
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Epistemic Integrity Constraints for Ontology-Based Data Management

Marco Console,1 Maurizio Lenzerini2

1University of Edinburgh
2Sapienza, University of Rome

Abstract

Ontology-based data management (OBDM) is a powerful
knowledge-oriented paradigm for managing data spread over
multiple heterogeneous sources. In OBDM, the data sources
of an information system are handled through the reconciled
view provided by an ontology, i.e., the conceptualization of
the underlying domain of interest expressed in some formal
language. In any information systems where the basic knowl-
edge resides in data sources, it is of paramount importance
to specify the acceptable states of such information. Usually,
this is done via integrity constraints, i.e., requirements that
the data must satisfy formally expressed in some specific lan-
guage. However, while the semantics of integrity constraints
are clear in the context of databases, the presence of inferred
information, typical of OBDM systems, considerably com-
plicates the matter. In this paper, we establish a novel frame-
work for integrity constraints in the OBDM scenarios, based
on the notion of knowledge state of the information system.
For integrity constraints in this framework, we define a lan-
guage based on epistemic logic, and study decidability and
complexity of both checking satisfaction and performing dif-
ferent forms of static analysis on them.

1 Introduction

Managing information spread over multiple heterogeneous
data sources is a long-standing topic in the fields of data
management and knowledge representation. A powerful tool
to address this issue is the Ontology-based Data Manage-
ment (OBDM) paradigm (Xiao et al. 2018), where a concep-
tual specification of the domain of interest, called ontology,
is superimposed over a set of pre-existing data sources using
suitable mapping assertions (Doan, Halevy, and Ives 2012).
The resulting information systems, called Ontology-Based
Data Management Systems, enable users to interact with the
data using the vocabulary of the ontology, thus giving a high-
level view of the information contained in the data sources.
This high-level view of the data can be used to enhance
query answering (Calvanese et al. 2011; Calı̀ et al. 2010;
Rodriguez-Muro and Calvanese 2012) and other data man-
agement tasks (Lenzerini 2018). In this paper, we focus on
ontologies expressed in Description Logics (DL) (Baader et

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 2003). DLs are logical formalisms that represent the do-
main of interest in terms of concepts, i.e., classes of objects,
and roles, i.e., binary relations between objects. Intuitively,
the models of the logical theory constituted by the ontol-
ogy, the mapping, and the data, i.e., the models of the sys-
tem, represent all the possible worlds that are consistent with
both the conceptual specification and the data. An example
of OBDM system follows.
Example 1 Consider a set D of data sources, storing
HR data from different branches of a company. Branch
A stores information about employees and their depart-
ment in table empA(Name,Code,Department). The cen-
tral HR office stores information about departments in ta-
ble dep(Code,Manager) and employee codes in table
pers(Name,Code). The following database, denoted by D,
represents a possible instance of D.

empA
N C D

Bob 1B D1

dep
C M

D0 Tim
D1 Jim

pers
N C

Bob 1B
Jim 2J
Wim 3W

We assume that the domain of interest can be formally
described by a DL ontology T with concepts Emp, for
employees, and Dep, for departments, and roles hasDep,
associating employees to their department, hasCode, asso-
ciating employees to their individual code, and hasMan,
associating departments to their manager. In this domain,
every employee works for at least one department, as
formalized by the following axioms in T .

Emp � ∃hasDep ∃hasDep− � Dep

The set M of mapping assertions (Figure 1) describes the
relationship between the data in D and the concepts and
roles of T . In the remainder of this section, we will denote
by O the OBDM system constituted by D, T , and M.

In the context of data management, a question that arises
naturally is whether the stored data conform with our un-
derstanding of the domain. During the years, this funda-
mental question gave rise to the concept of integrity con-
straints (Abiteboul, Hull, and Vianu 1995; Reiter 1988), ICs
for short. Informally, ICs are a means to describe the accept-
able states of a knowledge base, and are very popular in re-

2790

∀x, y, z.empA(x, y, z) →

⎧⎨
⎩
Emp(x)∧
hasCode(x, y)∧
hasDep(x, z);

∀x, y.dep(x, y) →

⎧⎪⎪⎨
⎪⎪⎩

Dep(x)∧
hasMan(x, y)∧
hasDep(y, x)∧
Emp(y)

∀x, y, z.pers(x, y) →
{
Emp(x)∧
hasCode(x, y)

Figure 1: Mapping M for Example 1.

lational databases where, together with suitable mechanisms
to enforce satisfaction, they are used to prevent meaningless
states of the data. In this context, there is a general agree-
ment on languages and semantics suitable for ICs, typically
based on data dependencies, i.e., special first-order formulae
to be evaluated as queries over the database.

Example 2 Refer to Example 1, and assume that dep is the
reference table for departments, meaning that every depart-
ment must appear in dep. The following data dependency,
also called foreign key constraint, captures this requirement:

χ : ∀x, y, z. empA(x, y, z) → ∃w.dep(z, w)
ICs have received attention also in the fields of DL knowl-

edge bases and ontological reasoning (Donini et al. 1998;
Motik, Horrocks, and Sattler 2009) and OBDM (Nikolaou et
al. 2019), where, analogously to the case of databases, their
goal is to define the acceptable states of an information sys-
tem. However, databases are often based on the closed-world
semantics. Therefore, checking satisfaction of constraints in
a database D amounts to verifying whether the correspond-
ing formaulae are true in the logical interpretation repre-
sented byD. In contrast, OBDM systems support both mod-
elling of incomplete information and inferences on the data.
This means that the semantics of an OBDM system com-
prise a set of possible logical models extending the world
represented by the stored data. For this reason, defining the
semantics of integrity constraints is much more challenging.
Indeed, any mechanism that is able to validate the ICs in
this context requires a way to control the subtle interplay
between data, ontology axioms, mapping, and constraints.
Unfortunately, controlling the way these elements interact is
a task far from being straightforward, and the possible so-
lutions are many. The consequence is that, after years of ef-
forts, there is still no general agreement on what formalism
for ICs should be used in ontological reasoning and OBDM.
Despite the lack of a generally accepted formalism, how-
ever, the need of defining the acceptable states of an OBDM
system is very natural as the following example shows.

