
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Logics for Sizes with Union or Intersection

Caleb Kisby,1 Saúl A. Blanco,1 Alex Kruckman,2 Lawrence S. Moss3

1Department of Computer Science, Indiana University, Bloomington, IN 47408, USA
{cckisby, sblancor}@indiana.edu

2Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA
akruckman@wesleyan.edu

3Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
lmoss@indiana.edu

Abstract

This paper presents the most basic logics for reasoning about
the sizes of sets that admit either the union of terms or the inter-
section of terms. That is, our logics handle assertions All x y
and AtLeast x y, where x and y are built up from basic terms
by either unions or intersections. We present a sound, com-
plete, and polynomial-time decidable proof system for these
logics. An immediate consequence of our work is the com-
pleteness of the logic additionally permitting More x y. The
logics considered here may be viewed as efficient fragments
of two logics which appear in the literature: Boolean Alge-
bra with Presburger Arithmetic and the Logic of Comparative
Cardinality.

1 Introduction

Reasoning about the sizes of sets is common in both human
and artificial reasoning. It is also common, both in “real-
world” human settings and in artificial systems, to reason in
this way about unions and intersections of sets. In human
settings, this use of union or intersection is often reflected
by natural language phrases such as “animals or plants” (for
union), or “mammals with paws” (for intersection). For ex-
ample, one might reason that if all cats are mammals that
purr and there are at least as many cats as purring things,
then it follows that all purring things are cats.

In this paper, we examine logics which capture the most
basic fragments of reasoning about the sizes of finite sets
alongside union or intersection. Our two main logics handle
assertions All x y (all x are y) and AtLeast x y (there are
at least as many x as y). In the first logic, terms may be
formed using union, whereas in the second logic, terms may
be formed using intersection.

We emphasize that these fragments are the most basic
because we wish to reflect one of the primary lessons of
cognitive science: That computationally light systems are
the most cognitively plausible ones (Moss and Raty 2018).
Accordingly, the two main logics we present are decidable in
polynomial time.

The logics considered here are part of a broader enter-
prise of natural logic (Moss 2015; Moss and Raty 2018;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

van Benthem 2008). One of the main goals of this program
is to demonstrate that components of natural language in-
ference that can be modeled at all can be modeled by de-
cidable logical systems. Also, our work aims at obtaining
complete logical systems for its fragments, with an eye to-
ward efficient computer implementations. Union and inter-
section are common points of interest and inspiration in
natural language semantics (Keenan and Faltz 1985), and
reasoning about the sizes of sets has been a common sub-
ject of investigation in natural logic (Moss and Raty 2018;
Pratt-Hartmann 2008). This paper contributes to this goal
of natural logic: we provide complete axiomatizations of
fragments of reasoning about sizes with either union or in-
tersection, and we show that these logics are decidable in
polynomial time.

Related Work. There has been recent work at the conflu-
ence of logic and artificial intelligence on systems for reason-
ing about sizes, often including reasoning about union and
intersection. The closest system to ours in the literature is
the polynomial-time decidable logic of All, Some, AtLeast,
More, with set complement as a term forming operation (but
not including union or intersection), which was investigated
in (Moss 2016).

If one were to add strict cardinality comparison, set com-
plement, and propositional connectives ∧, ∨, and ¬ on top
of our work, the resulting logic would look like the Logic of
Comparative Cardinality CardCompLogic in (Ding, Harrison-
Trainor, and Holliday 2018). Our logics are restricted further
by requiring that all variables x have a finite interpretation
(in CardCompLogic one may express this using the predicate
Fin(x)). As shown in (Ding, Harrison-Trainor, and Holliday
2018), CardCompLogic is NP-complete, so what our logics
lose in expressive power they recoup in efficiency. Addition-
ally, the method of proof in (Ding, Harrison-Trainor, and
Holliday 2018) is rather different from ours.

The logics presented in this paper may also be viewed as
fragments of Boolean Algebra with Presburger Arithmetic
(BAPA) (Kuncak, Nguyen, and Rinard 2006). BAPA is a
two-sorted logic, allowing both set relations in the language
of Boolean Algebra and numerical relations in the language
of Presburger Arithmetic. These two sorts are connected by a
set cardinality function |s| mapping sets to numbers. BAPA

2870

builds formulas from set relations and numerical relations
via propositional connectives ∧,∨,¬, and quantifiers over
sets and numbers. The two main logics we present capture
the sublogic of BAPA involving subsets, equality, nonstrict
cardinality comparison, and union or intersection terms, with-
out propositional connectives or quantifiers. Decidability in
BAPA is also NP-complete (Kuncak and Rinard 2007), so
again our logics present a more efficient fragment of the more
expressive logic.

