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Abstract

Pre-trained language representation models, such as BERT,
capture a general language representation from large-scale
corpora, but lack domain-specific knowledge. When read-
ing a domain text, experts make inferences with relevant
knowledge. For machines to achieve this capability, we pro-
pose a knowledge-enabled language representation model
(K-BERT) with knowledge graphs (KGs), in which triples
are injected into the sentences as domain knowledge. How-
ever, too much knowledge incorporation may divert the sen-
tence from its correct meaning, which is called knowledge
noise (KN) issue. To overcome KN, K-BERT introduces soft-
position and visible matrix to limit the impact of knowledge.
K-BERT can easily inject domain knowledge into the mod-
els by being equipped with a KG without pre-training by it-
self because it is capable of loading model parameters from
the pre-trained BERT. Our investigation reveals promising re-
sults in twelve NLP tasks. Especially in domain-specific tasks
(including finance, law, and medicine), K-BERT significantly
outperforms BERT, which demonstrates that K-BERT is an
excellent choice for solving the knowledge-driven problems
that require experts.

Introduction

Unsupervised pre-trained Language Representation (LR)
models like BERT (Devlin et al. 2018) have achieved
promising results in multiple NLP tasks. These models are
pre-trained over large-scale open-domain corpora to ob-
tain general language representations and then fine-tuned
in specific downstream tasks for absorbing specific-domain
knowledge. However, due to the domain-discrepancy be-
tween pre-training and fine-tuning, these models do not
perform well on knowledge-driven tasks. For example, the
Google BERT pre-trained on Wikipedia can not give full
play to its value when dealing with electronic medical record
(EMR) analysis task in the medical field.

When reading a text from a specific-domain, ordinary
people can only comprehend words according to its con-
text, while experts are able to make inferences with relevant
domain knowledge. Publicly-provided models, like BERT,
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GPT (Radford et al. 2018), and XLNet (Yang et al. 2019),
who were pre-trained over open-domain corpora, act just
like an ordinary people. Even though they can refresh the
state-of-the-art of GLUE (Wang et al. 2018) benchmark by
learning from open-domain corpora, they may fail in some
domain-specific tasks, due to little knowledge connection
between specific and open domain. One way to solve this
problem is to pre-train a model emphasizing domain-specific
by ourselves, instead of using the publicly-provided ones.
However, pre-training is time-consuming and computation-
ally expensive, making it unacceptable to most users.

Moreover, although injecting domain-specific knowledge
during pre-training is possible for LR models, this process
of knowledge acquisition can be inefficient and expensive.
For example, if we want the model to acquire the knowl-
edge of “Paracetamol can treat cold”, a large number of co-
occurrences of ”Paracetamol” and ”cold” are required in the
pre-training corpus. Instead of this strategy, what else can
we do to make the model a domain expert? The knowl-
edge graph (KG), which was called ontology in early re-
search, serves as a good solution. As knowledge refined into
a structured form, KGs over many fields have been con-
structed, e.g., SNOMED-CT (Bodenreider 2008) in medi-
cal field, HowNet (Dong, Dong, and Hao 2006) in Chinese
conception. If KG can be integrated into the LR model, it
will equip the model with domain knowledge, enhancing the
model’s performance over domain-specific tasks, while re-
ducing the cost of pre-training on a large scale. Besides, the
resulting models posses greater interpretability, for the in-
jected knowledge is manually editable.

However, there are two challenges lies in the road of
this knowledge integration: (1) Heterogeneous Embed-
ding Space (HES): In general, the embedding vectors of
words in text and entities in KG are obtained in separate
ways, making their vector-space inconsistent; (2) Knowl-
edge Noise (KN): Too much knowledge incorporation may
divert the sentence from its correct meaning. To overcome
these challenges, this paper propose a Knowledge-enabled
Bidirectional Encoder Representation from Transformers
(K-BERT). K-BERT is capable of loading any pre-trained
BERT models due to they are identical in parameters. In ad-
dition, K-BERT can easily inject domain knowledge into
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the models by equipped with a KG without pre-training.
This characteristic of K-BERT is very convenient for users
with limited computing resources. Experimental results on
twelve Chinese NLP tasks demonstrate that the K-BERT
gains superior performances on domain-specific tasks. The
main contributions of this paper can be summarized as fol-
lows:

• This paper proposes a knowledge-enabled LR model,
namely K-BERT, which is compatible with BERT and can
incorporate domain knowledge without HES and KN is-
sues;

• With the delicate injection of KG, K-BERT significantly
outperforms BERT not only on domain-specific tasks, but
also plenty of those in the open-domain;

• The codes of K-BERT and our self-developed
knowledge graphs are publicly available at
https://github.com/autoliuweijie/K-BERT.