Example 3 After a detailed analysis, the scenario in Exam-
ple 1 reveals that any acceptable state of the OBDM system
O should conform to the following requirements:
1. Every employee has at most one code.

2. Every employee works in at least one department.
3. Every department has at least one manager.

Requirements in Example 3 should not be confused with
general statements about the way the world behaves, i.e.,
these are not ontological axioms. Consider, e.g., Require-
ment 1. In this scenario, an employee may have multiple
codes, maybe relative to the different roles she covers. To
allow this possibility, the ontology of O has no axioms en-
tailing that codes are unique for an employee. What we re-
quire with Requirement 1 is that, in the current state of the
system, no employee has more than one code. Statements of
this kind require some form of introspection, and hence they
cannot be expressed using ontological axioms. To express
these requirements, we need to use ICs. These observations
bring us to the following conclusions: while ontological ax-
ioms shape the information contained in OBDM systems a-
priori, ICs should act a-posteriori on the system, aiming at
validating its current state.

Depending on how its current state is defined, there are
different techniques to check and validate the information an
OBDM system contains. Two methods proposed during the
years are the Entailment Semantics (ES), and the Minimal
Herbrand Model Semantics (MHMS).

In the Entailment Semantics (Reiter 1982), each IC is
treated simply as a boolean query, with the idea that it should
be evaluated to true in every model of the system. This ap-
proach suffers from two main drawbacks. First, checking
satisfaction of ICs under ES can very quickly become un-
decidable, depending on the form of ICs. Second, ES is too
strict, and its behavior can become counterintuitive at times.
For instance, by referring to Example 1, observe that, since
the ontological axioms do not entail that codes are unique for
the various employees, there exist models of O in which the
same employee has more than one code. In turn, this proves
that, under ES, O violates Requirement 1 mentioned in Ex-
ample 3. However, if we inspect the data sources, there is
no evidence whatsoever that the requirement is violated, be-
cause for no employee in the system we have more than one
code. Something analogous happens with Requirement 3.
The case of Requirement 2 is different. Such requirement is
satisfied under ES due to the ontological axioms, although
we do not have any evidence in the data about the depart-
ment where Wim works.

Intuitively, the above observations tell us that, under ES,
the current state of the data plays a marginal role. On the
one hand, violations that are not directly supported by the
data in the sources may blame the information in the OBDM
system, as in the case of Requirement 1 and 3. On the other
hand, constraints may be validated by the ontology, although
no data coming from the sources can be used for this pur-
pose, as in the case of Requirement 2.

A possible approach to get closer to the information con-
tained in the sources is to use some notion of minimal in-
formation. This is the idea of the Minimal Herbrand Models
Semantics. Intuitively, the unique minimal Herbrand model
H of an OBDM system O is an interpretation of O with the
following property: for every existentially quantified con-
junction of atomic formulae φ, O entails φ if and only if

2791

φ is true in H. Under MHMS, an OBDM system satisfies an
IC if and only if the minimal Herbrand model of the system
does. This notion was first advocated for ontological rea-
soning in (Motik, Horrocks, and Sattler 2009) and recently
extended to OBDM systems in (Nikolaou et al. 2019). Inter-
estingly, checking satisfaction of constraints under MHMS
is decidable in many relevant cases.

However, as the definition of MHMS heavily relies on
the minimal Herbrand Model, the violation or satisfaction
of an IC under MHMS is still only loosely related to the
content of the data sources. In our running example, it is
easy to see that the minimal Herbrand model I of O val-
idates Requirements 1 and 2. However, observe that, al-
though I satisfies ∃x.hasDep(Wim, x), I does not sat-
isfy ∃x, y.hasDep(Wim, x) ∧ hasMan(x, y). Therefore,
O does not satisfy Requirement 3 under MHMS.

If the goal is to manage a set of data sources using an
ontology, we argue that the violation or the satisfaction of
an IC should be solidly grounded on the knowledge that the
data in the sources allow the system to achieve. For this rea-
son, we think that it is worth exploring a new semantics of
ICs for OBDM systems, epistemic in nature. Under this se-
mantics, ICs are validated by what the system is sure about,
i.e., by what the system knows, rather than by the possible
worlds described by the system, or by the minimal informa-
tion contained in such worlds. We call this approach to ICs
for OBDA systems Knowledge Semantics (KS). In our cur-
rent example, the employees known by O are T im, Jim,
Wim and Bob. For each of them, O knows exactly one
code and therefore, under KS, Requirement 1 is satisfied.
In other words, KS reads Requirement 1 as follows: for each
known employee, the system knows exactly one code. Sim-
ilarly, Requirement 3 is satisfied under KS, since the depart-
ments known by O are D1 and D0, and the system knows
the manager of each of them. With regard to Requirement 2,
we consider two possible readings of the condition. The first
reading is the one imposing that all known employees work
in a department. If we consider such reading, it is easy to
see that the system satisfies the condition under KS. In the
second reading the condition states that for each known em-
ployee, the department she works for is known. In this case,
O does not satisfy Requirement 2 under KS, because, for
employee Wim, we know that a department exists but we
do not know its exact identity.

