
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Structural Decompositions of Epistemic Logic Programs

Markus Hecher,1,2 Michael Morak,3 Stefan Woltran1

1TU Wien, Vienna, Austria,
2University of Potsdam, Potsdam, Germany

3University of Klagenfurt, Klagenfurt, Austria
{hecher,woltran}@dbai.tuwien.ac.at, michael.morak@aau.at

Abstract

Epistemic logic programs (ELPs) are a popular generalization
of standard Answer Set Programming (ASP) providing means
for reasoning over answer sets within the language. This
richer formalism comes at the price of higher computational
complexity reaching up to the fourth level of the polynomial
hierarchy. However, in contrast to standard ASP, dedicated
investigations towards tractability have not been undertaken
yet. In this paper, we give first results in this direction and
show that central ELP problems can be solved in linear time
for ELPs exhibiting structural properties in terms of bounded
treewidth. We also provide a full dynamic programming al-
gorithm that adheres to these bounds. Finally, we show that
applying treewidth to a novel dependency structure—given
in terms of epistemic literals—allows to bound the number of
ASP solver calls in typical ELP solving procedures.

1 Introduction

Epistemic logic programs (ELPs) (Gelfond and Przymusin-
ska 1991), also referred to as the language of Epistemic
Specifications (Gelfond 1991), have received renewed at-
tention in the research community as of late. ELPs are
an extension of the language of Answer Set Programming
(ASP) (Brewka, Eiter, and Truszczynski 2011; Schaub and
Woltran 2018) with epistemic operators. Gelfond (1991) in-
troduced the operators K and M in order to represent the
concepts of known to be true and may be true, and defined
an initial semantics. Several improvements to the semantics
have since been proposed in the literature (Gelfond 2011;
Truszczynski 2011; Kahl et al. 2015; Fariñas del Cerro,
Herzig, and Su 2015). Shen and Eiter (2016) realized that
these two operators can be represented via a single negation-
type operator that they called epistemic negation, denoted
not , and gave a new semantics based on this operator.
Morak (2019) proposed a novel characterization of the cen-
tral construct of the ELP semantics: the world view. While
a recent analysis (Cabalar, Fandinno, and Fariñas del Cerro
2019) has shown that this semantics still does not eliminate
all existing flaws, we will make use of it in this paper, since
no clear “winner” semantics has as of yet emerged, and our

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach should be equally applicable to other existing se-
mantics that have been proposed.

Evaluating ELPs is a computationally hard task. The
central decision problem, checking whether an ELP has
a world view, is ΣP

3 -complete, and problems even higher
on the polynomial hierarchy exist (Shen and Eiter 2016;
Morak 2019). In order to deal with this high complexity
efficiently, we propose to use a method from the field of
parameterized complexity, namely, investigate how the run-
time behaves when looking at different structural parame-
ters of the problem. For standard ASP, this topic has re-
ceived considerable interest, (Lonc and Truszczynski 2003;
Gottlob, Pichler, and Wei 2010; Fichte and Szeider 2015;
Bliem, Ordyniak, and Woltran 2016; Fichte, Kronegger,
and Woltran 2019; Fichte and Hecher 2019). However, the
parameterized complexity of epistemic ASP has remained
largely unexplored so far. From the ASP case, we see strong
evidence that this will be the case for ELPs as well. In this
paper, we will investigate, in particular, whether ELPs can
be solved efficiently if their treewidth (i.e., a measure for the
tree-likeness of graphs) is bounded.

It turns out that this question can be answered in the af-
firmative: the main decision problems become tractable. In
practice, a dynamic programming algorithm on tree decom-
positions can be used to exploit this directly, similarly to
what was successfully proposed for ASP and QBF solvers
(Fichte et al. 2017; Bliem et al. 2017; Fichte, Hecher, and
Zisser 2019; Charwat and Woltran 2019). However, we also
aim to investigate a more interesting angle. Many ELP
solvers today work by making (up to exponentially many)
calls to an underlying ASP solving system in order to check
world view existence. Being able to find a bound on the
number of these ASP solver calls would be very useful. Us-
ing so-called epistemic (primal) graphs of ELPs that focus
on epistemically negated literals only, we can again employ
treewidth to establish such bounds. This novel use of struc-
tural decomposition intuitively works well in some inter-
esting cases including instances of the scholarship eligibil-
ity (SE)1 benchmark set, as provided with the system “EP-
ASP” (Son et al. 2017).

Using the epistemic primal graph representation, these

1Problem SE was a prime motivator for ELPs (Gelfond 1991).

2830



instances naturally decompose into their individual sub-
problems, that is, one sub-instance of the SE problem for
each student within the original instance.

Contributions. Our contributions are summarized below:
• We investigate the complexity of the ELP world view ex-

istence problem when parameterized by the treewidth of
the ELP instance. We establish that this problem is fixed-
parameter tractable in this setting, and, in fact, can be
solved in linear time if the treewidth is bounded from
above by a constant. The same holds for the even more
complex problem of world view formula evaluation.
• Then, we propose a novel graph representation of ELPs,

namely, the epistemic primal graph and show how this
can be exploited to bound the number of calls to an un-
derlying ASP solver in a classical ELP solver setting. It
turns out that the number of calls is bounded in case the
epistemic primal graph has bounded treewidth.
• Finally, we provide a full dynamic programming algo-

rithm that could be used in practice to directly exploit the
tractability result above. We also show that the worst-case
runtime of this algoritm cannot be significantly improved
under reasonable complexity-theoretic assumptions.

2 Preliminaries
Answer Set Programming (ASP). A ground logic pro-
gram with nested negation (also called answer set program,
ASP program, or, simply, logic program) is a pair P =
(A,R), where A is a set of propositional (i.e., ground)
atoms and R is a set of rules of the form a1 ∨ · · · ∨
al ← al+1, . . . , am,¬�1, . . . ,¬�n, where the comma sym-
bol stands for conjunction, 0 ≤ l ≤ m, 0 ≤ n, ai ∈ A for
all 1 ≤ i ≤ m, and each �i is a literal, that is, either an atom
a or its (default) negation ¬a for any atom a ∈ A.2 Note
that, therefore, doubly negated atoms may occur. We will
sometimes refer to such rules as standard rules. Each rule
r ∈ R consists of a head H (r) = {a1, . . . , al} and a body
B(r) = {al+1, . . . , am,¬�1, . . . ,¬�n}, and is alternatively
denoted by H (r) ← B(r). The positive body is given by
B+(r) = {al+1, . . . , am}. Sometimes, we add a set of rules
R′ to a logic program P = (A,R). By some abuse of nota-
tion, let P ∪R′ denote the logic program (A∪A′,R∪R′),
where A′ is the set of atoms occurring in the rules ofR′.