Related Work

Since Google Inc. launched BERT in 2018, many endeavors
have been made for further optimization, basically focusing
on the pre-training process and the encoder.

In optimizing pre-training process, Baidu-ERNIE (Sun et
al. 2019) and BERT-WWM (Cui et al. 2019) adopt whole-
word masking rather than single character masking for pre-
training BERT in Chinese corpora. SpanBERT (Joshi et al.
2019) extended BERT by masking contiguous random spans
and proposed a span boundary objective. RoBERTa (Liu et
al. 2019) optimized the pre-training of BERT in three ways,
i.e., deleting the target of the next sentence prediction, dy-
namically changing the masking strategy and using more
and longer sentences for training. In optimizing the encoder
of BERT, XLNet (Yang et al. 2019) replaced the Trans-
former in BERT with Transformer-XL (Dai et al. 2019) to
improve its ability to process long sentences. THU-ERNIE
(Zhang et al. 2019) modified the encoder of BERT to an ag-
gregator for the mutual integration of word and entities.

While the pre-trained LR model is an emerging direc-
tion, there is little work on its fusion with KG. THU-ERNIE
(Zhang et al. 2019) is a pioneer in this direction by fusing
entity information, but the relations between entities are ig-
nored by it. COMET (Bosselut et al. 2019) employed the
triples in KG as corpus to train GPT (Radford et al. 2018)
for common sense learning, which is very inefficient.

Before the emergence of pre-trained LR models, there
were several studies that combined KG with word vectors.
Wang et al. (2014) proposed a novel method of jointly em-
bedding entities and words into the same continuous vector
space basing on the idea of word2vec (Mikolov et al. 2013).
Toutanova et al. (2015) proposed a model that captures the
compositional structure of textual relations, and optimize
entity, knowledge base, and textual relation representations
in a joint manner. Han, Liu, and Sun (2016) applied a con-
volutional neural network and a KG completion task to learn
the representation of text and knowledge jointly. Cao et al.
(2018) carried out cross-lingual representation learning for
words and entities via attentive distant supervision.
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Figure 1: The model structure of K-BERT: Compared to
other RL models, the K-BERT is equipped with an editable
KG, which can be adapted to its application domain. For ex-
ample, for electronic medical record analysis, we can use a
medical KG to grant the K-BERT with medical knowledge.

The major weakness of these methods is that they are still
based on the idea of “word2vec + transE” (Bordes et al.
2013), rather than the pre-trained LR model. Although they
use the method of joint representation to make the vector
space of entities and words closer, there are still HES prob-
lems. What’s more, for KGs with millions of entities, this
idea makes the entity table very large, making it unusable
because it exceeds the GPU’s memory size.

Methodology

In this section, we detail the implementation of K-BERT and
its overall framework is presented in Figure 1.

Notation

We denote a sentence s = [w0, w1, w2, ..., wn] as a sequence
of tokens, where n is the length of this sentence. In this pa-
per, English tokens are taken at the word-level, while Chi-
nese tokens are at character-level. Each token wi is included
in the vocabulary V, wi ∈ V. KG, denoted as K, is a col-
lection of triples ε = (wi, rj , wk), where wi and wk are the
name of entities, and rj ∈ V is the relation between them.
All the triples are in KG.

Model architecture

As shown in Figure 1, the model architecture of K-BERT
consists of four modules, i.e., knowledge layer, embedding
layer, seeing layer and mask-transformer. For an input sen-
tence, the knowledge layer first injects relevant triples into
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Figure 2: The process of converting a sentence tree into an embedding representation and a visible matrix. In the sentence tree,
the red number is the soft-position index, and the gray is the hard-position index. (1) For token embedding, the tokens in the
sentence tree are flattened into a sequence of token embedding by their hard-position index; (2) The soft-position index is used
as position embedding along with the token embedding; (3) In segment embedding, all the tokens in the fist sentence are tagged
as “A”; (4) In the visible matrix, red means visible, and white means invisible. For example, the cell at row 4, column 9 is white
means that the ”Apple(4)” cannot see ”China(9)”.

it from a KG, transforming the original sentence into a
knowledge-rich sentence tree. The sentence tree is then si-
multaneously fed into the embedding layer and the seeing
layer and then converted to a token-level embedding repre-
sentation and a visible matrix. The visible matrix is used to
control the visible area of each token, preventing changing
the meaning of the original sentence due to too much knowl-
edge injected.