Reasoning about subsets and sizes alongside union and
intersection is also relevant to the description logic commu-
nity. In (Baader and Ecke 2017), the authors incorporate
the language of BAPA into the DL ALC in order to allow
constraints on the cardinalities of concepts.

Our Contribution. The main contribution of this paper is
our axiomatization of reasoning about sizes of sets alongside
either union or intersection, and the resulting polynomial
decidability of these logics. This efficiency result is in con-
trast to other logics involving reasoning of this kind (e.g. the
NP-complete logics BAPA and CardCompLogic).

2 Our Logics

We focus our discussion on the two logics we call A∪(card)
and A∩(card). We begin by defining the syntax and seman-
tics of these systems.

Terms in our syntax may either be basic terms or binary
terms. We use symbols a, b, c, . . . to denote basic terms and
symbols x, y, z, . . . to denote terms that may be either basic
or binary. If a and b are basic terms, then a ∪ b and a ∩ b are
binary terms. Note that we do not allow nested terms like
(a∪b)∪c (we discuss this choice in the following subsection).

The sentences which we consider are All x y and
AtLeast x y, where x and y are terms. Note that in our logics
we do not build up more complex sentences using proposi-
tional connectives or quantifiers; every sentence is one of
these two operators applied to a pair of terms.

We now provide our terms and sentences with their seman-
tics. A model M consists of a set M (the universe of M),
together with an interpretation function which assigns to each
basic term a a subset [[a]] ⊆M . We extend the interpretation
function to binary terms a∪b and a∩b by [[a ∪ b]] = [[a]]∪ [[b]]
and [[a ∩ b]] = [[a]] ∩ [[b]].

Our sentences are given the expected semantics:

M |= All x y iff [[x]] ⊆ [[y]]
M |= AtLeast x y iff |[[x]]| ≥ |[[y]]|

For a set Γ of sentences and another sentence ϕ, we have that
Γ � ϕ if every finite model M that satisfies the sentences in
Γ satisfies ϕ. Note the finiteness assumption about M; this
is weaker than the usual logical consequence notion in logic.

A∪(card) and A∩(card) differ in the terms and proof sys-
tems they use. Both logics employ natural-deduction style
rules. The full table of rules is shown in Figure 1. In particular,
A∪(card) is the logic of All x y and AtLeast x y, with bi-
nary union terms, but no binary intersection terms, using rules
(AXIOM), (BARBARA), (MIX), (SIZE), (TRANS) in addition to
(UNION-L), (UNION-R), and (UNION-ALL). A∩(card) is the
analogous logic, but with binary intersection terms instead of

binary union terms, and using rules (INTER-L), (INTER-R),
and (INTER-ALL) in place of (UNION-L), (UNION-R), and
(UNION-ALL). Note that because we do not allow nested
terms, the rules for union and intersection involve variables
a, b, and c representing basic terms, while the other rules
involve variables x, y, and z representing arbitrary terms.

For a set Γ of sentences in one of these logics and another
such sentence ϕ, we say that ϕ is provable from Γ, written
Γ � ϕ, whenever ϕ may be obtained from the sentences in Γ
from natural deduction via the rules for that logic. When we
speak of the decidability of a logic, we refer to the problem
of determining whether or not Γ � ϕ as a function of Γ and
φ, when Γ is finite.

A logic is sound if whenever Γ � ϕ it follows that Γ |= ϕ.
We say a logic is complete if the converse holds for finite Γ: If
Γ |= ϕ then Γ � ϕ. We only consider finite Γ in the definition
of completeness because our logics A∪(card) and A∩(card)
are not compact. One may verify that each of the rules in
Figure 1 is individually sound for our semantics. Hence, the
selected set of rules for each of our logics is sound.

Remark 2.1. The expected facts about set union and intersec-
tion are provable from the rules of A∪(card) and A∩(card).
For example, symmetry of ∪ follows:

All b (a ∪ b) (UNION-R)
All a (a ∪ b) (UNION-L)

All (b ∪ a) (a ∪ b) (UNION-ALL)

The assumption that our models are finite is reflected in
(MIX); this rule is not sound for infinite models.

Remark 2.2. It is worth mentioning the related logics
A∪ and S∪. The logic A∪ is simply the All-fragment of
A∪(card). S∪ extends this All-fragment by admitting the
sentence former Some x y (some x is y), with the semantics
that M |= Some x y whenever [[x]] ∩ [[y]] 	= ∅. S∪ addition-
ally borrows the (SOME), (CONVERSION), and (DARII) rules
from (Moss 2016). A∪ and S∪ are both complete.