An interpretation I (over A) is a set of atoms, that is,
I ⊆ A. A literal � is true in an interpretation I ⊆ A, denoted
I � �, iff a ∈ I and � = a , or a �∈ I and � = ¬a; otherwise
� is false in I , denoted I �� �. Finally, for some literal �, we
define that I � ¬� if I �� �. This notation naturally extends
to sets of literals. An interpretation M is called a model of
r, denoted M � r, if, whenever M � B(r), it holds that
M � H (r). We denote the set of models of r by mods(r);
the models of a logic program P = (A,R) are given by
mods(P) =

⋂
r∈R mods(r). We also write I � r (resp.

I � P) if I ∈ mods(r) (resp. I ∈ mods(P)).
The GL-reduct of a logic program P = (A,R) with re-

spect to an interpretation I is given by PI = (A,RI) with
RI = {H (r)← B+(r) | r ∈ R, ∀(¬�) ∈ B(r) : I �� �}.

2In this case, we say that it is a literal over A.

Definition 1 ((Gelfond and Lifschitz 1988; 1991; Lifschitz,
Tang, and Turner 1999)). M ⊆ A is an answer set of a logic
program P if (1) M ∈ mods(P) and (2) there is no subset
M ′ ⊂M such that M ′ ∈ mods(PM ).

The set of answer sets of a logic program P is denoted
by AS (P). The consistency problem of ASP, that is, to
decide whether for a given logic program P it holds that
AS (P) �= ∅, is Σ2

P -complete (Eiter and Gottlob 1995), and
remains so also in the case where doubly negated atoms are
allowed in rule bodies (Pearce, Tompits, and Woltran 2009).

Epistemic Logic Programs. An epistemic literal is a for-
mula not �, where � is a literal and not is the epistemic
negation operator. A ground epistemic logic program (ELP)
is a pair Π = (A,R), where A is a set of atoms and R
is a set of ELP rules, which are implications of the form
a1 ∨ · · · ∨ ak ← �1, . . . , �m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn,
where each ai is an atom from A, each �i is a literal
over A, and each ξi is an epistemic literal of the form
not �, where � is a literal over A. Similarly to logic
programs, let H (r) = {a1, . . . , ak}, and let B(r) =
{�1, . . . , �m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn}. Further, at(r) ⊆
A denotes the set of atoms ocurring in ELP rule r, and
atel(r) ⊆ at(r) denotes the set of atoms used in epistemic
literals of r. These notions naturally extend to sets of rules.

In order to define the semantics of an ELP, we will use
the approach by Morak (2019), which follows the semantics
defined in (Shen and Eiter 2016), but uses a different for-
mal representation. Note that, however, our results can be
adapted to other “reduct-based” semantics, by changing the
definition of the reduct appropriately. Given an ELP Π =
(A,R), a candidate world interpretation (CWI) I for Π is a
consistent subset I ⊆ L, where L is the set of all literals that
can be built from atoms in A. Note that a CWI I naturally
gives rise to a three-valued truth assignment to all the atoms
in A; hence, we will sometimes treat a CWI I as a triple of
disjoint sets 〈IP , IN , IU 〉, where IP = {a | a ∈ I ∩ A},
IN = {a | ¬a ∈ I} and IU = (A \ IP ) \ IN , with the
intended meaning that atoms in IP , IN , and IU are “always
true,” “always false,” and “unknown,” respectively.

With the above definition in mind, we now define when a
CWI is compatible with a given set of interpretations.
Definition 2. Let I be a set of interpretations over a set of
atoms A. Then, a CWI I is compatible with I iff we have:
1. I �= ∅;
2. for each atom a ∈ IP , it holds that for each J ∈ I,

a ∈ J;
3. for each atom a ∈ IN , we have for each J ∈ I, a �∈ J;
4. for each atom a ∈ IU , it holds that there are J, J ′ ∈ I,

such that a ∈ J , but a �∈ J ′.
The epistemic reduct (Shen and Eiter 2016; Morak 2019)

of program Π = (A,R) w.r.t. a CWI I , denoted ΠI , is de-
fined as ΠI = (A, {rI | r ∈ R}) where rI denotes rule r
where each epistemic literal not � is replaced by ¬� if � ∈ I ,
and by� otherwise. Note that, hence, ΠI is a plain logic pro-
gram with all occurrences of epistemic negation removed.3

3In fact, ΠI may contain triple-negated atoms ¬¬¬a. Accord-

2831



Now, a CWI I is a candidate world view (CWV) of Π iff
I is compatible with the set AS (ΠI) of answer sets. The
set of CWVs of an ELP Π is denoted cwv(Π). Following
the principle of knowledge minimization, furthermore I is
a world view (WV) iff it is a CWV and there is no proper
subset J ⊂ I such that J ∈ cwv(Π). The set of WVs of an
ELP Π is denoted wv(Π).

One of the main reasoning tasks regarding ELPs is the
world view existence problem, that is, given an ELP Π,
decide whether wv(Π) �= ∅ (or, equivalently, whether
cwv(Π) �= ∅). This problem is known to be ΣP

3 -complete
(Shen and Eiter 2016; Morak 2019). Another interesting rea-
soning task is deciding, given an ELP Π = (A,R) and an
arbitrary propositional formula ϕ over A, whether ϕ holds
in some WV, that is, whether there exists W ∈ wv(Π) such
that W � ϕ. This formula evaluation problem is even harder,
namely ΣP

4 -complete (Shen and Eiter 2016).