The epistemic approach to ICs was first proposed by Re-
iter in the context of incomplete databases (Reiter 1992;
1988) and then applied to ontological reasoning in (Donini
et al. 1998). Also, in (Calvanese et al. 2007) the authors pre-
sented several query languages enhanced by an epistemic
operator and suggest the use of queries in these languages
as integrity constraints for OBDM systems. In this paper,
we investigate this epistemic approach to ICs further, we
give a formal definition of what an OBDM system knows
about the real world, and we develop a new formalism for
ICs based on this notion. The epistemic nature of this lan-
guage allows us to express ICs that cannot be expressed in
other formalisms and distinguish between different readings
of the integrity constraints, such as the ones mentioned in
the example above. For ICs expressed in this formalism, we

study the computational complexity of both checking satis-
faction and performing different tasks of static analysis on
ICs

Before concluding this section, we want to stress out that
our attempt is not to define the single right way to express
integrity constraints in OBDM systems. Defining the accept-
able states of information systems is a widespread necessity
and the possible different scenarios are many. However, we
observe that, if satisfied, ICs under KS do not alter the se-
mantics of OBDM systems. For this reason, we believe that
our formalism can be used either as it is or as a powerful
complement to other forms of constraints.

The remainder of this paper is organized as follows. Sec-
tion 2 contains preliminary definitions used throughout the
paper. Section 3 introduces our framework for ICs in OBDM
systems. Section 4 presents computational complexity re-
sults relative to this framework. Section 6 concludes the pa-
per.

2 Preliminary Definitions

In this section, we briefly review the concepts used in the
technical development of this paper. In what follows, we as-
sume basic familiarity with the standard notions of compu-
tational complexity and first-order logic and refer the reader
to (Arora and Barak 2009) for a detailed account.

Databases. We assume relational databases over a count-
ably infinite set of constants Δ and refer to (Abiteboul,
Hull, and Vianu 1995) for a detailed account on the topic.
A database schema S is a pair 〈ΣS , CS〉 where ΣS is a re-
lational signature, and CS is a set of integrity constraints.
A ΣS -database D is a relational structure in the signature
ΣS ; D is also consistent with S (alternatively S-database)
if it satisfies all the constraints in CS , written D |= CS . In
general, integrity constraints take the form of sentences in
some well-behaved fragment of first-order logic (FOL). A
popular such fragment is Data Dependencies, i.e., formulae
∀x̄φ(x̄) → ∃ȳψ(x̄, ȳ), where φ and ψ are conjunctions of
relational and equality atoms. In this paper, we focus on the
following widely accepted classes of Data Dependencies:
tuple-generating dependencies (tgds), equality-generating
dependencies (egds), and denial constraints (dens). In tgds
ψ is a conjunction of only positive relational atoms; in egds
ψ is a conjunction of equality atoms; in dens ψ is the sym-
bol False (⊥). Unfortunately, the unrestricted interaction be-
tween tgds, egds, and dens leads easily to the undecidabil-
ity of many fundamental decision problems. To ensure de-
cidability, sets of tgds, egds, and dens are usually subject
to some syntactic requirement. A widely-accepted require-
ment, common in data exchange and integration as well as
in data management, is weak-acyclicity (Fagin et al. 2005).
For sets of weak-acyclic tgds, egds, and dens, many reason-
ing tasks are decidable due to the termination of the chase
algorithm (Onet 2013).

Besides checking the satisfaction of integrity constraints,
a fundamental task to perform with databases is Query An-
swering. Given a database D and a query q(x̄), i.e., a first-
order formula with free variables x̄, Query Answering asks
for the set ans(q,D) of tuples of constants c̄ such that

2792

D satisfies the formula q(c̄). Important classes of queries
are Conjunctive Queries (CQs), i.e., existentially quantified
conjunctions of relational atoms, and Union of Conjunctive
Queries, i.e., disjunctions of CQs sharing the same tuple of
free variables. Computing ans(q,D) for q ∈ UCQ can be
done in NP, and in AC0 if we fix the query q. When dealing
with queries, a fundamental question is whether a query q
is contained in a query q′ under a database schema S , i.e.,
whether ans(q,D) is contained in ans(q′, D) for every S-
database D. In the literature, this problem is called Query
Containment Under Constraints. If S contains only weakly-
acyclic tgds, egds, and dens, checking whether an UCQ q is
contained in an UCQ q′ under S is 2EXPTIME-complete
(Calı̀, Gottlob, and Pieris 2010).

Description Logics Ontologies. An ontology is a concep-
tualization of a domain of interest expressed in terms of a
formal language. Hereafter, we assume ontologies expressed
in Description Logics (DLs). A DL knowledge base is a pair
〈T ,A〉 where the TBox T is the ontology, i.e., a set of ax-
ioms specifying universal properties of the concepts and the
roles that are relevant in the domain, and the ABox A con-
tains logical assertions (called ABox assertions) specifying
the instances of concepts and roles. In this paper, we fo-
cus on ontologies expressed in DL-LiteA, a member of the
DL-Lite family of DLs. In what follows, we give only a
brief account on DL-LiteA and refer the reader to (Poggi
et al. 2008) for a thorough introduction. The syntax of con-
cept, roles and attributes expressions in DL-LiteA is spec-
ified by the following grammar, where A,P, U are atomic
concepts, roles, and attributes, respectively, and T1, . . . , Tn
are unbounded pairwise disjoint predefined value-domains,
interpreted over val(T1), . . . , val(Tn).