Logics with Arbitrarily Large Terms

The reader might object that while in the Introduction we
claim to capture basic reasoning about unions and intersec-
tions, the logics we address only allow binary (unnested)
unions and intersections. This restriction has the advantage
of simplifying our proof of polynomial decidability in Sec-
tion 6. Although it may not initially be obvious, the complete-
ness (and polynomial decidability, see Remark 6.3 below) of
A∪(card) and A∩(card) with arbitrarily large finite terms
follows from their completeness with only binary terms.

To see this, we reduce arbitrary terms to binary terms in
the natural way, iteratively replacing binary subterms of a
complex term by fresh basic terms. For example, a ∪ ((b ∪
c)∪ d) becomes a∪ (t1 ∪ d), which becomes a∪ t2. Given Γ
and ϕ with arbitrary terms, we define Γ� and ϕ� by reducing
all terms appearing in Γ and ϕ in this way, and then adding
additional sentences to Γ�: For every fresh term t replacing a
binary term, say a ∪ b, in either Γ or ϕ, we include in Γ� the
sentences All t (a ∪ b) and All (a ∪ b) t.

2871

All x x
(AXIOM)

All x y All y z

All x z
(BARBARA)

All x y AtLeast x y

All y x
(MIX)

All x y

AtLeast y x
(SIZE)

AtLeast x y AtLeast y z

AtLeast x z
(TRANS)

All a (a ∪ b) (UNION-L)
All b (a ∪ b) (UNION-R) All a c All b c

All (a ∪ b) c (UNION-ALL)

All (a ∩ b) a (INTER-L)
All (a ∩ b) b (INTER-R) All a b All a c

All a (b ∩ c) (INTER-ALL)

Figure 1: The rules for the logics A∪(card) and A∩(card). In addition to the rules above the line, A∪(card) uses (UNION-L),
(UNION-R), and (UNION-ALL), whereas A∩(card) uses (INTER-L), (INTER-R), and (INTER-ALL).

One can check that this transformation does work, i.e.

Γ |= ϕ =⇒ Γ� |= ϕ�

⇐⇒ Γ� � ϕ� (by Section 3)
=⇒ Γ � ϕ (allowing arbitrary terms)

3 Completeness of A∪(card)
In this section, we prove the completeness of the logic
A∪(card). We will return to A∩(card) in Section 5. First,
we present a representation lemma that will later be used to
build a model of any finite set Γ of sentences in A∪(card). In
logics with sentential negation ¬ and a proof rule of reductio
ad absurdum, such a representation lemma is tantamount
to completeness. But A∪(card) has neither of these, and so
more work will be needed. This extra work will be presented
subsequently.

Representation Lemma

Since we restrict our attention to binary terms, we may model
the All- and AtLeast-relationships provable from Γ by corre-
sponding relations on pairs of basic terms; this is the content
of our representation lemma. We represent the problem in
this way in order to argue that model-building in A∪(card)
can be done in polynomial time.

In order to state this lemma, we must first define the appro-
priate relations on pairs. Let BT be a finite set of basic terms.
We fix a linear order < on BT . We define the set of pairs
under discussion as Pairs = {(a, b) : a, b ∈ BT and a ≤ b}.

Definition 3.1. A suitable pair of relations on Pairs is a pair
of relations (�,�) such that for all pairs p and q, and all
basic terms a, b, c, and d,

1. � and � are preorders on Pairs. (That is, they are reflexive
and transitive.)

2. � is linear: either p � q or q � p (and possibly both).
3. If a < b in the fixed ordering on BT , then (a, a) � (a, b).

If b < a, then (a, a) � (b, a).

4. If (a, a) � (c, d) and (b, b) � (c, d) and a < b, then
(a, b) � (c, d).

5. If p � q, then p � q.
6. If p � q and q � p, then q � p.

For p, q ∈ Pairs, we often write ≺ to denote the strict part
of �, i.e. p ≺ q whenever p � q but q 	� p.

Here is an example: Let N be any model, and define
(a, b) � (c, d) iff |[[a]]∪ [[b]]| ≤ |[[c]]∪ [[d]]|, and (a, b) � (c, d)
iff [[a]]∪ [[b]] ⊆ [[c]]∪ [[d]]. This gives a suitable pair of relations.
Our representation lemma shows that every suitable pair of
relations arises in this way. In order to build such models, we
use families of sets corresponding to basic terms, defined as
follows:
Definition 3.2. A BT -family is a family of finite sets S =
(Sa)a∈BT . For a BT -family S, we write Sa,b for Sa ∪ Sb.
We also write sa,b for the number |Sa ∪ Sb|. We also write
sa for sa,a (i.e., for |Sa|).

For p ∈ Pairs, say with p = (a, b), we often write Sp

instead of Sa,b.
Definition 3.3. A BT -family S is �-preserving if, for all
p, q ∈ Pairs, p � q implies that sp ≤ sq . S is �-reflecting if
sp ≤ sq implies that p � q.