Knowledge layer

The knowledge layer (KL) is used for sentence knowl-
edge injection and sentence tree conversion. Specifi-
cally, given an input sentence s = [w0, w1, w2, ..., wn]
and a KG K, KL outputs a sentence tree t =
[w0, w1, ..., wi[(ri0, wi0), ..., (rik, wik)], ..., wn]. This pro-
cess can be divided into two steps: knowledge query (K-
Query) and knowledge injection (K-Inject).

In K-Query, all the entity names involved in the sentence
s are selected to query their corresponding triples from K.
K-Query can be formulated as (1),

E = K Query(s,K), (1)

where E = [(wi, ri0, wi0), ..., (wi, rik, wik)] is a collection
of the corresponding triples.

Next, K-Inject injects the queried E into the sentence s by
stitching the triples in E to their corresponding position, and
generates a sentence tree t. The structure of t is illustrated in
Figure 3.

In this paper, a sentence tree can have multiple branches,
but its depth is fixed to 1, which means that the entity names
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Figure 3: Structure of the sentence tree.

in triples will not derive branches iteratively. K-Inject can be
formulated as (2),

t = K Inject(s, E). (2)

Embedding layer

The function of the Embedding Layer (EL) is to convert the
sentence tree into an embedding representation that can be
fed into the Mask-Transformer. Similar to BERT, the em-
bedding representation of K-BERT is the sum of three parts:
token embedding, position embedding, and segment embed-
ding, but differs in that the input of the K-BERT’s embed-
ding layer is a sentence tree, rather than a token sequence.
Therefore, how to transform a sentence tree into a sequence
while retaining its structural information is the key to K-
BERT.

Token embedding In this work, the token embedding
is consistent with BERT, and the vocabulary provided by
Google BERT is adopted in this paper. Each token in the
sentence tree is converted to an embedding vector of dimen-
sion H via a trainable lookup table. In addition, K-BERT
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also uses [CLS] as a classification tag and uses [MASK] to
mask tokens. The difference between the token embeddings
of K-BERT and BERT is that the tokens in the sentence
tree require re-arrangement before the embedding operation.
In our re-arrange strategy, tokens in the branch are inserted
after the corresponding node, while subsequent tokens are
moved backwards. As the example illustrated in Figure 2,
the sentence tree is rearranged as “Tim Cook CEO Apple is
visiting Beijing capital China is a City now”. Although this
procedure is simple, but it makes the sentence unreadable
and lost correct structural information. Fortunately, it can be
solved by the soft-position and visible matrix.

Soft-position embedding For BERT, if there is no po-
sition embedding, it will be equivalent to a bag-of-word
model, resulting in a lack of structural information (i.e.,
the order of tokens). All the structural information of the
BERT’s input sentence is contained in the position embed-
ding, which allows us to add the missing structural infor-
mation back to the unreadable rearranged sentence. Tak-
ing the sentence tree in Figure 2 as an example, after re-
arranging, [CEO] and [Apple] are inserted between [Cook]
and [is], but the subject of [is] should be [Cook] instead of
[Apple]. To solve this problem, we only need to set the posi-
tion number of [is] to 3 instead of 5. So when calculating the
self-attention score in the transformer encoder, [is] is at the
next position of [Cook] by the equivalent. However, another
problem arises: the position numbers of [is] and [CEO] are
both 3, which makes them close in position when calculat-
ing self-attention, but in fact, there is no connection between
them. The solution to this problem is Mask-Self-Attention,
which will be covered in the next subsection.

Segment embedding Like BERT, K-BERT also uses
segmentation embedding to identify different sentences
when multiple sentences are included. For example, when
two sentences [w00, w01, ..., w0n] and [w10, w11, ..., w1m]
are inputed, they are combined into one sentence
[[CLS], w00, w01, ..., w0n, [SEP ], w10, w11, ..., w1m] with
[SEP ]. For the combined sentence, it is marked with a se-
quence of segment tags, [A,A,A,A, ..., A,B,B, ..., B].