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→ T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

A DL-LiteA TBox T is constituted by axioms of the
form B � C, Q � R, U � V , E � F , called inclusion
assertions, and axioms of the form (funct Q), (funct U),
called functionality assertions. In DL-LiteA TBoxes, we
further require that roles and attributes occurring in func-
tionality assertions cannot be specialized, i.e., they cannot
occur in the right-hand side of positive inclusions.

Given a first-order interpretation I with domain Δ, as-
sume AI ⊆ Δ, P I ⊆ Δ × Δ, and UI ⊆ Δ × val(T1) ∪
. . .∪ val(Tn). We define {P−}I = {〈b, a〉 | 〈a, b〉 ∈ P I};
¬BI , resp. ¬QI and ¬UI , as the complement of BI , resp.
QI and UI ; ∃QI = {a | ∃b.〈a, b〉 ∈ QI}, δ(U)I =
{a | ∃b.〈a, s〉 ∈ UI}, and ρ(U)I = {s | ∃a.〈a, s〉 ∈ QI}.

A first-order interpretation I satisfies an ABox assertion
A(a), respectively R(a, b), if aI ∈ AI , resp., 〈aI , bI〉 ∈
AI . I satisfies B � C, (respectively Q � R, U � V ,
E � F), if BI ⊆ AI (resp., QI ⊆ RI , UI ⊆ V I , EI ⊆
F I). We say that a first-order interpretation I is a model of
〈T ,A〉 if I satisfies the axioms in T and the assertions in A
and denote the set of models of 〈T ,A〉 by Mod(〈T ,A〉).

Ontology-Based Data Management. An OBDM speci-
fication B is a triple 〈T ,M,Σ〉 where T is a description
logic ontology, Σ is a relational signature, and M is a set
of mapping assertions from Σ to T , i.e., FOL sentences of
the form ∀x̄.φ(x̄) → ∃ȳ.ψ(x̄, ȳ), where φ and ψ are first-
order formulae on Σ and on the alphabet of T , respectively.
In this paper, we focus on two classes of OBDM specifica-
tions: lightweight and trivial. In a lightweight OBDM spec-
ification, T is a DL-LiteA TBox and M is a set of con-
junctive GAV mapping assertions, i.e., formulae of the form
∀x̄.φ(x̄) → ψ(x̄), where both φ and ψ are conjunctions of
atoms (Lenzerini 2002). In trivial OBDM specifications, T
is an ontology on alphabet Σ and empty set of axioms, and
M is the identity mapping. Clearly, trivial specifications are
also lightweight.

Given an OBDM specification B = 〈T ,M,Σ〉 and a Σ-
database D, the pair O = 〈B, D〉 is called OBDM system.
Semantics of O are defined as follows: a first-order inter-
pretation I is a model for the OBDM system O if I is a
model for T , and the pair 〈D, I〉 satisfies the mapping M.
As customary, constants from D are assumed to satisfy the
Unique Name Assumption, i.e., each constant is equal only
to itself. The set of models of an OBDM system O will
be denoted by Mod(O); if Mod(O) = ∅ we will say that
O is satisfiable, unsatisfiable otherwise. If B is lightweight,
we call O = 〈B, D〉 lightweight OBDM system. For every
lightweight OBDM system O, there exists a first-order sen-
tence π(O) such that I ∈ Mod(O) if and only if I is a
model for π(O) (Poggi et al. 2008).

In the context of OBDM systems, two fundamental rea-
soning tasks are Satisfiability and Query Answering. Satis-
fiability is the problem of checking whether Mod(O) = ∅,
for input OBDM system O. If B is lightweight, there exists
a UCQ with inequalities vB, called violation query for B,
such that O is satisfiable if and only if ans(vB, D) = ∅. The
query vB can be computed in time polynomial w.r.t. B, so the
problem of checking whether O is satisfiable is in NP , and
in AC0 if B is fixed. Given an OBDM system O = 〈B, D〉
and a conjunctive query q(x̄), Query Answering asks for the
set cert(q,O) of tuples of constants c̄ such that the sentence
q(c̄) is true in every model of O. If B is lightweight, for
every q ∈ UCQ there exists a UCQ Rew(q,B) such that
c̄ ∈ cert(q,O) if and only if c̄ ∈ ans(Rew(q,B), D). In
general, Query Answering is NP -Complete, and it can be
solved in AC0 if we fix the query and the specification.

Epistemic Logics. In what follows, we use the logic OL
defined in (Lakemeyer and Levesque 2012). Formulae in
OL are defined as follows: atomic formulae and the symbol
⊥ are in OL, if φ and ψ are in OL so are φ ∧ ψ, φ ∨ ψ, ¬φ,
∃x.φ(x), ∀x.φ(x), K(φ), and O(φ). A formula φ ∈ OL is
objective if no occurrence of K and O appears in φ. To inter-
pret formulae in OL, we use epistemic interpretations over
a domain Δ. An epistemic interpretation is a pair 〈W,w〉
where W is a set of first-order interpretations with domain
Δ and w is an interpretation in W . Let φ be a formula in
OL and let E = 〈W,w〉 be an epistemic interpretation, E
satisfies φ, written E |= φ, if the following conditions hold.
• φ is an atomic formula and w |= φ.