Similarly, S is �-preserving if p � q implies that Sp ⊆ Sq ,
and S is �-reflecting if Sp ⊆ Sq implies that p � q.

Every BT -family S determines a model M as follows. Its
universe M is

⋃
a Sa. This set is finite. For a basic term a, let

[[a]] = Sa. So for union terms a ∪ b, we automatically have
[[a ∪ b]] = Sa ∪ Sb = Sa,b.

We may now state our representation lemma. In the next
section, we use it to prove the completeness of A∪(card).
Lemma 3.4 (Representation Lemma). Let (�,�) be a suit-
able pair of relations on Pairs. Then there is a BT -family of
sets S such that for all p, q ∈ Pairs,

p � q iff sp ≤ sq (1)
p � q iff Sp ⊆ Sq (2)

That is, S preserves and reflects � and �.

2872

Completeness

Theorem 3.5. The logic A∪(card) is complete.

The rest of this section is devoted to the proof. We want
to show that if Γ is a finite set of sentences and Γ 	� ϕ, then
Γ 	|= ϕ. Our plan is to use Lemma 3.4 to build a model of Γ
where ϕ is false. Note that we may assume ϕ has the form
AtLeast (a∪ b) (c∪ d) or All (a∪ b) (c∪ d) for some basic
terms a, b, c, and d; for example, AtLeast a c is provably
equivalent to AtLeast (a ∪ a) (c ∪ c).

We first define relations ≤Γ and ⊆Γ on Pairs by

• (a, b) ≤Γ (c, d) iff Γ � AtLeast (c ∪ d)(a ∪ b)
• (a, b) ⊆Γ (c, d) iff Γ � All (a ∪ b) (c ∪ d)
for all (a, b) and (c, d) in Pairs.

Note that (≤Γ,⊆Γ) has all the properties of a suitable pair,
except for linearity of ≤Γ. We use the following fact to extend
≤Γ to a linear preorder. The statement is a bit stronger than a
straightforward linearization, for purposes that will become
clear at the end of this section.

Proposition 3.6. Let x� be a fixed pair. We can extend ≤Γ to
a linear preorder �Γ over Pairs such that for all y ∈ Pairs,
if y 	≤Γ x

�, then x� ≺Γ y.

If ϕ is AtLeast (a ∪ b) (c ∪ d), let x� be the pair (a, b).
Otherwise, choose x� arbitrarily. Let �Γ be the linear pre-
order obtained from Proposition 3.6 using this x�. One can
verify the following proposition.

Proposition 3.7. (�Γ,⊆Γ) is a suitable pair of relations on
Pairs.

We may now apply Lemma 3.4. Take BT to be the set of
basic terms appearing in Γ and ϕ. There is a BT -family of
sets S = (Sa)a∈BT such that for all (a, b), (c, d) ∈ Pairs,

Γ � All (a ∪ b) (c ∪ d) Γ � AtLeast (c ∪ d) (a ∪ b)
� ⇓

(a, b) ⊆Γ (c, d) (a, b) �Γ (c, d)
� �

Sa ∪ Sb ⊆ Sc ∪ Sd |Sa ∪ Sb| ≤ |Sc ∪ Sd|
(3)

The � on the upper-left is the definition of ⊆Γ. The ⇓ on
the upper-right comes from the fact that �Γ is a linearization
(hence an extension) of ≤Γ. The lower �-arrows follow from
the representation lemma.

Let M be the model determined by the BT -family S. By
(3), M satisfies the All- and AtLeast-sentences in Γ. We
would like to ensure as well that M does not satisfy ϕ. We
have two cases:

• ϕ is All (a ∪ b) (c ∪ d). Since Γ 	� All (a ∪ b) (c ∪ d), by
(3) we have [[a ∪ b]] = Sa ∪ Sb 	⊆ Sc ∪ Sd = [[c ∪ d]]. So
M 	|= ϕ.

• ϕ is AtLeast (a ∪ b) (c ∪ d). Recall that when we applied
Proposition 3.6, we took x� to be (a, b). Now take y to
be (c, d). Since Γ 	� AtLeast (a ∪ b) (c ∪ d), we have
(c, d) 	≤Γ (a, b) by definition. Thus, by Proposition 3.6,
(a, b) ≺Γ (c, d). So by (3), |[[a ∪ b]]| = |Sa ∪ Sb| < |Sc ∪
Sd| = |[[c ∪ d]]|. So M 	|= ϕ.