Tree Decompositions and Treewidth. We assume that
graphs are undirected, simple, and free of self-loops. Let
G = (V,E) be a graph, T a rooted tree, and χ a labeling
function that maps every node t of T to a subset χ(t) ⊆ V
called the bag of t. The pair T = (T, χ) is called a tree
decomposition (TD) (Robertson and Seymour 1984) of G
iff (i) for each v ∈ V , there exists a t in T , such that
v ∈ χ(t); (ii) for each {v, w} ∈ E, there exists t in T ,
such that {v, w} ⊆ χ(t); and (iii) for each r, s, t of T ,
such that s lies on the unique path from r to t, we have
χ(r) ∩ χ(t) ⊆ χ(s). For a node t of T , we say that type(t)
is leaf if t has no children and χ(t) = ∅; join if t has chil-
dren t′ and t′′ with t′ �= t′′ and χ(t) = χ(t′) = χ(t′′);
intr (“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t)
and |χ(t)| = |χ(t′)| + 1; rem (“removal”) if t has a single
child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every
node t ∈ T , type(t) ∈ {leaf, join, intr, rem}, then (T, χ) is
called nice. The width of a TD is defined as the cardinality
of its largest bag minus one. The treewidth of a graph G, de-
noted by tw(G), is the minimum width over all TDs of G.
Note that if G is a tree, then tw(G) = 1.

Monadic Second Order Logic and Courcelle’s Theorem.
Monadic Second Order logic (MSO) extends First Order
logic (FO) with set variables that range over sets of domain
elements. Atomic MSO-formulas over a signature σ are ei-
ther (1) atoms over some predicate in σ; (2) equality atoms;
or (3) atoms of the form x ∈ S, where x is a FO variable,
and S is a set variable. MSO-formulas are closed under FO
operators. It is convenient to use symbols like �∈,⊆,⊂, ∩, or
∪, with the obvious meanings as abbreviations for the cor-
responding MSO (sub-)formulas. A σ-structure A is a set of
atoms over predicates in σ. Let dom(A) denote its domain.

In order to exploit the structural information, we need to
define how logical structures can be represented as graphs,
and how their treewidth is then defined: Given a structure
A over some logical signature σ of arity at most two (suffi-
cent for us), we say that the treewidth of A equals tw(GA),
where GA = (V,E) is a graph with V = dom(A) and edge

ing to (Lifschitz, Tang, and Turner 1999), such formulas are equiv-
alent to simple negated atoms ¬a, and we treat them as such.

{a, b} ∈ E iff r(a, b) ∈ A, where r is some relation in σ.
MSO formulas over structures of bounded treewidth are

important in the context of parameterized complexity in or-
der to establish running time bounds, as the following land-
mark theorem by Courcelle shows:

Theorem 3 ((Courcelle 1990)). Let ϕ be a fixed MSO for-
mula over signature σ and let A be a σ-structure with
tw(A) � k, for some integer k. Then, evaluating ϕ over
A can be done in time O(f(k) · |A|), for some function f not
depending on |A|.

Problems with a parameter k that can be solved in time
O(f(k) · nc), where c is a constant and f only depends on
k, are called fixed-parameter tractable (FPT) (Downey and
Fellows 1999).

3 An MSO Encoding for ELPs

The main objective in this section is to investigate how the
semantics of ELPs can be encoded in terms of an MSO for-
mula and thereby investigate, from a theoretical perspective,
the time complexity of evaluating ELPs, specifically looking
at tree-like instances.

Now, our goal will be to offer a fixed MSO encoding to
exploit Theorem 3, in the spirit of (Gottlob, Pichler, and Wei
2010), which is able to solve the world view existence prob-
lem for an ELP by evaluating it over a suitable logical struc-
ture representing the ELP. In order to begin the construction
of this, we first need to fix the signature over which our MSO
encoding will be expressed. To this end, let signature
σ = {atom, rule, h, b, b¬, bnot , bnot¬, b¬not , b¬not¬},
where atom(a) and rule(r) represent the fact that do-
main elements a and r are an atom and a rule, re-
spectively; where h(a, r) represents that atom a appears
in the head of rule r; and where b�(a, r), with � ∈
{ε,¬,not ,¬not ,not¬,¬not¬} and ε the empty word,
represents that fact that the sub-formula �a, for atom a, ap-
pears in the body of rule r. Next we construct the encoding.

Lemma 4. Consider the signature σ above. WV existence
can be expressed by means of a fixed MSO formula over σ.

Proof. Recall that, in order to check the existence of a WV,
it suffices to check the existence of a CWV (since WVs are
simply subset-minimal CWVs). We will construct an MSO
formula cwv(P,N,U) with the intended meaning that it
evaluates to true iff the input set variables P, N, and U rep-
resent a CWV W with WP = P, WN = N, and WU = U.
To this end, our formula will be of the following form:
cwv(P,N,U) ≡ cwi(P,N,U) ∧

∧4
i=1 chki(P,N,U)

where cwi ensures that P, N, and U indeed encode a valid
CWI (i.e., a three-partition of the set of atoms stored in
atom), and chki verifies that Condition i of Definition 2
holds. We will now give the construction of these checks.

First, the check for a valid CWI is expressed as follows:
cwi(P,N,U) ≡ ∀X (atom(X )⇔ X ∈ P ∪N ∪U)∧
¬∃X ((X ∈ P ∩N) ∨ (X ∈ N ∩U) ∨ (X ∈ P ∩U))

2832



The four remaining checks have a similar structure:

chk1 (P,N,U) ≡ ∃X as(X,P,N,U);

chk2 (P,N,U) ≡ ∀X (X ∈ P⇒
∀X (as(X,P,N,U)⇒ X ∈ X)) ;

chk3 (P,N,U) ≡ ∀X (X ∈ N⇒
∀X (as(X,P,N,U)⇒ X �∈ X)) ;

chk4 (P,N,U) ≡ ∀X (X ∈ U⇒
(∃X (as(X,P,N,U) ∧X ∈ X)∧
∃X (as(X,P,N,U) ∧X �∈ X))) .

The four checks encode precisely the conditions of Defini-
tion 2, where as(X,P,N,U) is a sub-formula, to be defined
below, that expresses that X is an answer set of the epistemic
reduct w.r.t. the CWI represented by the sets P, N, and U.
For example, chk3 encodes that for each atom X that is set
to “always false” in the CWI (i.e., X ∈ N), it must hold that
for every stable model X of the epistemic reduct, X must
not be true in that stable model (i.e., X �∈ X).