Seeing layer

Seeing layer is the biggest difference between K-BERT and
BERT, and also what makes this method so effective. The
input to K-BERT is a sentence tree, where the branch is the
knowledge gained from KG. However, the risk raised with
knowledge is that it can lead to changes in the meaning of
the original sentence, i.e., KN issue. For example, in the sen-
tence tree in Figure 2, [China] only modifies [Beijing] and
has nothing to do with [Apple]. Therefore, the representa-
tion of [Apple] should not be affected by [China]. On the
other hand, the [CLS] tag used for classification should not
bypass the [Cook] to get the information of [Apple], as this
would bring the risk of semantic changes. To prevent this
from happening, K-BERT’s use a visible matrix M to limit
the visible area of each token so that [Apple] and [China],
[CLS] and [Apple] are not visible to each other. The visible
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Figure 4: Illustration of the Mask-Transformer, which is a
stack of multiple mask-self-attention blocks.

matrix M is defined as (3),

Mij =

{
0 wi � wj

−∞ wi � wj
(3)

where, wi � wj indicates that wi and wj are in the same
branch, while wi � wj are not. i and j are the hard-position
index.

Mask-Transformer

To some degree, the visible matrix M contains the struc-
tural information of the sentence tree. The Transformer
(Vaswani et al. 2017) encoder in BERT cannot receive M
as an input, so we need to modify it to Mask-Transformer,
which can limit the self-attention region according to M .
Mask-Transformer is a stack of multiple mask-self-attention
blocks. As BERT, we denote the number of layers (i.e.,
mask-self-attention blocks) as L, the hidden size as H , and
the number of mask-self-attention heads as A.

Mask-Self-Attention: To prevent false semantic changes
by taking advantage of the sentence structure information in
M , we propose a mask-self-attention, which is an extension
of self-attention. Formally, the mask-self-attention is (4).

Qi+1, Ki+1, V i+1 = hiWq, h
iWk, h

iWv, (4)

Si+1 = softmax(
Qi+1Ki+1� +M√

dk
), (5)

hi+1 = Si+1V i+1, (6)
where Wq , Wk and Wv are trainable model parameters. hi

is the hidden state of the i-th mask-self-attention blocks. dk
is the scaling factor1. M is the visible matrix calculated by
the seeing layer. Intuitively, if wk is invisible to wj , the Mjk

will mask the attention score Si+1
jk to 0, which means wk

make no contribution to the hidden state of wj .
As the example illustrated in Figure 4, hi

[Apple] has no ef-
fect on hi+1

[CLS], because [Apple] is invisible to [CLS]. How-

ever, hi+1
[CLS] can obtain the information of hi−1

[Apple] indirectly

1In (Vaswani et al. 2017), the author scale the dot products by
1√
dk

to counteract the effect of the dot products grow large in mag-

nitude.
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through hi+1
[Cook], because [Apple] is visible to [Cook] and

[Cook] is visible to [CLS]. The advantage of this process is
that [Apple] enriches the representation of [Cook], but does
not directly affect the meaning of the original sentence.

Experiments

In this section, we present the details of the K-BERT fine-
tuning results on twelve Chinese NLP tasks, among which
eight are open-domain, and four are specific-domain.

Pre-training corpora

In this paper, we adopt two Chinese corpora for pre-training,
i.e., WikiZh2 and WebtextZh3.

• WikiZh WikiZh refers to the Chinese Wikipedia corpus,
which is used to train Chinese BERT in (Devlin et al.
2018). WikiZh contains a total of 1 million well-formed
Chinese entries with 12 million sentences and size of
1.2G.

• WebtextZh WebtextZh is a large-scale, high-quality Chi-
nese question and answer (Q&A) corpus with 4.1 million
entries and a size of 3.7G. Each entry in WebtextZh be-
longs to a topic, with a total of 28,000 topics.

Knowledge graph

We employ three Chinese KGs, CN-DBpedia4, HowNet5
and MedicalKG.

• CN-DBpedia CN-DBpedia (Xu et al. 2017) is a large-
scale open-domain encyclopedic KG developed by the
Knowledge Work Laboratory of Fudan University, cover-
ing tens of millions of entities and hundreds of millions of
relations. In this paper, we refine the official CN-DBpedia
by eliminating those triples whose entity names are less
than 2 in length or contain special characters. The refined
CN-DBpedia contains a total of 5.17 million triples.

