = 1 to m− 1:

if fi is a homomorphism from a disjunct of q1 to B
let t1 �= t2 be any inequality in any of such disjuncts
if ineq(fi(t1), fi(t2)) ∈ B return true
else replace each occurrence of fi(t1) appearing

in B, in q, and in {fi+1, . . . , fm} with fi(t2)
else return false

return fm is a homomorphism from a disjunct of q2 to B
end

Figure 1: The algorithm CheckGood(O, q, F )

Theorem 5. Answering UCQ2, �=s over DL-Lite¬, �=
RDFS ontolo-

gies is Πp
2-hard in combined complexity.

Interestingly, the proof of the previous theorem shows that
Πp

2-hardness holds even if the query is the union of a CQ2, �=
and a CQ without inequalities, and the ontology is expressed
in DL-LiteRDFS. Observe that, in this language, CQ �=s con-
taining even a single inequality have an empty set of cer-
tain answers. Thus, we are observing a surprising jump from
constant time to Πp

2-hardness if we add union to such CQ �=s.
To complete the picture of answering UCQ�=s in

DL-Lite¬, �=
RDFS, it remains to study the case of UCQ1, �=s. In

what follows, without loss of generality, we assume that
each UCQ1, �= is written as q = q1 ∪ q2, where q2 is a UCQ
with no inequalities and q1 is a UCQ1, �= having exactly one
inequality per disjunct.

In principle, for answering UCQ1, �=s over DL-Lite¬, �=
RDFS on-

tologies it is possible to use the algorithm provided in (Fagin
et al. 2005, Theorem 5.12) in the context of data exchange.
However, this would result in an exponential time algorithm
with respect to the size of the query. On the contrary, by elab-
orating on the idea of (Fagin et al. 2005, Theorem 5.12), we
have devised an algorithm that runs in PTIME in data com-
plexity and in NP in combined complexity. We start with the
following definition.

Definition 1. Let O = 〈T ,A〉 be a DL-Lite¬, �=
RDFS ontology,

and let q be a boolean UCQ1, �= over O. A sequence F =
{f1, . . . , fm} of functions from variables and individuals of
q to individuals of A is good w.r.t. O and q if the algorithm
CheckGood(O, q, F ) provided in Figure 1 returns true.

Roughly speaking, starting from B := Ch(O), in each
step i from 1 to m−1 such that fi is a homomorphism from
a disjunct of q1 to B, the algorithm CheckGood(O, q, F )
replaces everywhere the individual fi(t1) with the individ-
ual fi(t2), to consider the models in which fi(t1) = fi(t2)
(since there is a homomorphism, q is true in the models
where fi(t1) �= fi(t2)). Afterwards, the algorithm sanctions
that F is a good sequence if and only if either it is not possi-
ble to equate two individuals without contradicting an ineq
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atom of B, or the resulting B and q2 are such that B |= q2.
Using the above notion of good sequence, it is possible to
derive the following characterization (nA denotes the num-
ber of individuals occurring in the ABox A).

Proposition 2. Let O = 〈T ,A〉 be a DL-Lite¬, �=
RDFS ontology,

and let q be a boolean UCQ1, �= over O. We have that O |= q
if and only if there exists a sequence F = {f1, . . . , fm} of
m ≤ nA functions that is good w.r.t. O and q.

We are now ready to establish our result on answering
UCQ1, �=s in DL-Lite¬, �=

RDFS.

Theorem 6. Answering UCQ1, �=s over DL-Lite¬, �=
RDFS on-

tologies is PTIME-complete in data complexity and NP-
complete in combined complexity.

Proof. (Sketch) NP-hardness in combined complexity fol-
lows from NP-hardness of CQ evaluation over relational
databases (Chandra and Merlin 1977). In the rest of this
proof sketch, we discuss only the upper bounds. By Propo-
sition 2 it is possible to decide whether O |= q as follows.
We guess a sequence F = {f1, . . . , fm} (with m ≤ nA)
of functions from disjuncts of q1 to Ch(O) (note that this
can be done in PTIME in the size of A). Then, by exploiting
the algorithm CheckGood(O, q, F ), we check whether F is
a good sequence w.r.t. O and q using: (i) a PTIME step in
the size of O for computing B = Ch(O); (ii) for each i ∈
[1,m−1], a PTIME step for checking whether fi is a homo-
morphism from a disjunct of q1 to B, ineq(fi(t1), fi(t2)) ∈
B, and for replacing each occurrence of fi(t1) with fi(t2);
finally, (iii) a PTIME step for checking whether fm is a ho-
momorphism from some disjunct of q2 to B.

Again, from the proof of the theorem we can derive inter-
esting observations. (i) PTIME-hardness in data complex-
ity holds even for the problem of answering CQ1, �=s over
both DL-Lite�=RDFS and DL-Lite¬RDFS ontologies. (ii) The re-
sult holds even for ontologies with disjointness on concepts
only, and therefore it strengthens the PTIME-hardness result
of (Gutiérrez-Basulto et al. 2015, Theorem 15) for the case
of DL-Litecore ontologies. (iii) Answering UCQ1, �=s over
DL-LiteRDFS ontologies is PTIME-hard in data complexity,
too.