It now remains to define the sub-formula for checking an-
swer sets. This construction is based on the one presented in
(Gottlob, Pichler, and Wei 2010, Theorem 3.5), but adapted
to take the computation of the epistemic reduct into account.
Firstly, a set of atoms M is an answer set if it is a model and
no proper subset of M is a model of the GL-reduct w.r.t. M .
This is expressed as follows (note that any model M is also
a model of its GL-reduct):
as(X,P,N,U) ≡ gl(X,X,P,N,U)

∧∀Y (Y ⊂ X⇒ ¬gl(X,Y,P,N,U)) .
The intuitive meaning of gl(X,Y,P,N,U) is that it should
hold iff Y is a model of the GL-reduct w.r.t. X of the epis-
temic reduct w.r.t. the CWI represented by P, N, and U:

gl(X,Y,P,N,U) ≡ ∀R (rule(R) ⇒ ∃Z (
(h(Z ,R) ∧ Z ∈ Y)

∨(b(Z ,R) ∧ Z 	∈ Y) ∨ (b¬(Z ,R) ∧ Z ∈ X))

∨(bnot (Z ,R) ∧ Z ∈ P ∧ Z ∈ X)

∨(bnot¬(Z ,R) ∧ Z ∈ N ∧ Z 	∈ X)

∨(b¬not (Z ,R) ∧ ((Z ∈ N ∪U) ∨ (Z ∈ P ∧ Z 	∈ X)))

∨(b¬not¬(Z ,R) ∧ ((Z ∈ P ∪U) ∨ (Z ∈ N ∧ Z ∈ X)))
))

Note that the definition of the gl -relation is such that it pre-
cisely mirrors the definition of both the epistemic reduct and
the GL-reduct. It amounts to checking that every rule in the
GL-reduct is satisfied, and amounts to a large case distinc-
tion, dealing with all seven cases of how atoms can appear
in a rule (that is, either in the head, or nested under six com-
binations of default and epistemic negation in the body). For
example, in line three, the first disjunct says that rule R is
satisfied if there is an atom Z in the positive body, but this
atom is not present in the reduct model Y (satisfying rule
R by not satisfying the body). Line four treats the case of
an epistemically negated atom Z in the body. Such a rule is
satisfied iff Z is set to “always true” in the CWI (since oth-
erwise the epistemic literal is replaced by� in the epistemic
reduct, and the rule cannot be satisfied solely by this body
element in this case), and Z is false in the original model X
(since in the epistemic reduct, the epistemic negation turns

into default negation in this case, and default-negated atoms
are evaluated over the original model X).

This completes our MSO encoding. Correctness follows
by construction, as explained above. In order to solve the
WV existence problem via this encoding, we simply have to
quantify the relevant set variables:

ϕ = ∃P∃N∃U cwv(P,N,U).
Evaluating this formula over a σ-structure P that represents
an ELP Π, we get that Π has a CWV iff P � ϕ.

With the above reduction in mind, lets take a closer look
at what worst-case solving time guarantees we can give for
solving ELPs, in particular w.r.t. structural properties. Let
Π = (A,R) be an ELP, and let P be the σ-structure that
represents it. Recall that tw(P) = tw(GP). In our case,
GP coincides with the so-called incidence graph of the ELP
Π, a graph representation that is well-known and studied in
the literature for a wide range of logic-based formalisms,
and, in particular, for ASP (Jakl, Pichler, and Woltran 2009;
Fichte et al. 2017). The incidence graph of an ELP Π is the
graph G = (V,E) with V = A ∪ R and {a, r} ∈ E iff
atom a ∈ A occurs in rule r ∈ R in Π. It is not difficult to
verify that the σ-structure P, when represented as a graph,
mirrors the incidence graph of Π precisely. From this cor-
respondence, Theorem 3, and Lemma 4, we thus obtain the
following, fundamental parameterized complexity result:
Theorem 5. Let Π be an ELP, let G be its incidence graph,
and let tw(G) � k, for some integer k. Then, checking
whether cwv(Π) �= ∅ can be done in time O(f(k) · |Π|),
for some function f that does not depend on |Π|.

Using a simple extension of the MSO construction in the
proof of Lemma 4, we can state a similar result for the for-
mula evaluation problem. The MSO formula
∃P∃N∃U cwv(P,N,U) ∧ entails(P,N,U, ϕ)
∧¬ (∃P′∃N′∃U′ (P′ ⊂ P ∨N′ ⊂ N) ∧ cwv(P′,N′,U′))
checks whether there is at least one WV that satisfies for-
mula ϕ, where the atom entails(P,N,U, ϕ) encodes the
check that the WV represented by P, N, and U cautiously
entails formula ϕ, a straightforward model-checking con-
struction left to the interested reader. We obtain the follow-
ing by the same argument as the one for Theorem 5:
Theorem 6. Let Π, G, and k be as in Theorem 5, and let ϕ
be a propositional formula. Then, checking whether Π has a
WV that cautiously entails ϕ can be done in time O(f(k) ·
|Π|), for some function f that does not depend on |Π|.

From the above theorems we immediately obtain the fact
that ELPs of bounded treewidth can be solved in linear time
in the size of the ELP. We will investigate how to exploit this
result and pinpoint function f(k) in the next two sections.

4 Bounding Calls to Standard ASP Solvers

Before providing a concrete algorithm for the FPT result
in Theorem 5 we will investigate a more abstract approach.
Many ELP solvers today make use of standard ASP solvers
to check the compatibility of a CWI with the set of an-
swer sets of its epistemic reduct. However, the number of
calls to such an ASP solver can be at worst exponential. In
this section, we will propose an algorithm that makes use

2833



of the structural relationships between the epistemic liter-
als in an ELP in order to control the number of ASP solver
calls needed and give finer-grained worst-case bounds on
this number. In the next section, we will then extend these
concepts to a full dynamic programming algorithm that ex-
ploits the result in Theorem 5.

We first need to define the structural relationship between
atoms occurring in epistemic literals in an ELP. To this end,
let Π = (A,R) be an ELP. Then, the primal graph PΠ =
(V,E) of Π is a graph with V = A and {a, b} ∈ E iff atoms
a and b with a �= b appear together in a rule in R, that is,
iff ∃r ∈ R : {a, b} ⊆ at(r). Two vertices a, b in the pri-
mal graph are non-epistemically connected iff there is a path
〈a, v1, . . . , vn, b〉 with n ≥ 0 in PΠ, such that each vertex
vi, 1 ≤ i ≤ n, belongs to the set A \ atel(Π). Now, the
epistemic primal graph EΠ = (V,E) of Π is a graph with
the vertex set V = atel(Π) being the set of atoms appear-
ing in epistemic literals in Π, and an edge {a, b} ∈ E iff
a �= b and vertices a, b are non-epistemically connected in
PΠ. Intuitively, two atoms from atel(Π) form an edge in EΠ

iff they are connected in PΠ via atoms that do not appear
in epistemic literals. The concept of epistemic primal graph
is inspired by the notion of the torso graph (Ganian, Ra-
manujan, and Szeider 2017), which is used in parameterized
complexity to decompose certain abstraction graphs.