2793

• φ = ¬φ′ and E |= φ′
• φ = φ′ ∧ φ′′ and both E |= φ′ and E, w |= φ′′ hold.
• φ = ∃x.φ′(x) and E |= φ′(c), for some c ∈ (Δ).
• φ = K(φ′), and w′ ∈W =⇒ 〈W,w′〉 |= φ′.
• φ = O(φ′), and w′ ∈W ⇐⇒ 〈W,w′〉 |= φ′.
Semantics of ⊥, ∨, →, and ∀ are assumed as customary.

3 Knowledge States and Integrity

Constraints

As we argued in the introduction, a promising approach to
ICs in the OBDM paradigm relates the acceptable states of
an information system to its current knowledge state. To for-
malize this intuition, we first need to formally define the
state of knowledge of an OBDM system. In our framework,
this is done by means of the logic OL.

Definition 1 An epistemic interpretation E is an epistemic
state of an OBDM system O if E |= O(π(O)).

The set of epistemic states of an OBDM system O will
be denoted by E(O). Intuitively, in every epistemic state
〈W,w〉 of O, the set W represents what O knows about the
world while w represents what O believes to be true. To de-
fine our formalism for integrity constraints we focus on the
former and observe that, while the epistemic states of O may
be infinitely many, the knowledge of O is uniquely defined,
as the following proposition shows.

Proposition 1 If O is a lightweight OBDM system, every
pair 〈W,w〉, 〈W ′, w′〉 ∈ E(O) is such that W =W ′.

Proposition 1 is not the only interesting characteristic of
knowledge states and, in fact, they capture many of the intu-
itions discussed in the introduction. To prove this statement,
we need to establish a proper framework for ICs in OBDM
systems. To this end, we start by augmenting OBDM speci-
fications by a set of OL formulae that will be interpreted as
integrity constraints.

Definition 2 An OBDM specification with constraints BC is
a tuple 〈T ,M,Σ, C〉 where B = 〈T ,M,Σ〉 is an OBDM
specification and C is a set of OL sentences.

In what follows, given an OBDM specification with con-
straints BC , we denote by B the underlying OBDM speci-
fication (without constraints). Similarly to the standard case,
OBDM systems with constraints are pairs 〈BC , D〉 where D
is a database and BC is an OBDM specification with con-
straints. In the following definition, we formalize what it
means for 〈BC , D〉 to satisfy the set of constraints C.

Definition 3 An OBDM system with constraints 〈BC , D〉
satisfies χ ∈ OL if E |= χ, for every E ∈ E(〈B, D〉).
If O satisfies every χ ∈ C, we will say that O satisfies its
constraints. With this notion in place, we are ready to de-
fine semantics for OBDM systems with constraints. As in-
formally discussed in the introduction, these semantics are
shaped by the ontology and the data and validated by the
integrity constraints.

Definition 4 Let O = 〈BC , D〉. The setMod(O) is equal to
Mod(〈B, D〉) if O satisfies C, Mod(O) = ∅ otherwise.

If Mod(O) = ∅, we say that O is satisfiable, unsatisfiable
otherwise. Definition 4 ensures that the semantics of satisfi-
able systems are unaltered by the constraints.

With this notion of semantics in place, we can focus on the
definition of a fragment of OL suited to express ICs. From
a computational standpoint, the use of a restricted fragment
of OL is necessary, as the following proposition shows.

Proposition 2 Let B be a trivial OBDM specification and
let C be a set of OL formulae. It is undecidable to check
whether a system 〈BC , D〉 is satisfiable.

To prove the claim, observe that if C contains an objective
formula φ , then O is satisfiable if and only if φ is true in ev-
ery model of O. Reduction from Validity follows straightfor-
wardly. Undecidability, however, is not the only reason why
only specific fragments of OL are suitable as ICs. Consider,
e.g., Proposition 2. In the informal proof given, we can see
how the use of an objective sentence φ as integrity constraint
for a system O is equivalent to requiring that φ is entailed
by O. In turn, this corresponds to assuming for φ the En-
tailment Semantics. With the goal of having a language that
is computationally well-behaved and soundly grounded on
the intuitions presented in the introduction, we now present
Epistemic Dependencies (EDs).

Definition 5 An epistemic dependency is an OL formula

∀x̄.K(∃z̄.
∧
i

φi(x̄, z̄)) → ∃ȳ.K(∃w̄.ψ(x̄, ȳ, w̄))

where x̄, ȳ, z̄ are disjoint tuples of variables, each φi is a
relational atom, and ψ is either:
• a conjunction of relational atoms, or
• a conjunction of equality atoms over x̄, or
• the symbol ⊥.

While EDs may not be the only fragment of OL that can
express suitable ICs, we observe that they satisfy many of
our desiderata. In the following example, we show how the
Knowledge Semantics of all the requirements in Example 3
can be faithfully translated into epistemic dependencies.

Example 4 The following EDs capture Requirement 1 − 3
in Example 3 under Knowledge Semantics.
1. ∀x, y, y′.K(hasCode(x, y)∧hasCode(x, y′))→y=y′;
2. ∀x.K(Emp(x)) → ∃y.K(hasDep(x, y));
3. ∀x.K(Dep(x)) → ∃y.K(hasMan(x, y)).
Consider now ED 1 − 3 in the OBDM system O defined in
Example 1. For each E ∈ E(O), we have:
1. E |= K(hasCode(x, y)) if and only if x = Bob and
y = 1B, or x = Jim and y = 2J , or x = Wim and
y = 3W . Hence, O satisfies ED 1 .