• HowNet HowNet is a large-scale language knowledge
base for Chinese vocabulary and concepts (Dong, Dong,
and Hao 2006), in which each Chinese word is annotated
with semantic units called sememes. If we take {word,
contain, sememes} as a triple, HowNet is a language KG.
Similarly, we refine the official HowNet by eliminating
those triples whose entity names are less than 2 in length
or contain special characters. The refined HowNet con-
tains a total of 52,576 triples.

• MedicalKG MedicalKG is our self-developed Chinese
medical concept KG, which contains four types of hyper-
nym (symptoms, diseases, parts, and treatments). Medi-
calKG contains a total of 13,864 triples and is open source
as part of K-BERT.

2https://dumps.wikimedia.org/zhwiki/latest/
3https://github.com/brightmart/nlp chinese corpus
4http://kw.fudan.edu.cn/cndbpedia/intro/
5http://www.keenage.com/

Baselines

In this paper, we compare K-BERT to two baselines:
• Google BERT6 The model was pre-trained on WikiZh

and released by Google (Devlin et al. 2018).
• Our BERT Our reimplementation of BERT with pre-

training on WikiZh and WebtextZh, released in UER7.

Parameter settings and training details

To reflect the role of KG in the RL model, we configure
our K-BERT and BERT to the same parameter settings ac-
cording to the basic version of Google BERT (Devlin et al.
2018). We denote the number of (mask-)self-attention layers
and heads as L and A respectively, and the hidden dimension
of embedding vectors as H . In detail, we have the following
model configuration: L = 12, A = 12 and H = 768. The
total amounts of trainable parameters of both BERT and K-
BERT are the same (110M), which means that they are com-
patible with each other in model parameters.

For K-BERT pre-training, all settings are consistent with
(Devlin et al. 2018). One thing to emphasize is that we don’t
add any KG to K-BERT during the pre-training phase. Be-
cause KG binds two related entity names together, thus mak-
ing the pre-trained word vectors of the two are very close or
even equal and resulting in a semantic loss. Therefore, in the
pre-training phase, K-BERT and BERT are equivalent, and
the latter’s parameters can be assigned to the former. KG
will be enabled during the fine-tuning and inferring phases.

Open-domain tasks

We first compare the performance of K-BERT with BERT
on eight Chinese open-domain NLP tasks. Among these
eight tasks, Book review8, Chnsenticorp9, Shopping10, and
Weibo11 are single-sentence classification tasks:
• Book review This dataset contains 20,000 positive and

20,000 negative reviews collected from Douban12;
• Chnsenticorp Chnsenticorp is a hotel review dataset with

a total of 12,000 reviews, including 6,000 positive reviews
and 6,000 negative reviews;

• Shopping Shopping is a online shopping review dataset
that contains 40,000 reviews, including 21,111 positive
reviews and 18,889 negative reviews;

• Weibo Weibo is a dataset with emotional annotations
from Sina Weibo, including 60,000 positive samples and
60,000 negative samples.

XNLI (Conneau et al. 2018), LCQMC (Liu et al. 2018)
are two-sentence classification tasks, NLPCC-DBQA13 is a
Q&A matching task, and MSRA-NER (Levow 2006) is a
Named Entity Recognition (NER) task:

6https://github.com/google-research/bert
7https://github.com/dbiir/UER-py
8https://embedding.github.io/evaluation/
9https://github.com/pengming617/bert classification

10https://share.weiyun.com/5xxYiig
11https://share.weiyun.com/5lEsv0w
12https://book.douban.com/
13http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf
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Table 1: Results of various models on sentence classification tasks on open-domain tasks (Acc. %)

Models\Datasets
Book review Chnsenticorp Shopping Weibo XNLI LCQMC
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

Pre-trainied on WikiZh by Google.

Google BERT 88.3 87.5 93.3 94.3 96.7 96.3 98.2 98.3 76.0 75.4 88.4 86.2

K-BERT (HowNet) 88.6 87.2 94.6 95.6 97.1 97.0 98.3 98.3 76.8 76.1 88.9 86.9
K-BERT (CN-DBpedia) 88.6 87.3 93.9 95.3 96.6 96.5 98.3 98.3 76.5 76.0 88.6 87.0

Pre-trained on WikiZh and WebtextZh by us.