Example 7. Consider the classic scholarship eligibility
problem encoding, first investigated by Gelfond (1991):
eligible(X )← highGPA(X )
ineligible(X )← lowGPA(X )
⊥ ← eligible(X ), ineligible(X )
interview(X )← not eligible(X ),not ineligible(X ).

Now, assume the above abstract (non-ground) program is
instantiated with two students (assume that it is copied twice
and mike and mark are substituted for X ), and that we add
the following rules, resulting in ELP Π:
lowGPA(mike) ∨ highGPA(mike)
lowGPA(mark) ∨ highGPA(mark)
Epistemic primal graph EΠ contains only four nodes:
eligible(mike), ineligible(mike), and the same two for
mark . Further, EΠ does not have any edges except an edge
between the two mike-atoms, and the same for mark . Since
EΠ forms a forest, the treewidth of EΠ is 1.

While the epistemic primal graph does not directly pro-
vide new complexity results, it will allow us to give firm
guarantees on the number of ASP solver calls needed. As a
side-effect, this algorithm is conceptually simpler than the
one of the next section, but prepares ideas for later.

Algorithms that solve problems of bounded treewidth typ-
ically proceed by dynamic programming (DP), bottom-up,
along a TD where at each node t of the TD information is
gathered (Bodlaender and Kloks 1996) in a table τ(t). A ta-
ble τ(t) is a set of rows, where a row in τ(t) is a fixed-length
sequence of elements. Tables are derived by an algorithm ex-
ecuted in each bag, called bag algorithm, which determine
the actual content and meaning of the rows. Then, the DP
approach DPB for an epistemic logic program Π and a given
bag algorithm B performs the following steps:

1. Construct graph representation G of Π that is used by B.

2. Heuristically compute a (nice) TD T = (T, χ) of G.

3. Execute B for every node t in TD T in post-order. As in-
put, B takes a node t, a bag χ(t), a solving program (de-
pending on χ(t) and B), which is the part of Π currently
visible in t, and the tables computed at children of t. Bag
algorithm B outputs a table τ(t).

4. Print the result by interpreting the table for root n of T .

Next, we define a bag algorithm EPRIM for the epis-
temic primal graph representation of Π. To this end, let Π =
(A,R) be the given input epistemic program, T = (T, χ)
be a nice TD of EΠ, t be a node of T , and ≺ be any ar-
bitrary total ordering among the nodes in T . To ease nota-
tion, for some set X ⊆ atel(R), let conn(X) be the set of
vertices (i.e., atoms) from PΠ that lie on a path that non-
epistemically connects any two vertices a and b in X .4 We
now define the induced bag rules for node t of T , denoted by
RE

t , as follows. For every rule r ∈ R, r is compatible with
node t of T iff (a) at(r) ∩ conn(atel(R)) ⊆ conn(χ(t)),
and (b) χ(t) is subset-maximal among all nodes of T . Now,
r ∈ RE

t iff t is the ≺-minimal node among all nodes t′ in
T with type(t′) = intr compatible with r. The induced bag
program for node t is the ELP ΠE

t = (at(RE

t ),RE

t ).
Observe that any set of vertices that form a clique within

EΠ will appear together in some node t of T . Note that for
each node t of T that has not a non-subset-maximal bag,
or has one, but is not ≺-minimal for any compatible r ∈
R, the induced bag program is empty. Therefore, we have
that for each rule r ∈ R there is exactly one node t of T
where r ∈ RE

t , and, even more stringent, that each atom
a ∈ at(r)\atel(r) appears only in the induced bag program
of t, but not in any other node. The bag algorithm EPRIM
uses the induced bag program as its solving program, and,
following the argument above, can check all rules containing
atoms from A \ atel(Π) in a single node. Hence, during its
traversal of the tree decomposition, it does not need to store
anything about these atoms. Instead, every row computed as
part of a table by EPRIM for a node t, called an epistemic
row, is of the form 〈I〉, where I ⊆ 2{a,¬a|a∈χ(t)} is a partial
CWI (that is, a CWI restricted to and defined w.r.t. χ(t))5.

Listing 1 presents algorithm EPRIM. For the ease of pre-
sentation, it deals with nice TDs only, but can be generalized
to arbitrary TDs, requiring a more involved case distinction.
Intuitively, since for each leaf node t we have χ(t) = ∅, bag
algorithm EPRIM ensures in Line 1 that τ(t) consists only
of the empty epistemic row. Then, when an atom a appears
in bag χ(t) for a node t, but does not occur in child bags,
CWI J , with either a ∈ JP , a ∈ JN , or a ∈ JU , is com-
puted in Line 3. Further, if the solving program with rules
RE

t is not empty, i.e., t is the unique node responsible for
evaluating all the rules in RE

t , the four conditions of Defi-
nition 2 are checked in Line 4. Note that these checks can
be performed by calling a black-box ASP solvers a limited
number of times for each row in t:

4Note that we may have that a = b, and hence, conn({a})
contains all those vertices from A \ atel(Π) connected to atom a.

5This also means that JP , JN , and JU are defined w.r.t. χ(t).

2834



Listing 1: Bag algorithm EPRIM(t, χt,Π
E

t , 〈τ1, . . .〉) for nice
TDs of the epistemic primal graph representation.

In: Node t, bag χt, induced bag program ΠE

t , tables 〈τ1, . . .〉 for
child nodes 〈t1, . . .〉 of t. Out: Table τ(t).

1 if type(t) = leaf then τ(t) = {〈∅〉}/* Abbrevs.below */
2 else if type(t) = intr, and a∈χt is introduced then

3 τ(t)={〈J〉 | 〈I〉 ∈ τ1, J ∈ {I+a , I+¬a, I},P=(ΠE

t )
J ,RE

t=∅ or
4 [ AS(P) �= ∅,AS(P ∪ {⊥ ← (JP ∪ JN )}) = ∅,

for every b ∈ JU :AS(P ∪ {⊥ ← b}) �= ∅,
AS(P ∪ {⊥ ← ¬b}) �= ∅ ]}

5 else if type(t) = rem, and a �∈ χt is removed then

6 τ(t)={〈I−a 〉 | 〈I〉 ∈ τ1}
7 else if type(t) = join then τ(t) = τ1 ∩ τ2

S+
e := S ∪ {e}, S−

e := S \ {e,¬e}, S := {¬s | s ∈ S}.