4 Outline of the Proof of the Representation

Lemma

For the proof of completeness of A∪(card), it remains to
justify our representation lemma (Lemma 3.4). Given a suit-
able pair of relations (�,�), we want to build a BT -family
S = (Sa)a∈BT that preserves and reflects � and �. Our plan
is to start with a family that preserves and reflects �. We then
build our family of sets iteratively, ensuring that at each stage
our family preserves and reflects � and at the final stage our
family also preserves and reflects �.

Proof of Lemma 3.4. Consider the preorder �. We call a
maximal set of �-equivalent pairs a size class. We list the
size classes in order, from ≺-largest to ≺-smallest. Let’s say
the size classes in this order are

C1, C2, . . . , CK

Since we are listing them from ≺-largest to ≺-smallest, we
have the following fact: if (a, b) ≺ (c, d), and also (a, b) ∈
Ci, and finally (c, d) ∈ Cj , then j < i.

We will inductively construct a sequence of BT -families
S0, S1, . . . , SK such that at each step i we ensure that in Si:

(1) The pairs preceding or in the size class Ci are cor-
rectly ordered according to �, i.e. for all (a, b), (c, d) ∈⋃

j≤i Ci, (a, b) � (c, d) iff sia,b ≤ sic,d.
(2) The sizes of all pairs strictly preceding Ci are larger

than the sizes of all pairs in or following Ci. That is, for
j, k ∈ {1, . . . ,K} such that j < i ≤ k, q ∈ Cj , and
p ∈ Ck, siq > sip.

(3) Si preserves and reflects �.

If we do this for i = 0, 1, . . . ,K, then SK will be a family
of sets that preserves and reflects � and �.

Constructing SK . We begin by taking S0 to be any family
which preserves and reflects �. One choice is to take, for
each basic term a, S0

a = {(c, d) ∈ Pairs : (a, a) 	� (c, d)}.
S0 trivially satisfies assertions (1) and (2) from above and
satisfies (3) by construction.

We now consider step 1 ≤ i ≤ K. Suppose we have a
family Si−1 that satisfies assertions (1)-(3) above for i− 1.
In order to appropriately manipulate the sizes of sets Si

a, we
will apply the lemmas to follow. Both lemmas make use of a
basic construction on families of sets, which we call Clamp.

Definition 4.1. Let S be aBT -family. Let (c, d) ∈ Pairs, r ∈
ω. We define a new family Clamp(S, c, d, r) as follows: Let
R = {∗1, . . . , ∗r} be fresh points. For all a ∈ BT , let

Clamp(S, c, d, r)a =

{
Sa ∪R if (a, a) 	� (c, d)
Sa otherwise

In words, we add r new points simultaneously to all sets Sa,
except when � “wants Sa to be a subset of Sc ∪ Sd.”

The following proposition summarizes the basic properties
of the Clamp operation.

Proposition 4.2. Let S be a BT -family, and fix (c, d) ∈
Pairs and r ∈ ω. Write T for Clamp(S, c, d, r). Then:

2873

1. For (a, b) � (c, d), Ta,b = Sa,b.
2. For (a, b) such that (c, d) ≺ (a, b), Ta,b = Sa,b ∪

{∗1, . . . , ∗r}.
3. If S preserves and reflects �, then so does T .

Our first lemma allows us to equalize sizes of unions of
pairs in the same size class. The second lemma ensures that
the pairs in our size class Ci have greater size than all pairs
in Cj for j > i.

Lemma 4.3. Let S be a family which preserves and reflects
�. Let k ≥ 2, and let C = {p1, . . . , pk} be a size class of �.
Then there is a BT -family T such that:

1. The unions corresponding to the pairs in C have equal
size in T ; i.e., for 1 ≤ r, s ≤ k, tpr = tps .

2. If (a, b) and (c, d) are any pairs which belong to larger
size classes than C, then

ta,b ≤ tc,d if and only if sa,b ≤ sc,d.

3. T preserves and reflects �.

Proof. Before we begin the construction of T , we have an
observation. Let ≈ be the equivalence relation induced by �.
C, being a size class of ≈, splits into one or more ≈-classes.
The observation is that if q1 and q2 are members of C which
are in different � classes, then neither q1 � q2 nor q2 � q1.
To see this, suppose towards a contradiction that q1 � q2.
Then since we also have q2 � q1, we have q1 � q2 by one
of the properties of the suitable pair (�,�). This gives a
contradiction, since now q1 ≈ q2.

Let us choose one pair in each ≈-class of C, and list the
chosen pairs in size order according to S. That is, we have
pairs (a1, b1), . . . , (ak, bk) so that every element of C is re-
lated by ≈ to exactly one pair on this list, and the order is
chosen so that sa1,b1 ≤ sa2,b2 ≤ · · · ≤ sak,bk . Let

T 1 = Clamp(S, a2, b2, sa2,b2 − sa1,b1)
T 2 = Clamp(T 1, a3, b3, sa3,b3 − sa2,b2)

...
T k−1 = Clamp(T k−2, ak, bk, sak,bk − sak−1,bk−1

)

We take T = T k−1. One may carefully verify that this T
works.