Our BERT 88.6 87.9 94.8 95.7 96.9 97.1 98.2 98.2 77.0 76.3 89.0 86.7

K-BERT (HowNet) 88.5 87.4 95.4 95.6 96.9 96.9 98.3 98.4 77.2 77.0 89.2 87.1
K-BERT (CN-DBpedia) 88.8 87.9 95.0 95.8 97.1 97.0 98.3 98.3 76.2 75.9 89.0 86.9

Table 2: Results of various models on NLPCC-DBQA
(MRR %) and MSRA-NER (F1 %).

Models\Datasets
NLPCC-DBQA MSRA-NER
Dev Test Dev Test

Pre-trained on WikiZh by Google.

Google BERT 93.4 93.3 94.5 93.6

K-BERT (HowNet) 93.2 93.1 95.8 94.5
K-BERT (CN-DBpedia) 94.5 94.3 96.6 95.7

Pre-trained on WikiZh and WebtextZh by us.

Our BERT 93.3 93.6 95.7 94.6

K-BERT (HowNet) 93.2 93.1 96.3 95.6
K-BERT (CN-DBpedia) 93.6 94.2 96.4 95.6

• XNLI XNLI is a cross-language language understanding
dataset in which each entry contains two sentences and the
task is to determine their relation (“Entailment”, “Contra-
dict” or “Neutral” );

• LCQMC LCQMC is a large-scale Chinese question
matching corpus. The goal of this task is to determine if
the two questions have a similar intent;

• NLPCC-DBQA NLPCC-DBQA is a task to predict an-
swers to each question from the given document;

• MSRA-NER MSRA-NER is a NER dataset published by
Microsoft. This task is to recognize the entity names in the
text, including person names, place names, organization
names, etc.

Each of the above datasets is divided into three parts:
train, dev, and test. We use the train part to fine-tune
the model and then evaluate its performance on the dev and
test parts. The experimental results are shown in Table 1
and 2, from which the results can be divided into three cate-
gories: (1) The KG has no significant effect on the tasks of
sentiment analysis (i.e., Book review, Chnsenticorp, Shop-
ping and Weibo) because the sentiment of a sentence can be
judged based on emotional words without any knowledge;
(2) The language KG (HowNet) performs better than the

encyclopedic KG in terms of semantic similarity tasks
(i.e., XNLI and LCQMC); (3) For Q&A and NER tasks (i.e.,
NLPCC-DBQA and MSRA-NER), the encyclopedic KG
(CN-DBpedia) is more suitable than the language KG.
Therefore, it is important to choose the right KG based on
the type of task.

In addition, it can be observed that the use of an additional
corpus (WebtextZh) can also bring performance boost, but
not as significant as KG. As MSRA-NER shown in Table 2,
the CN-DBpedia improves F1 from 93.6% to 95.7%, while
the WebtextZh only increases it to 94.6%.

Specific-domain tasks

In fact, the task where K-BERT really shines is in specific-
domain. Because KG is good at giving LR model with do-
main knowledge.

Domain Q&A We crawl about 770,000 and 36,000 Q&A
samples from Baidu Zhidao14 in financial and legal domains,
including questions, netizen answers, and best answers.
Based on this, we built two datasets, i.e., Finance Q&A and
Law Q&A. The task is to choose the best answer for the
question from the netizen’s answers.

Domain NER Finance NER15 is a dataset including
3000 financial news articles manually labeled with over
65,000 name entities (people, location and organization).
Medicine NER is the Clinical Named Entity Recognition
(CNER) task released in CCKS 201716. The goal is to ex-
tract medical-related entity names from electronic medical
records.

Similarly, the specific-domain datasets are split into three
parts: train, dev, and test, which are used to fine-tune,
select and test model, respectively. The test results of var-
ious models are illustrated in Table 3, where P., R. and
F1 refer to Precision, Recall and F1-score, respectively.
Compared with BERT, K-BERT has a significant perfor-
mance improvement in terms of domain tasks. As for F1,

14https://zhidao.baidu.com
15https://embedding.github.io/evaluation/#extrinsic
16https://biendata.com/competition/CCKS2017 2/
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Table 3: Results of various models on specific-domain tasks (%).