Proposition 8. To compute a row in a table of EPRIM, an
ASP solver needs to be called at most 2 + 2 · |χ(t)| times.

On an abstract level, bag algorithm EPRIM hence pro-
vides a method for solving epistimic logic programs Π by
means of plain ASP solvers based on the structure of the
epistemic literals of Π. Whenever an epistemic atom a is
removed in node t, indicating that a does not occur in any
ancestor bag of t, information about the “role” of a in any
CWI is not needed anymore. Finally, for join nodes, Line 7
ensures that the CWIs in χ(t) coincide with the ones that
both child bags have in common. The last step is the eval-
uation of the root node. If in the root a non-empty table is
computed by EPRIM, then the input ELP Π has a CWV.
Example 9. The epistemic primal graph from Example 7 is
a “best case”-scenario for using our TD-based approach:
the TD naturally separates the ELP into one part each for
the two students, and algorithm EPRIM would evaluate the
two completely separately, which is exactly what intuition
would tell us to do. However, standard ELP solvers seem
to struggle in this setting when the number of students in-
creases; cf. e.g. (Bichler, Morak, and Woltran 2018).

From Proposition 8, and the facts that there are only lin-
early many TD nodes in the size of the input ELP Π, and
that the number of rows per tree node is at most exponential
in the treewidth of EΠ, we obtain the following statement:
Theorem 10. Given an input ELP Π of size n, algorithm
DPEPRIM described above makes at most O(2k · n) calls to
an underlying ASP solver, where k = tw(EΠ).

Correctness of the algorithm presented above can be es-
tablished along the same lines as for established TD-based
dynamic programming algorithms for ASP (Jakl, Pichler,
and Woltran 2009; Fichte et al. 2017). A more formal cor-
rectness argument will be given in the next section.

5 A Full Dynamic Programming Algorithm
In this section, we will extend the EPRIM algorithm in such
a way that it no longer relies on an underlying ASP solver,
but solves an ELP completely on its own, using dynamic
programming. This new algorithm, PRIM, will operate on
the primal graph, instead of on the epistemic primal graph,
and makes use of features of the entire ELP structure.

Recall that the primal graph is defined on all atoms of
an ELP, instead of just on the ones appearing in epistemic

literals. As a result, we need to define a different solving
program for TD nodes. To this end, for the remainder of the
section, assume we are a given ELP Π = (A,R) to solve.
Further, let T = (T, χ) be a nice TD of the primal graph PΠ

of Π, and t a node of T . Then, the bag rules for t, denoted
Rt are defined as the set {r | r ∈ R, at(r) ⊆ χ(t)}, that is,
all the rules of Π that are completely “covered” by χ(t). Fur-
ther, the bag program of t is defined as Πt = (A∩χ(t),Rt).

In order to define PRIM, we need to define what a row of
a table for a TD node t looks like. Since PRIM, in contrast to
EPRIM, now also needs to compute the answer sets underly-
ing a CWV, we start with the following, preliminary defini-
tion. Let M ⊆ χ(t) be an interpretation and C ⊆ 2χ(t) a set
of interpretations w.r.t. χ(t). Then, we refer to a tuple 〈M, C〉
as an answer set tuple. This construct, proposed in (Fichte
et al. 2017), directly follows the definition of answer sets as
in Definition 1, namely, (1) set M , called a witness, is used
for storing (parts of) an answer set candidate of some ASP
program, and (2) set C, called counterwitnesses, holds a set
of (partial) models of the GL-reduct w.r.t. M that are po-
tential subsets of M , and hence may be counter-examples to
M being extendable to an answer set. An answer set tuple
with an empty set of counterwitnesses is referred to as prov-
ing answer set tuple, which, vaguely speaking, proves that
M can be indeed extended to an answer set of some ASP
program, which the tuple was constructed for. Answer set
tuples are used by algorithm PRIM in order to “transport”
information—in the form of parts of models restricted to the
respective bags—of already evaluated rules of the ASP pro-
gram from the leaves towards the root during TD traversal.

With this definition in mind, we are now ready to de-
fine a row for node t used in algorithm PRIM. Such a row,
called primal row, is of the form 〈I,M,K,S〉, where I
corresponds to a CWI restricted to χ(t) as in EPRIM, and
setsM,K,S consist of answer set tuples, whereM repre-
sents a set of possible witness answer sets for Condition 1
of Definition 2, K represents possible witnesses for disprov-
ing Conditions 2 and 3, and S represents possible witnesses
for guaranteeing Condition 4. In the root node n of the TD,
a specific primal row 	u ∈ τ(n) is required in table τ(n)
to answer the question of WV existence of Π positively,
and PRIM is designed to maintain primal rows accordingly.
The set M of answer set tuples in 	u is used for ensuring
Condition (1) of Definition 2, where a proving answer set
tuple in M gives rise to an answer set of some ASP pro-
gram ΠI′

of some extension I ′ ⊇ I of I . For ensuring
Conditions (2) and (3), the set K in 	u shall not contain any
proving program tuples, i.e., proving program tuples of K
are required to vanish (get “killed”) during the TD traversal,
otherwise Conditions (2) or (3) would be violated. Finally, S
in 	u serves to establish Condition (4), where no non-proving
answer set tuple is allowed, that is, each answer set tuple
needs to “survive”.

Definition 11. A primal row 〈I,M,K,S〉 is proving if (1)
there is a 〈M, C〉 ∈ M with C = ∅, (2) there is no 〈M, C〉 ∈
K with C = ∅, and (3) there is no 〈M, C〉 ∈ S with C �= ∅.

2835



Listing 2: Bag algorithm PRIM(t, χt,Πt, 〈τ1, . . .〉) for nice TDs
of the primal graph representation.

In: Node t, bag χt, bag program Πt, 〈τ1, . . .〉 is the seq. of tables
for child nodes 〈t1, . . .〉 of t. Out: Table τ(t).