2. E |= K(Emp(Wim)) but E |= K(hasDep(Wim, c))
for any constant c. Hence, O does not satisfy ED 2.

3. E |= K(Dep(x)) if and only if x = D0 or x = D1, and
E |= K(hasMan(x, y)) if x = D0 and y = T im, or
x = D1 and y = Jim. Hence, O satisfies ED 3.

Example 4, shows how the violation or satisfaction of an
epistemic dependency is really grounded on the data con-
tained in the sources. Consider, e.g., ED 2. While the OBDM
system O entails the axiom Emp � ∃hasDep, O violates

2794

ED 2 due to employee Wim. In turn, while O does not en-
tail that employee codes are unique, O satisfies ED 1. This
is due to the fact that, in the data sources, every employee
has a unique code.

In the reminder of this section, we discuss standard rea-
soning tasks in the context of OBDM specifications and sys-
tems with constraints. The first of these tasks is checking sat-
isfiability, i.e., given an OBDM system with constraints O,
check whether Mod(O) = ∅. From Definition 4, it follows
that checking whether 〈BC , D〉 is satisfiable can be done
in two steps: first, check whether 〈B, D〉 alone is satisfi-
able, second, check whether 〈BC , D〉 satisfies its constraints.
While the complexity of the former is well-known for many
ontological languages, we present the complexity of check-
ing whether a lightweight OBDM system satisfies a set of
epistemic dependencies in the following section.

Another important task that can be performed with
OBDM systems with constraints is query answering. Defini-
tion 4 ensures that, after checking whether a system 〈BC , D〉
is satisfiable, the set of constraints C does not affect query
answering and can be safely disregarded. This observation
is formalized in the following proposition.

Proposition 3 Given a satisfiable OBDM system with con-
straints 〈BC , D〉, a tuple c̄ is in cert(φ(x̄), 〈BC , D〉) if and
only if c̄ ∈ cert(φ(x̄), 〈B, D〉).
In light of Proposition 3, in what follows we will not discuss
query answering any further. When dealing with standard
ICs, an important static analysis task is checking whether a
constraint χ is redundant with respect to a set of constraints
C, i.e., check whether χ is satisfied whenever all the con-
straints in C are. In OBDM specifications, redundancy can
be translated as follows: given an OBDM specification BC
and an epistemic dependency κ, check whether every satis-
fiable system 〈BC , D〉 also satisfies κ. As we will show in
the following section, checking redundancy of epistemic de-
pendencies is undecidable even in the case of trivial OBDM
specification.

Other interesting static analysis are checking faithfulness
and checking protection (Console and Lenzerini 2014a).
Faithfulness and protection are defined as follows.

Definition 6 Let BC = 〈T ,M,ΣS , C〉 be an OBDM spec-
ification with constraints and let S = 〈ΣS , CS〉 denote a
database schema. Then:
• S is faithful to BC if, for every ΣS -database D, D is con-

sistent with S if Mod(〈BC , D〉) = ∅;
• S protects BC if, for every ΣS -database D,
Mod(〈BC , D〉) = ∅ if D is consistent with S .

Informally, faithfulness and protection are a way to eval-
uate a given data source schema at the conceptual level, via
the OBDM specification. In this context, faithfulness and
protection are relevant schema-level measures of the qual-
ity of data, as well as useful tools for the OBDM paradigm.
For example, when OBDM specifications are paired with
data sources that evolve through time, checking satisfiability
may become a frequent task. If the source schema protects
the specification, however, satisfiability can be safely dele-
gated to the systems managing the data sources (Console and

Lenzerini 2014b). In the same spirit, protection and faithful-
ness can be used as effectual designing tools for data source
schemas. The following example illustrates protection.

Example 5 Consider the OBDM specification B defined in
Example 1, the database schema S in Example 2, and the
epistemic dependencies in Example 4. The schema S pro-
tects O from ED 3. Informally, this is because the depart-
ments known by a system O = 〈B, D〉 are those stored in
tables dep and empA. For the former, O always knows at
least one manager while, for the latter, it may not. However,
due to the integrity constraints in S , the departments stored
in table empA are a subset of those stored in dep. In turn,
this implies that every known department is associated to a
manager that is also known.

4 Decidability and Complexity

In this section, we study the complexity of performing the
reasoning tasks presented in Section 3. To this end, we start
by defining relevant decisions problems.
• Satisfiability: given an OBDM system with constraints
O, check whether Mod(O) = ∅.

• Protection: given an OBDM specification with con-
straints BC and a database schema S , check whether S
protects BC .

• Constraint Implication: given an OBDM specification
with constraints BC and a formula χ ∈ OL, check
whether every satisfiable system 〈BC , D〉 satisfies χ.

• Faithfulness: given an OBDM specification with con-
straints BC and a database schema S , check whether S
is faithful to BC .

For our complexity analysis, we will assume integrity
constraints expressed as epistemic dependencies and
lightweight OBDM specifications. This assumption will
lead to decidability for Protection and even tractability, if the
specification is fixed, for Satisfiability. Unfortunately, Con-
straint Implication and Faithfulness for epistemic dependen-
cies are inherently undecidable. To show that undecidability
only depends on the constraints, for Constraint Implication
and Faithfulness we will present undecidability results using
trivial OBDM specifications.

Satisfiability. To present our complexity results, we need
to prove several preliminary lemmas. First, we show that
the satisfaction of epistemic formulae in OBDM systems is
closely related to the problem of computing certain answers
to queries. This is formalized in the following lemma.

Lemma 1 Let O be a satisfiable OBDM system and let φ(x̄)
be a objective OL formula. The formula K(φ(c̄)), for some
tuple of constants c̄, is true in the knowledge states of O if
and only if c̄ ∈ cert(φ(x̄),O).