Models\Datasets
Finance Q&A Law Q&A Finance NER Medicine NER
P. R. F1 P. R. F1 P. R. F1 P. R. F1

Pre-trained on WikiZh by Google.

Google BERT 81.9 86.0 83.9 83.1 90.1 86.4 84.8 87.4 86.1 91.9 93.1 92.5

K-BERT (HowNet) 83.3 84.4 83.9 83.7 91.2 87.3 86.3 89.0 87.6 93.2 93.3 93.3
K-BERT (CN-DBpedia) 81.5 88.6 84.9 82.1 93.8 87.5 86.1 88.7 87.4 93.9 93.8 93.8
K-BERT (MedicalKG) - - - - - - - - - 94.0 94.4 94.2

Pre-trained on WikiZh and WebtextZh by us.

Our BERT 82.1 86.5 84.2 83.2 91.7 87.2 84.9 87.4 86.1 91.8 93.5 92.7

K-BERT (HowNet) 82.8 85.8 84.3 83.0 92.4 87.5 86.3 88.5 87.3 93.5 93.8 93.7
K-BERT (CN-DBpedia) 81.9 87.1 84.4 83.1 92.6 87.6 86.3 88.6 87.4 93.9 94.3 94.1
K-BERT (MedicalKG) - - - - - - - - - 94.1 94.3 94.2

K-BERT with CN-DBpedia can improve the performance
of all tasks by 1∼2%. The unique gain benefits from the
domain knowledge in KG. Furthermore, it can be observed
from the Medicine NER in Table 3 that the performance im-
provement using the MedicalKG is very obvious. From these
results, we can conclude that KG, especially the domain KG,
is very helpful for domain-specific tasks.

Ablation studies

K-BERT 
K-BERT w/o soft-position
K-BERT w/o visible matrix
BERT 

F1
 (

%
)
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86
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(a) Law Q&A

K-BERT 
K-BERT w/o soft-position
K-BERT w/o visible matrix
BERT 

F1
 (

%
)

88

90

92

94

Epoch

0 1 2 3 4 5 6 7 8 9 10

(b) Medicine NER

Figure 5: Ablation studies: (a) Law Q&A with CN-
DBpedia; (b) Medicine NER with MedicalKG;

In this subsection, we explore the effects of the soft-
position and visible matrix for K-BERT using two domain-
specific tasks (Law Q&A and Medicine NER). “w/o soft-
position” refers to fine-tuning K-BERT with hard-position
instead of soft-position. “w/o visible matrix” means that the
all tokens are visible to each other. BERT is equivalent to the
K-BERT without KG. As shown in Figure 5, we have the fol-
lowing observations: (1) In both tasks, without soft-position
or visible matrix, the performance of K-BERT has declined;
(2) In Law Q&A (Figure 5(a)), K-BERT without visible ma-
trix is worse than BERT, which confirms the existence of
KN, i.e., improperly adding knowledge can lead to perfor-
mance degradation; (3) In Figure 5(a), K-BERT reaches its
peak at epoch 2, while BERT is at epoch 4, which proves
that K-BERT converges faster than BERT. In general, we
can conclude that the soft-position and the visible matrix
can make K-BERT more robust to KN interference and
thus make more efficient use of knowledge.

Conclusions

In this paper, we propose K-BERT to enable language repre-
sentation with knowledge graphs, achieving the capability of
commonsense or domain knowledge. Specifically, K-BERT
first injects knowledge from KG into a sentence, making it
a knowledge-rich sentence tree. Next, soft-position and vis-
ible matrix are adapted to control the scope of knowledge,
preventing it from deviating from its original meaning.

Despite the challenges of HES and KN, our investigation
reveals promising results on twelve open-/specific- domain
NLP tasks. Empirical results demonstrate that KG is espe-
cially helpful for knowledge-driven specific-domain tasks
and can be used to solve problems that require domain ex-
perts. Besides, K-BERT is compatible with the model pa-
rameters of BERT, which means that users can directly adopt
the available pre-trained BERT parameters (e.g., Google
BERT, Baidu-ERNIE, etc.) on K-BERT without pre-training
by themselves.

These positive results point to future work in (1) improv-
ing K-Query to enable filtering of unimportant triples based
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on context; (2) extending this approach to other LR mod-
els such as ELMo (Peters et al. 2018), XLNet (Yang et al.
2019), etc;
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