5 The case of CQ�=,bs and UCQ�=,bs

In this section, we consider answering queries with bounded
inequalities over satisfiable DL-Lite�=R ontologies. In partic-
ular, we first deal with the case of CQ �=,bs, and then we ad-
dress the case of UCQ�=,bs.

As for CQ�=,bs, we start by introducing some notations.
Given an inequality atom x1 �= x2 and a disjointness axiom
γ, ρ(x1 �= x2, γ) denotes the following formula:

• ρ(x1 �= x2, A1 � ¬A2) = A1(x1) ∧A2(x2),

• ρ(x1 �= x2, A � ¬∃R) = ρ(x1 �= x2, ∃R � ¬A) =
A(x1) ∧R(x2, z), where z is a fresh variable,

• ρ(x1 �= x2, ∃R1 � ¬∃R2) = R1(x1, z) ∧ R2(x2, w),
where z and w are fresh variables, and

• ρ(x1 �= x2, R1 � ¬R2) = R1(x1, z) ∧ R2(x2, z) ∨
R1(z, x1) ∧R2(z, x2), where z is a fresh variable,

where an atom of the form R(x, y) stands for either P (x, y)
if R denotes an atomic role P , or P (y, x) if R denotes the
inverse of an atomic role, i.e., R = P−.

Given an inequality atom x1 �= x2 and a DL-Lite �=R TBox
T , we denote by σ(x1 �= x2, T ) the disjunction

ineq(x1, x2) ∨ ineq(x2, x1)∨
m∨

i=1

(ρ(x1 �= x2, γi) ∨ ρ(x2 �= x1, γi)),

where γ1, . . . , γm are all the disjointness axioms of T .
Finally, we denote by τ(q, T ) the query obtained from q

by substituting every inequality x1 �= x2 by σ(x1 �= x2, T ),
and then turning the resulting query into an equivalent UCQ.
We next illustrate the query τ(q, T ) by an example.

Example 2. Consider the DL-Lite�=R ontology O = 〈T ,A〉
with T = {P1 � P2, A1 � ¬A2}, and the CQ�=,b

q = {(x1, x2) | P2(x1, x2) ∧ x1 �= c}
over O. It is easy to see that σ(x1 �= c, T ) is the formula
ineq(x1, c)∨ineq(c, x1)∨A1(x1)∧A2(c)∨A2(x1)∧A1(c).
Then, τ(q, T ) is the UCQ�=,b whose disjuncts are the fol-
lowing: {(x1, x2) | P2(x1, x2) ∧ ineq(x, c)}, {(x1, x2) |
P2(x1, x2)∧ineq(c, x1)}, {(x1, x2) | P2(x1, x2)∧A1(x1)∧
A2(c)}, and {(x1, x2) | P2(x1, x2) ∧A1(c) ∧A2(x)}.

For a DL-Lite�=R ontology O = 〈T ,A〉, we denote by
Oineq = 〈T ,Aineq〉 the DL-LiteR ontology where ineq is a
new atomic role, and Aineq is the DL-LiteR ABox obtained
from A by replacing each assertion c1 �= c2 appearing in A
with the assertion ineq(c1, c2).

The next proposition, whose proof relies on an extension
of (Calvanese et al. 2007, Lemma 39) and on Theorem 1,
states that computing cert(q,O) for a given DL-Lite�=R on-
tology O = 〈T ,A〉, and a CQ �=,b q over O, can be reduced
to computing the certain answers of the UCQ τ(q, T ) over
the DL-LiteR ontology Oineq .

Proposition 3. Let O = 〈T ,A〉 be a DL-Lite �=R ontol-
ogy, and let q be a CQ�=,b over O. Then, we have that
cert(q,O) = cert(τ(q, T ),Oineq).

From the above proposition, we immediately derive that
answering CQ�=,bs over DL-Lite�=R ontologies has the same
data and combined complexity as answering UCQs over
DL-LiteR ontologies.

Theorem 7. Answering CQ �=,bs over DL-Lite�=R ontologies
is in AC0 in data complexity, and NP-complete in combined
complexity.

Looking at the proof of the two above statements, one re-
alizes the importance of Theorem 1, stating that, similarly to
DL-LiteR, DL-Lite �=R admits a model IO that is representa-
tive of all the models of O w.r.t. answering CQ�=,bs. One
might therefore think that, analogously to DL-LiteR, this
property extend to UCQ �=,bs. The following example shows
that, surprisingly, this is not the case.

2787



Example 3. Consider the DL-Lite �=R ontology O = 〈T ,A〉,
where T = ∅ and A = {P (a, b)}. For the UCQ �=,b Q =
q1∪q2, where q1 = {() | P (a, a)} and q2 = {() | a �= b}, it is
easy to see that δ(Q)IO is false. However, one can verify that
O |= Q. Indeed, for any model M of O, either aM = bM
and M |= q1, or aM �= bM and M |= q2.