1if type(t) = leaf then τ(t) = {〈∅, {〈∅, ∅〉}, ∅, ∅〉}
2else if type(t) = intr, a∈χt introduced, a �∈ atel(Πt) then

3 τ(t)={〈I,M′,K′,S ′〉 | 〈I,M,K,S〉 ∈ τ1,P=(Πt)
I ,

M′= intTs(a,M,P),K′= intTs(a,K,P),
4 S ′ ∈ succS(a,M′,S,P)}
5else if type(t) = intr, a∈χt introduced, a ∈ atel(Πt) then

6 τ(t)={〈J,M′,K′ ∪ K′′,S ′ ∪ S ′′〉| 〈I,M,K,S〉 ∈ τ1,P=

(Πt)
J ,M′= intTs(a,M,P),K′= intTs(a,K,P),

7 S ′ ∈ succS(a,M′,S,P), J ∈ {I+a , I+¬a, I},
8 K′′= intTs(a,

⋃
S∈M{S | a ∈ JP },P ∪ {⊥ ← a})∪

intTs(a,
⋃

S∈M{S | a ∈ JN},P ∪ {⊥ ← ¬a}),
9 {M ′,M ′′} ⊆ M′,S ′′={M ′,M ′′ | a ∈ JU}={M ′,M ′′ | a∈

JU ,M ′ � P ∪ {⊥ ← a},M ′′ � P ∪ {⊥ ← ¬a}}}
10else if type(t) = rem, and a �∈ χt is removed then

11 τ(t)={〈I−a ,M∼
a ,K∼

a ,S∼
a 〉 | 〈I,M,K,S〉 ∈ τ1}

12else if type(t) = join then

13 τ(t)={〈I,M1 M2, [K1  (K2∪M2)] ∪ [K2  (K1∪M1)],
[S1  (S2∪M2)] ∪ [S2  (S1∪M1)]〉 |

〈I,M1,K1,S1〉 ∈ τ1, 〈I,M2,K2,S2〉 ∈ τ2,
14 |S1|=|S1  (S2∪M2)|, |S2|=|S2  (S1∪M1)|}
S+
e := S ∪ {e}, S−

e := S \ {e,¬e}, S∼
e := {〈M−

e , {C−
e | C ∈ C}〉 |

〈M, C〉 ∈ S}, M1 M2 := {〈M, (C+
M ∩ D) ∪ (C ∩ D+

M )〉 | 〈M, C〉 ∈
M1, 〈M,D〉 ∈ M2}.

Algorithm PRIM is designed to ensure existence of
such a proving primal row in τ(n) of root node n of the
TD, iff a WV exists. PRIM uses the following constructs,
assuming an answer set tuple 〈M, C〉, an atom a ∈ A, and
a program P . For updating an answer set tuple, we let
updT(M, C,P)= {〈M, C ∩ mods(PM )〉 | M � P}.
When some atom a is introduced in an intr-type node,
we need to distinguish between a already being in the
interpretation, or not. We define intT(a,M, C,P) =
updT(M+

a ,
⋃

C∈C{M,C,C+
a },P) ∪ updT(M, C,P),

which is generalized to sets M of answer set tuples as
follows: intTs(a,M,P)=

⋃
〈M,C〉∈M intT(a,M, C,P).

Finally, to obtain good runtime bounds later and at the
same time still ensure Condition (4) of Definition 2 using a
set S of answer set tuples, we need to find, for each answer
set tuple in S , exactly one “succeeding” answer set tuple
among the set M of answer set tuples. We formalize this
by defining succS(a,M, C,P) = {S ′ | S ′ ⊆ M, |S ′| =
|S|, for every 〈M, C〉 ∈ S : intT(a, M, C,P) ∩ S ′ �= ∅}.

Bag algorithm PRIM, as presented in Listing 2, again
distinguishes between different types of tree nodes during
the post-order traversal of T . For leafs, Line 1 returns the
primal row consisting of the empty CWI, where the sec-
ond component M contains only the proving answer set
tuple 〈∅, ∅〉 (since ∅ is the smallest model of the empty
program), and K,S are both empty as there is no need
to remove or create answer set tuples, respectively. If an
atom a �∈ atel(Π) is introduced, Line 3 updates M and
K. Line 4 ensures that each answer set tuple in S has at
least one succeeding answer set tuple in every primal row
of table τ(t). If an atom a ∈ atel(Π) is introduced, the
sets M, K, and S are similarly updated in Line 6, but the

three cases (true, false, and unknown) need to be consid-
ered when adding a to I . Conditions (2) and (3) are han-
dled in Line 8, where answer set tuples in M that violate
these two conditions (for a ∈ JP , and a ∈ JN , respec-
tively) are added to K. For Condition (4), Line 9 ensures
that if a ∈ JN , there is both a succeeding answer set tuple
where a is set to true, and one where it is false. If an atom a
is removed, a is removed from the primal rows in Line 11,
since we have processed every part of Π where a occurs.
Finally, for join nodes, we combine only “compatible” pri-
mal rows in Line 13. In particular, Line 14 ensures that no
answer set tuple is lost in S1 or S2 of the child primal rows.

In the following, we briefly mention correctness and run-
time bounds for bag algorithms PRIM and EPRIM.
Theorem 12 (Correctness). Let Π be an ELP Π, and T =
(T, χ) a TD of PΠ. Then there is a proving row in table τ(n)
obtained by DPPRIM for root n of T iff there is a WV for Π.
Then, correctness of DPEPRIM, cf., Sec. 4, is a special case.
Corollary 13 (Correctness of DPEPRIM). Let Π be an ELP Π
and T = (T, χ) a TD of EΠ. Then there is a row in table
τ(n) for root n obtained by DPEPRIM iff there is a WV for Π.

Proof (Idea). T can be turned into a TD T ′ of PΠ by adding
to each χ(t) the setA, where (ΠE

t ) = (A, ·). DPEPRIM on T
is, therefore, just a simplification of DPPRIM on T ′.

Theorem 14 (Runtime). DPPRIM runs in time 22
2O(k)

· |A|
for epistemic program Π = (A,R), and treewidth k of PΠ.

Indeed, under reasonable assumptions in computa-
tional complexity, that is, the exponential time hypothesis
(ETH) (Impagliazzo, Paturi, and Zane 2001), one cannot sig-
nificantly improve DPPRIM since DPPRIM is ETH-tight.
Proposition 15 (cf. (Fichte, Hecher, and Pfandler 2019),
Theorem 19). Let Π = (A, ·) be an epistemic logic pro-
gram with PΠ of treewidth k. Then, unless ETH fails, WV

existence for Π cannot be decided in time 22
2o(k)

· 2o(|A|).