Using Lemma 1, we can check whether O satisfies its con-
straints by encoding epistemic dependencies as queries.

Definition 7 Let κ be the epistemic dependency

∀x̄.K(∃z̄.
∧
i

φi(x̄, z̄)) → ∃ȳ.K(∃w̄.ψ(x̄, ȳ, w̄)).

The queries bκ(x̄) and hκ(x̄) are defined as follows:

2795

• bκ(x̄) = ∃z̄.
∧

i φi(x̄, z̄);
• if ψ is a conjunction of relational atoms, then hκ(x̄, ȳ) =
∃w̄.ψ(x̄, ȳ, w̄);

• if ψ is a conjunction of equality atoms
∧

i(x
i
1 = xi2), then

hκ(x̄) = bκ(x̄) ∧
∧

i(x
i
1 = xi2);

• if ψ(x̄) = ⊥, then hκ is the empty query.

Given an epistemic dependency κ, bBκ (x̄) will denote the
UCQ Rew(bκ(x̄),B) and hBκ (x̄) will denote the UCQ
∃ȳ.Rew(hκ(x̄, ȳ)). Due to Lemma 1, bBκ (x̄) and hBκ (x̄) can
be used to test the satisfaction of κ over B. We formalize this
claim in the following lemma.

Lemma 2 Let B be a lightweight OBDM specification. A
satisfiable OBDM system with constraints 〈BC , D〉 satisfies
an epistemic dependency κ if and only if ans(bBκ (x̄), D) is
contained in ans(hBκ (x̄), D).

With Lemma 2 in place, we are now ready to prove the
complexity of checking satisfiability of lightweight OBDM
systems with constraints. We present this result in the fol-
lowing theorem.

Theorem 1 Let B be a lightweight OBDM specifications
and let C be a set of epistemic dependencies. For input
〈BC , D〉, Satisfiability is Πp

2-complete. If BC is fixed and the
only input is D, Satisfiability is in AC0.

To prove membership in Πp
2, we can show an non-

deterministic algorithm that guesses a tuple c̄ that satisfies
a disjunct in bBκ (x̄) and checks whether c̄ does not satisfy
any of the disjuncts in hBκ (x̄). For hardness, we can show
a reduction from the problem of checking the satisfaction
of tgds (Pichler and Skritek 2011). To prove membership in
AC0, observe that ∀x̄.∃ȳ.bBκ (x̄) ∧ hBκ (x̄, ȳ) is a first-order
formula that can be evaluated directly over D.

Protection. First, we observe that, given a specification
BC , protection can be tested separately over B and C. To
formalize this intuition, we need to introduce some ad-
ditional notation. Given an OBDM specification BC =
〈T ,M,ΣS , C〉 and a database schema S , we say that
S protects BC from B if S protects the specification
〈T ,M,ΣS , ∅〉. Moreover, we say that S protects BC from
χ ∈ C if S protects the specification 〈T ,M,ΣS , {χ}〉. With
these definitions in place, we can prove the following.

Lemma 3 A database schema S protects an OBDM specifi-
cation BC if and only if S protects BC from B, and S protects
BC from χ, for every χ ∈ C.

Lemma 3 will be the basic building block of our algo-
rithm for Protection. Assume a specification BC , where B
is lightweight and C is a set of epistemic dependencies. In-
formally, while a technique to check whether S protects BC
from B is known in the literature (Console and Lenzerini
2014a), checking whether S protects BC from κ can be done
via query containment. This intuition is formalized in the
following lemma.
Lemma 4 A database schema S = 〈ΣS , CS〉 protects the
lightweight OBDM specification BC from the epistemic de-
pendency κ ∈ C if and only if the following hold:
• S protects BC from B, and

• ans(bBκ (x̄), D) ⊆ ans(hBκ (x̄), D), for every D |= CS .
With Lemma 4 in place, we can finally prove the com-

plexity of Protection for lightweight OBDM specifications
and epistemic dependencies.

Theorem 2 For input BC and S , where B is a lightweight
OBDM specifications, C is a set of epistemic dependencies,
and S is a database schema with weakly acyclic tgds, egds,
and dens, Protection is 2EXPTIME-complete.

The proof of Theorem 2 relies on the finiteness of the
chase for the class of constraints considered.

Constraint Implication and Faithfulness As we briefly
discussed at the beginning of this section, both Constraint
Implication and Faithfulness are undecidable even for the
class of OBDM specifications that we called trivial. To
prove these claims, we need to introduce some additional no-
tation and some preliminary results. A k-tgd is an epistemic
dependency of the form ∀x̄.K(φ(x̄)) → ∃ȳK(ψ(x̄, ȳ)),
where ψ is a conjunction of relational atoms. Given a k-tgd
κ, by κ⊥ we denote the tgd obtained by removing from κ
every occurrence of K, i.e., κ⊥ = ∀x̄.φ(x̄) → ∃ȳψ(x̄, ȳ).
Intuitively, κ can be used to simulate κ⊥, as the following
lemma shows.

Lemma 5 Let B be a trivial OBDM specification and let C
be a set of k-tgds. The OBDM system 〈BC , D〉 satisfies its
constraints if and only if D satisfies κ⊥, for every κ ∈ C.

Informally, Lemma 5 shows that epistemic dependencies
can simulate binary database dependencies. To prove unde-
cidability of Constraint Implication, we can use this result to
show a reduction from the Finite Implication problem, i.e.,
given a schema S = 〈ΣS , CS〉 and a tgd τ , check whether
every S-database satisfies τ . Undecidability of Finite Impli-
cation was first proved in (Vardi 1981) even for binary tuple-
generating dependencies. With this observation in place, we
are ready to prove the following.