What the example tells us is that answering UCQ �=,bs over
a DL-Lite�=R ontology O cannot be done simply using the in-
terpretion IO. Nevertheless, we are able to prove that the
problem of answering UCQ �=,bs over DL-Lite�=R ontologies
is still in AC0 in data complexity, although, unless the poly-
nomial hierarchy collapses to the first level, it does not have
the same combined complexity as the UCQ and the CQ �=,b

cases.
We start by introducing the notions of e-satisfiability and

e-entailment for an equivalence relation e3. In what follows,
we write c1 ∼e c2 to denote (c1, c2) ∈ e.

Definition 2. Let O = 〈T ,A〉 be a DL-Lite �=R ontology, e
be an equivalence relation on a set C of individuals of O,
and I be a model of O. Then, we say that I is an e-model
of O if, for any pair of individuals c1, c2 of O, we have that
cI1 = cI2 if and only if c1 ∼e c2. Furthermore, we say that O
is e-satisfiable if it has an e-model.

Definition 3. Let O = 〈T ,A〉 be a DL-Lite �=R ontology, e be
an equivalence relation on a set C of individuals of O, and q
be a boolean UCQ �= over O. Then, we say that O e-entails
q, denoted by O |=e q, if I |= q for each e-model I of O.

Note that for a DL-Lite �=R ontology O = 〈T ,A〉, if e is the
equivalence relation on the set of all individuals appearing
in A such that e = {(c, c) | c occurs in A}, then the notions
of e-satisfiability and e-entailment coincide with the usual
notion of satisfiability and entailment, respectively, when the
UNA is enforced. In such cases: (i) the e-satisfiability can
be checked in AC0 in the size of A and in PTIME in the
size of T (Calvanese et al. 2007), and (ii) it can be readily
seen that checking whether O |=e q for a UCQ �=,b q over O
can be done in AC0 in the size of A and it is NP-complete
in combined complexity. The next proposition shows that
the complexity of both the above computational problems
remains the same even when e is any arbitrary equivalence
relation on a set C of individuals of O.

Proposition 4. Let O = 〈T ,A〉 be a DL-Lite�=R ontology,
and let e be an equivalence relation on a set of individuals
C of O. We have that:

• checking whether O is e-satisfiable can be done in AC0 in
the size of A and in PTIME in the size of T ;

• if q is a boolean UCQ �=,b over O, then checking whether
O |=e q can be done in AC0 in the size of A and it is
NP-complete in combined complexity.

Based on this result, we now characterize when O �|= q

for a boolean UCQ�=,b and a DL-Lite �=R ontology O.

3An equivalence relation e on a set of individuals C is a binary
relation over C that is reflexive, symmetric, and transitive.

Proposition 5. Let O = 〈T ,A〉 be a DL-Lite �=R ontology,
and let q be a boolean UCQ�=,b over O. We have that O �|= q
if and only if there exists an equivalence relation e on the set
Cq of all individuals appearing in q such that O �|=e q.

Intuitively, to decide O �|= q, it is sufficient to guess an
equivalence relation e between the individuals of q for which
there exists an e-model I of O such that I �|= q. Observe
that, by definition, such model exists if and only if O �|=e q.

The following theorem characterizes the complexity of
answering UCQ �=,bs over DL-Lite�=R ontologies.

Theorem 8. Answering UCQ�=,bs over DL-Lite �=R ontologies
is in AC0 in data complexity and Πp

2-complete in combined
complexity.

Proof. (Sketch) As for the upper bounds, we now show how
to decide whether O �|= q in AC0 in data complexity and
in Σp

2 in combined complexity. In particular, observe that
by Proposition 5 it is sufficient to: (i) guess an equivalence
relation e; (ii) and check whether O �|=e q, where this last
step, due to Proposition 4, can be done in AC0 in the size of
A, and with an NP-oracle in the size of the input.

The proof of the above theorem allows us to conclude that
the same complexity results hold even for the problem of
answering UCQ �=,bs over DL-LiteRDFS ontologies.

6 Conclusion
We have carried a thorough analysis of the problem of an-
swering UCQs with inequalities posed to a DL-Lite�=R ontol-
ogy. The results presented in this paper greatly contribute
to clarify how inequalities impact on the problem of an-
swering queries over DL-Lite�=R ontologies. In particular, we
have presented the first results on dealing with inequalities in
queries posed to DL-Lite¬, �=

RDFS ontologies, and we have deeply
investigated a specific class of queries, namely UCQ�=,bs,
for which query answering over DL-Lite�=R ontologies is
still in AC0 in data complexity. We have also mentioned
the connection between the problems studied here and two
other problems, namely containment of conjunctive queries
with inequalities in databases, and answering UCQ�=s over
OWL2QL ontologies under the direct semantics, although
we could not elaborate on these aspects for the lack of space.

There are several issues to consider for continuing the
work presented in this paper, the most obvious being try-
ing to decide which is the minimum number of inequali-
ties that makes query answering over DL-Lite¬, �=

RDFS Πp
2-hard

in combined complexity. Another interesting future work is
to look for extensions of both DL-Lite �=R, and UCQ�=,bs for
which query answering is still decidable/tractable. Finally,
we observe that it is still open whether answering CQ�=s over
DL-Litecore ontologies is decidable.
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