Lemma 4.4. Let S be a family which preserves and reflects
�. Let q1, . . ., q� be a sequence of pairs in Pairs. Then there
is a family T such that:

1. For 1 ≤ i, j ≤ k, sqi ≤ sqj iff tqi ≤ tqj .
2. For all pairs p which are ≺-below all qj , we also have
tp < tqi for all i.

3. T preserves and reflects �.

Proof. Let m = mini si = mini sqi . We call a pair p a size
competitor if p ≺ qj for all j, and yet tp ≥ m.

List the size competitors as p1, . . . , pk. Note that for all
size competitors pi and all of the original points qj , we have
qj 	� pi. For if we did have qj � pi, then we would have
qj � pi; and the definition of a size competitor ensures that
that pi ≺ qj for all i, j.

Let

T 1 = Clamp(S, p1, sp1
−m+ 1)

T 2 = Clamp(T 1, p2, sp2
−m+ 1)

...
T k = Clamp(T k−1, pk, spk

−m+ 1)

We take T = T k. Again, one may carefully verify that this T
works.

We may finally return to constructing the next family Si.
Consider our currently examined size class Ci. If Ci contains
≥ 2 pairs then we may apply Lemma 4.3 with size class Ci

and family Si−1 in order to obtain a new family which we’ll
call T . (If Ci contains only 1 pair, let T = Si−1). In T , all
pairs in Ci have the same size (by part 1 of Lemma 4.3). By
(1) for i− 1 and by part 2 of Lemma 4.3, we have (1) for T .
Lemma 4.3 also ensures that T preserves and reflects �.

We list the pairs preceding or in size class Ci as p1, . . . , pk.
We apply Lemma 4.4 with these pairs p1, . . . , pk and family
T . We let Si be the resulting family. Lemma 4.4, part 1
ensures that (1) holds for Si, since it held for T . And Lemma
4.4, part 2 ensures that (2) holds for Si. Lemma 4.4 also
ensures (3): that Si preserves and reflects �.

This completes the proof of our representation lemma and
hence the completeness of A∪(card).

5 Completeness of Logics with

Intersection Terms

We obtain completeness of A∩(card) for free from the com-
pleteness of A∪(card). Let L∪ be the language of A∪(card),
and let L∩ be the language of A∩(card). L∪ and L∩ share
the same basic terms.

We translate L∩ terms x and sentences φ to L∪ as follows:
For basic terms a, let a∪ = a. For an intersection term, say
a∩ b, let (a∩ b)∪ = a∪ b. Let R be All or AtLeast. Then for
the L∩-sentence ψ = R x y, we let ψ∪ be R (y∪) (x∪). For
a set Γ of L∩ sentences, let Γ∪ = {ψ∪ : ψ ∈ Γ}.

Lemma 5.1. Γ � φ in A∩(card) iff Γ∪ � φ∪ in A∪(card).

We also need a semantic construction in the other direction.
For a model M of L∪, define a model M∩ of L∩ as follows:
Let M∩ use the same underlying universeM . For basic terms
a, let [[a]]M∩ = [[a]]M. That is, each basic term’s semantics
in M∩ is the complement of its semantics in M.

Lemma 5.2. For all models M of L∪ and all L∩-sentences
ψ, M∩ |= ψ iff M |= ψ∪.

From Lemmas 5.1 and 5.2, completeness of A∩(card)
follows.

Theorem 5.3. The logic A∩(card) is complete.

2874

6 Complexity of Our Logics

We now turn our attention towards the complexity of
A∪(card) and A∩(card). As mentioned in Section 2, one
of our primary motivations for restricting our language to
binary terms was to argue that our logics are decidable in
polynomial time. The proof is based on Theorem 1.5 of
(Kruckman and Moss 2018), which is a variant of the proof
of McAllester’s Tractability Lemma (McAllester 1993).

Theorem 6.1. The relation � is decidable in polynomial
time.

Furthermore, for A∪(card) and A∩(card) the following
also holds:

Theorem 6.2. If Γ 	� ϕ in either A∪(card) or A∩(card),
then we can construct a countermodel M satisfying Γ but
falsifying ϕ in polynomial time.