Theorem 3 Constraint Implication is undecidable for triv-
ial OBDM specifications and epistemic dependencies.

To prove Theorem 3, assume a binary tgd κ⊥, and let κ be
the associated k-tgd. Given an instance of Finite Implication
〈S, κ⊥〉, we can construct a specification BC , where B is
trivial, such that BC implies κ if and only if S finitely entails
κ⊥. A similar construction proves the following.

Theorem 4 With input BC and τ , where B is a trivial
OBDM specification, C is a set of epistemic dependencies,
and τ is a tgd, Faithfulness is undecidable.

5 Complexity of Other Semantics

Handling EDs under KS is an inherently complex task and
one may wonder whether other semantics may yield bet-
ter results. Unfortunately, the situation does not change
dramatically in both ES and MHMS. Satisfiability under
ES amounts to checking validity of first-order formulae,
and therefore it is often undecidable. The situation im-
proves only marginally under MHMS. A non-elementary
upperbound for Satisfiability under MHMS is established in
(Motik, Horrocks, and Sattler 2009) for a very expressive

2796

ontological language (ALCHI) and arbitrary first-order for-
mulae as constraints. In (Nikolaou et al. 2019), the authors
study a restriction of DL-LiteA without negative axioms
and disjunctive tgds as constraints. In this setting, Satisfi-
ability is Π2

p-complete and LOGSPACE if the specifica-
tion is fixed. The same paper studies Protection and Faith-
fulness under MHMS. For Protection, the authors establish
decidability in the case of source constraints for which Fi-
nite Entailment is decidable. For Faithfulness, they estab-
lish decidability for ontologies consisting of full DL-LiteR
axioms and restricted mapping, source constraints, and on-
tology constraints. All upper-bound presented, however, are
superpolynomial.

6 Conclusions

We provided a framework for integrity constraints in OBDM
systems based on the notion of what such systems know and
should know about the real world. In this framework, we de-
fined a language for constraints and studied the complexity
of satisfaction and different forms of static analysis. As fu-
ture directions, we would like to study the decidability and
complexity of different languages for ontologies, mappings,
and constraints.

7 Acknowledgements

This work was partly supported by EPSRC (grants M025268
and N023056) and by MIUR (PRIN 2017 project “HOPE”).

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Arora, S., and Barak, B. 2009. Computational Complexity -
A Modern Approach. Cambridge University Press.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
LICS, 228–242.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010. Query answering
under non-guarded rules in datalog+/-. In RR, 1–17.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Eql-lite: Effective first-order query
processing in description logics. In IJCAI, 274–279.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The MASTRO system for ontology-based
data access. Semantic Web 2(1):43–53.
Console, M., and Lenzerini, M. 2014a. Data quality in
ontology-based data access: The case of consistency. In
AAAI, 1020–1026.
Console, M., and Lenzerini, M. 2014b. Reducing global
consistency to local consistency in ontology-based data ac-
cess. In ECAI, 219–224.

Doan, A.; Halevy, A. Y.; and Ives, Z. G. 2012. Principles of
Data Integration. Morgan Kaufmann.
Donini, F. M.; Lenzerini, M.; Nardi, D.; Nutt, W.; and
Schaerf, A. 1998. An epistemic operator for description
logics. Artif. Intell. 100(1-2):225–274.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor.
Comput. Sci. 336(1):89–124.
Lakemeyer, G., and Levesque, H. J. 2012. Only-knowing
meets nonmonotonic modal logic. In KR.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In PODS, 233–246.
Lenzerini, M. 2018. Managing data through the lens of an
ontology. AI Magazine 39(2):65–74.
Motik, B.; Horrocks, I.; and Sattler, U. 2009. Bridging the
gap between OWL and relational databases. J. Web Semant.
7(2):74–89.
Nikolaou, C.; Grau, B. C.; Kostylev, E. V.; Kaminski, M.;
and Horrocks, I. 2019. Satisfaction and implication of in-
tegrity constraints in ontology-based data access. In IJCAI,
1829–1835.
Onet, A. 2013. The Chase Procedure and its Applica-
tions in Data Exchange. In Kolaitis, P. G.; Lenzerini, M.;
and Schweikardt, N., eds., Data Exchange, Integration, and
Streams. Leibniz-Zentrum fuer Informatik. 1–37.
Pichler, R., and Skritek, S. 2011. The complexity of evalu-
ating tuple generating dependencies. In ICDT, 244–255.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. Data Semantics 10:133–173.
Reiter, R. 1982. Towards a logical reconstruction of rela-
tional database theory. In On Conceptual Modelling, Per-
spectives from Artificial Intelligence, Databases, and Pro-
gramming Languages, Book resulting from the Intervale
Workshop 1982, 191–233.
Reiter, R. 1988. On integrity constraints. In TARK, 97–111.
Reiter, R. 1992. What should a database know? J. Log.
Program. 14(1&2):127–153.
Rodriguez-Muro, M., and Calvanese, D. 2012. High perfor-
mance query answering over dl-lite ontologies. In KR.
Vardi, M. Y. 1981. The decision problem for database de-
pendencies. Inf. Process. Lett. 12(5):251–254.
Xiao, G.; Calvanese, D.; Kontchakov, R.; Lembo, D.; Poggi,
A.; Rosati, R.; and Zakharyaschev, M. 2018. Ontology-
based data access: A survey. In IJCAI.

2797