6 Conclusions

This work provides the first parameterized complexity anal-
ysis of ELP solving w.r.t. treewidth. Tree decompositions
(TDs) have been successfully used in the selp ELP solver
(Bichler, Morak, and Woltran 2018), but for a different pur-
pose, namely that ELPs are rewritten into non-ground ASP
programs with long rules, which are then split up using rule
decomposition (Bichler, Morak, and Woltran 2016). Our ap-
proach partitions an ELP according to a TD, and then solves
the entire ELP by evaluating these parts in turn. Note that
this is different from (ELP) splitting (Cabalar, Fandinno, and
Fariñas del Cerro 2019; Lifschitz and Turner 1994).

For future work, we aim to extend our DP algorithm to the
formula evaluation problem, which, viz. Theorem 6, should
work in a similar fashion to our existing algorithms, given
a suitable graph representation. Furthermore, we would like
to apply our approach to other ELP semantics; cf. (Gelfond
1991; 2011; Kahl et al. 2015). There, we do not anticipate
large obstacles, since most semantics are reduct-based, and
the reduct is an easily exchangeable part in our algorithms.

2836



Acknowledgements

M. Hecher and S. Woltran were supported by the Austrian
Science Fund (FWF) under grants Y698 and P32830.

References

Bichler, M.; Morak, M.; and Woltran, S. 2016. The power of
non-ground rules in answer set programming. TPLP 16(5-
6):552–569.
Bichler, M.; Morak, M.; and Woltran, S. 2018. Single-shot
epistemic logic program solving. In Proc. IJCAI, 1714–
1720.
Bliem, B.; Moldovan, M.; Morak, M.; and Woltran, S. 2017.
The impact of treewidth on ASP grounding and solving. In
Proc. IJCAI, 852–858.
Bliem, B.; Ordyniak, S.; and Woltran, S. 2016. Clique-width
and directed width measures for answer-set programming.
In Proc. ECAI, 1105–1113.
Bodlaender, H. L., and Kloks, T. 1996. Efficient and
constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithms 21(2):358–402.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Cabalar, P.; Fandinno, J.; and Fariñas del Cerro, L. 2019.
Splitting epistemic logic programs. In Proc. LPNMR, 120–
133.
Charwat, G., and Woltran, S. 2019. Expansion-based QBF
solving on tree decompositions. Fundam. Inform. 167(1-
2):59–92.
Courcelle, B. 1990. The monadic second-order logic of
graphs. I. Recognizable sets of finite graphs. Inf. Comput.
85(1):12–75.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
Eiter, T., and Gottlob, G. 1995. On the computational cost
of disjunctive logic programming: Propositional case. Ann.
Math. Artif. Intell. 15(3-4):289–323.
Fariñas del Cerro, L.; Herzig, A.; and Su, E. I. 2015. Epis-
temic equilibrium logic. In Proc. IJCAI, 2964–2970.
Fichte, J. K., and Hecher, M. 2019. Treewidth and counting
projected answer sets. In Proc. LPNMR, 105–119.
Fichte, J. K., and Szeider, S. 2015. Backdoors to tractable
answer set programming. Artif. Intell. 220:64–103.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017.
Answer set solving with bounded treewidth revisited. In
Proc. LPNMR, 132–145.
Fichte, J. K.; Hecher, M.; and Pfandler, A. 2019. TE-ETH:
Lower Bounds for QBFs of Bounded Treewidth. Prelimi-
nary version available at https://tinyurl.com/y7wnvu6w.
Fichte, J. K.; Hecher, M.; and Zisser, M. 2019. An improved
GPU-based SAT model counter. In Proc. CP, 491–509.
Fichte, J. K.; Kronegger, M.; and Woltran, S. 2019. A mul-
tiparametric view on answer set programming. Ann. Math.
Artif. Intell. 86(1-3):121–147.

Ganian, R.; Ramanujan, M. S.; and Szeider, S. 2017. Com-
bining treewidth and backdoors for CSP. In Proc. STACS,
36:1–36:17.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. ICLP/SLP, 1070–
1080. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Gelfond, M., and Przymusinska, H. 1991. Definitions in
epistemic specifications. In Proc. LPNMR, 245–259.
Gelfond, M. 1991. Strong introspection. In Proc. AAAI,
386–391. AAAI Press / The MIT Press.
Gelfond, M. 2011. New semantics for epistemic specifica-
tions. In Proc. LPNMR, 260–265.
Gottlob, G.; Pichler, R.; and Wei, F. 2010. Bounded
treewidth as a key to tractability of knowledge representa-
tion and reasoning. Artif. Intell. 174(1):105–132.
Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which prob-
lems have strongly exponential complexity? J. Comput. Syst.
Sci. 63(4):512–530.
Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. In Proc. IJCAI, 816–
822.
Kahl, P. T.; Watson, R.; Balai, E.; Gelfond, M.; and Zhang,
Y. 2015. The language of epistemic specifications (refined)
including a prototype solver. J. Log. Comput. 25.
Lifschitz, V., and Turner, H. 1994. Splitting a logic program.
In Proc. ICLP, 23–37.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Ann. Math. Artif. Intell. 25(3-
4):369–389.
Lonc, Z., and Truszczynski, M. 2003. Fixed-parameter com-
plexity of semantics for logic programs. ACM Trans. Com-
put. Log. 4(1):91–119.
Morak, M. 2019. Epistemic logic programs: A different
world view. In Proc. ICLP, 52–64.
Pearce, D.; Tompits, H.; and Woltran, S. 2009. Characteris-
ing equilibrium logic and nested logic programs: Reductions
and complexity. TPLP 9(5):565–616.
Robertson, N., and Seymour, P. D. 1984. Graph minors. III.
planar tree-width. J. Comb. Theory, Ser. B 36(1):49–64.
Schaub, T., and Woltran, S. 2018. Special issue on answer
set programming. KI 32(2-3).
Shen, Y., and Eiter, T. 2016. Evaluating epistemic negation
in answer set programming. Artif. Intell. 237:115–135.
Son, T. C.; Le, T.; Kahl, P. T.; and Leclerc, A. P. 2017.
On computing world views of epistemic logic programs. In
Proc. IJCAI, 1269–1275.
Truszczynski, M. 2011. Revisiting epistemic specifi-
cations. In Logic Programming, Knowledge Representa-
tion, and Nonmonotonic Reasoning - Essays Dedicated to
Michael Gelfond on the Occasion of His 65th Birthday.

2837