The proof involves observing that the model-building
procedure described in the proof of Theorem 3.5 can be
performed in polynomial time (relative to the combined
length of Γ and ϕ). We may first construct ≤Γ and ⊆Γ over
Pairs in polynomial time, since A∪(card) and A∩(card) are
polynomial-time decidable (by Theorem 6.1). Of course, ex-
tending ≤Γ into the appropriate linear preorder �Γ can be
done in polynomial time. The rest of the work is to carefully
check that the algorithm described in Section 4 can be done
in polynomial time.

Remark 6.3. It follows from Theorem 6.1 that our logics
with arbitrarily large finite union (or intersection) terms are
also decidable in polynomial time. Given Γ, ϕ with arbitrary
finite union terms (say), our decision procedure for Γ �arb ϕ
is simply to construct Γ� and ϕ� and then decide whether
Γ� � ϕ� (see Section 2). Constructing Γ� and ϕ� takes
polynomial steps in the size of Γ, ϕ. To verify that this is in
fact a decision procedure for Γ �arb ϕ, we must check that
Γ �arb ϕ if and only if Γ� � ϕ�. Γ� � ϕ� =⇒ Γ �arb ϕ is
handled in Section 2. As for the converse, a proof tree T for
Γ �arb ϕ is transformed into a proof tree T � for Γ� � ϕ� by
introducing the term substitutions ti. One can verify that this
is in fact a proof tree.

7 Completeness of Logics with

More-Sentences

In this section, we consider the extension of our logic
A∪(card) with More-sentences. We call the resulting logic
M∪(card) (similarly, we call the corresponding logic with
∩-terms M∩(card)). We may extend the argument in Section
3 to prove the completeness of M∪(card) (and hence, by
Section 5, the completeness of M∩(card)). Unfortunately,
we cannot extend the complexity argument of Section 6 to
obtain polynomial decidability for M∪(card). We discuss
avenues for ameliorating this situation in Section 8.

We extend A∪(card) to M∪(card) by allowing, in addi-
tion to All- and AtLeast-sentences, the sentence More x y
(where x and y are terms). The semantics of More-sentences
is similar to that for AtLeast-sentences:

M |= More x y iff |[[x]]| > |[[y]]|

M∪(card) employs the rules listed in Figure 2, in addition
to those rules used in A∪(card) (similarly for M∩(card)).
The rules in Figure 2, with the exception of (RAA), we borrow
from the logic S(card) described in (Moss 2016). Again, one
may verify that each of the rules in Figure 2 is individually
sound for our semantics.

Note in particular the rules (X) and (RAA). The (X) rule is
ex falso (or explosion), fitted for our language of More- and
AtLeast-sentences. Similarly, (RAA) is a special instance of
reductio ad absurdum.

In contrast to A∪(card) and A∩(card), we must worry
about expressing inconsistencies within M∪(card) and
M∩(card). We say that a set Γ of sentences in M∪(card)
(or M∩(card)) is inconsistent whenever every sentence ϕ in
the logic is provable from Γ (otherwise, we say that Γ is con-
sistent). Note that for M∪(card), using rule (X), Γ is incon-
sistent if and only if there is a term z such that Γ � More z z.

Theorem 7.1. The logic M∪(card) is complete.

The proof is a straightforward extension of the proof of
Theorem 3.5; observe that in order to build a model of Γ
refuting More x y, it suffices to construct a model of Γ ∪
{AtLeast y x}. If Γ 	� More x y, then (RAA) ensures that
Γ∪{AtLeast y x} is consistent, which is necessary since we
can only apply the modified version of the model construction
to consistent Γ.

8 Discussion and Future Work

This paper has presented two complete, polynomial-time de-
cidable logics for reasoning about the sizes of sets alongside
the union or intersection of terms, respectively. These logics
are the most basic for reasoning of this kind; A∪(card) and
A∩(card) are both minimally expressive and decidable in
polynomial time. Our logics may be viewed as more efficient
fragments of BAPA and CardCompLogic, two more expres-
sive NP-complete logics for reasoning about sizes with union
and intersection. A direct corollary of our work is the com-
pleteness of the logic additionally permitting More-sentences.

Next Steps. Since decidability in both BAPA and
CardCompLogic is NP-complete, it would be interesting to
steadily build our fragment towards these logics and note at
which point decidability is no longer decidable in polynomial
time. The first step in this direction is to attempt to extend our
polynomial decidability argument in Section 6 to the logic
M∪(card). The main issue here is that M∪(card) makes use
of the (RAA) rule, and we cannot put a bound on the height of
an (RAA) application. One could remove the (RAA) rule from
M∪(card) and attempt to replace it with simpler rules that
may also ensure completeness. One such rule, not derivable
from the rules of M∪(card) sans (RAA) is:

All x a All x b More (a ∪ b) b
More a x

(DIAMOND)

(This rule is so-named because the terms x, a, b, and a ∪ b
form a ⊆-diamond.) Observe that this rule of inference is
sound. If (DIAMOND) and rules like it ensure completeness
without (RAA), then our argument for polynomial decidability
follows without issue.

2875

More x y AtLeast y z

More x z
(MORE-L)

AtLeast x y More y z

More x z
(MORE-R)

More x y

AtLeast x y
(MORE-ATLEAST) More z z

ϕ (X)

[AtLeast y x]....
More z z
More x y

(RAA)

Figure 2: The additional rules for the logics M∪(card) and M∩(card).

The next step would be to integrate union and intersection
terms. But the further step of integrating union and inter-
section with term complement will likely result in an NP-
complete logic, so this is where the road ends.

There is historical precedent in the syllogistic logic liter-
ature to allow Some sentences alongside All-sentences. As
mentioned in Remark 2.2, the usual semantics for Some-
sentences is that M |= Some x y whenever [[x]] ∩ [[y]] 	= ∅.
The main trouble with introducing Some-sentences is in ad-
dressing the following pesky rule:

More a b AtLeast c d AtLeast (b ∪ d) (a ∪ c)
Some a c

This rule simultaneously involves AtLeast-, More-, and
Some-sentences with term union. Observe that this rule is
sound as well, and that it is not provable from the rules
of either A∪(card) or S∪. One could hope to extend our
model construction to model sets Γ which also include Some-
sentences, but it is far from obvious how to integrate the
above rule into the model-building process.

Finally, our two main logics can be integrated with SMT
solvers in order to efficiently automate those inferences which
just involve sizes and subset alongside union or intersection.
A particularly appropriate SMT solver with which to test this
is (Suter, Steiger, and Kuncak 2011), which extends the SMT
solver Z3 with reasoning in quantifier-free BAPA.

Acknowledgements We thank the anonymous reviewers,
as well as Vikraman Choudhury, Matthew Heimerdinger, and
Chaitanya Koparkar, for their careful reviews and helpful
comments.

References

Baader, F., and Ecke, A. 2017. Extending the description
logic ALC with more expressive cardinality constraints on
concepts. In Benzmüller, C.; Lisetti, C.; and Theobald, M.,
eds., GCAI 2017. 3rd Global Conference on Artificial In-
telligence, volume 50 of EPiC Series in Computing, 6–19.
EasyChair.
Ding, Y.; Harrison-Trainor, M.; and Holliday, W. 2018.
The logic of comparative cardinality. Retrieved from
https://escholarship.org/uc/item/2nn3c35x (accessed on June
12, 2019).
Keenan, E. L., and Faltz, L. M. 1985. Boolean Semantics for
Natural Language, volume 23 of Synthese Language Library.
D. Reidel Publishing Co., Dordrecht.

Kruckman, A., and Moss, L. S. 2018. Exploring the
landscape of relational syllogistic logics. arXiv e-prints
arXiv:1809.00656.
Kuncak, V., and Rinard, M. 2007. Towards efficient satisfi-
ability checking for boolean algebra with Presburger Arith-
metic. In CADE-21.
Kuncak, V.; Nguyen, H. H.; and Rinard, M. 2006. Deciding
Boolean algebra with Presburger arithmetic. J. Automat.
Reason. 36(3):213–239.
McAllester, D. A. 1993. Automatic recognition of tractability
in inference relations. Journal of the ACM 40:284–303.
Moss, L. S., and Raty, C. 2018. Reasoning about the sizes of
sets: Progress, problems, and prospects. In Proceedings of
the fourth Workshop on Bridging the Gap between Human
and Automated Reasoning, 33–39.
Moss, L. S. 2015. Natural logic. In Handbook of Contem-
porary Semantic Theory, Second Edition. Wiley-Blackwell.
646–681.
Moss, L. S. 2016. Syllogistic logic with cardinality com-
parisons. In J. Michael Dunn on information based logics,
volume 8 of Outst. Contrib. Log. Springer. 391–415.
Pratt-Hartmann, I. 2008. On the computational complex-
ity of the numerically definite syllogistic and related logics.
Bulletin of Symbolic Logic 14(1):1–28.
Suter, P.; Steiger, R.; and Kuncak, V. 2011. Sets with cardinal-
ity constraints in satisfiability modulo theories. In Jhala, R.,
and Schmidt, D., eds., Verification, Model Checking, and Ab-
stract Interpretation, 403–418. Berlin, Heidelberg: Springer
Berlin Heidelberg.
van Benthem, J. 2008. A brief history of natural logic. In
M. Chakraborty, B. Löwe, M. N. M., and Sarukkai, S., eds.,
Logic, Navya-Nyaya and Applications, Homage to Bimal
Krishna Matilal. London: College Publications.

2876

