
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Resilient Logic Programs: Answer Set Programs Challenged by Ontologies

Sanja Lukumbuzya, Magdalena Ortiz, Mantas Šimkus
Institute of Logic and Computation, TU Wien, Austria

{lukumbuzya, ortiz}@kr.tuwien.ac.at, simkus@dbai.tuwien.ac.at

Abstract

We introduce resilient logic programs (RLPs) that couple a
non-monotonic logic program and a first-order (FO) theory or
description logic (DL) ontology. Unlike previous hybrid lan-
guages, where the interaction between the program and the
theory is limited to consistency or query entailment tests, in
RLPs answer sets must be ‘resilient’ to the models of the the-
ory, allowing non-output predicates of the program to respond
differently to different models. RLPs can elegantly express
∃∀∃-QBFs, disjunctive ASP, and configuration problems un-
der incompleteness of information. RLPs are decidable when
a couple of natural assumptions are made: (i) satisfiability of
FO theories in the presence of closed predicates is decid-
able, and (ii) rules are safe in the style of the well-known
DL-safeness. We further show that a large fragment of such
RLPs can be translated into standard (disjunctive) ASP, for
which efficient implementations exist. For RLPs with theo-
ries expressed in DLs, we use a novel relaxation of safeness
that safeguards rules via predicates whose extensions can be
inferred to have a finite bound. We present several complex-
ity results for the case where ontologies are written in some
standard DLs.

Introduction

Rule-based languages—especially those supporting non-
monotonic negation—and ontology languages like Descrip-
tion Logics (DLs) (Baader et al. 2017) offer complementary
modeling and reasoning capabilities. Indeed, rule-based lan-
guages like Answer Set Programming (ASP) (Brewka, Eiter,
and Truszczyński 2011) are tailored to provide powerful
closed-world reasoning about known objects, and features
like the default negation are important when modeling dy-
namic domains, e.g., in reasoning about actions and change.
In contrast, DLs are in general syntactic variants of first-
order logic and are suitable for open-world reasoning, es-
pecially for reasoning about anonymous objects, i.e., objects
whose identity is unknown but whose existence is implied.

Motivated by this contrast, combining rule-based lan-
guages and DLs into Hybrid Knowledge Bases (HKBs) is
a well-established research topic in KR&R (Rosati 2005;
Eiter et al. 2008; Motik and Rosati 2010; Knorr, Alferes,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Hitzler 2011). Such hybrid languages can be divided
into two classes: the world-centric and the entailment-
centric approaches. The languages in (Rosati 2005; 2006;
Bajraktari, Ortiz, and Šimkus 2018) are world-centric be-
cause an intended structure (i.e., an answer set) of a HKB is
a single first-oder structure that is “acceptable” both to the
rule and to the DL component of that HKB. Intuitively, in
such HKBs the rules base their inferences on a given model
of the DL component, rather than accessing the knowledge
that is entailed. In other words, this means that inferences via
rules must only be consistent with the DL component, which
is a rather weak way of using the knowledge stored there.
The entailment-centric approaches like (Eiter et al. 2008;
Motik and Rosati 2010) are the other extreme: when on-
tological reasoning is considered, rules can base their in-
ferences only on the logical consequences of the DL com-
ponent, which means that rules have very limited access to
individual models of the DL component.

There are many KR problems where both extremes are in-
adequate, since solutions must be resilient to a range of pos-
sible scenarios. For a simple (synthetic) example, assume we
are given a set of nodes and we want to generate a directed
graph G such that removing any single node from G will al-
ways result in a strongly connected graph. In this example,
an ontology can model the possible choices of nodes to be
removed. Intuitively, in order to validate our choice of edges
for G, we have to make sure that every possible induced
subgraph G′, obtained by removing a single node from G, is
strongly connected. However, the reachability relation in G′
will be different for different choices of G′. This and similar
examples reveal the need for a new approach that blurs the
lines between the world-centric and the entailment-centric
approaches. We thus study HKBs that may process differ-
ent models of the input ontology in different ways, in the
spirit of world-centric approaches, but the intended answer
sets, which must be resilient to the different scenarios, are
defined via a universal quantification over the models of the
ontology, in the spirit of entailment-centric approaches.

Our contributions can be summarized as follows:

• We introduce resilient logic programs (RLPs), a formal-
ism in which a standard ASP program P is paired with
a first-oder theory (or a DL ontology) T and the predi-

2917

cates are divided into output, response, and open-world
predicates. The semantics is defined via a “negotiation”
between P and T : the two components need to agree on
an answer set I over the output signature, so that no mat-
ter how I is extended into a model of T (by interpret-
ing the open-world predicates), the program P can give a
matching and justified interpretation to the response pred-
icates. Both ∃∀∃-QBFs and disjunctive ASP (disjunctive
Datalog with negation under the answer set semantics) are
naturally captured by resilient programs, and in fact, the
QBF reduction shows that reasoning in RLPs is ΣP

3 -hard
in data complexity, setting them apart form previous hy-
brid languages. We also illustrate the power of RLPs for
configuration problems with incomplete information.

• Inevitably, reasoning in RLPs is undecidable unless re-
strictions are imposed on how rules are allowed to ma-
nipulate anonymous objects. We argue that by applying
some natural restrictions, including a rule safeness condi-
tion reminiscent to the well-known DL-safeness (Motik,
Sattler, and Studer 2005; Rosati 2005), decidability of rea-
soning can be achieved. We provide a general complexity
upper bound that applies to very expressive FO fragments
like the guarded negation fragment (GFNO).

• We further introduce a slightly more restricted fragment
of RLPs, in which theories are given as sets of positive
disjunctive rules and the use of default negation in front of
response predicates is restricted. These restrictions cause
a decrease in computational complexity of RLPs and al-
low us to provide a translation into disjunctive ASP, open-
ing up a perspective for implementation.

• We then turn to RLPs where the theory is a DL ontology,
and show decidability of reasoning under a significantly
relaxed rule safeness condition, based on the following in-
tuition. Assume an ontology stating that every employee
of a company can take part in at most 5 projects, and that
all projects have at least one employee. This can be ex-
pressed via a pair of inclusions Empl �≤ 5worksFor.Proj
and Proj � ∃worksFor−.Empl. If we happen to know that
the company has n fixed employees, we can infer that
there can be at most 5n projects in any possible world.
Our setting allows to interpret Empl under the closed-
world view, and in this case the program rules are allowed
to manipulate the objects in Proj as ordinary individuals,
even though the set of all projects might not be known.
The relaxed safeness condition uses the ontology to iden-
tify concept names whose extension is forced to be rel-
atively small, assuming completeness of some of predi-
cates. Such concept names are then used to safeguard pro-
gram rules. This idea of safeness is novel to the best of our
knowledge, and seems useful in many settings, including
the kind of configuration problems we describe below.

• Finally, for the case where ontologies are written in the
well-known DLs ALCHOIQ, ALCHI and DL-LiteF ,
we provide algorithms and complexity results.

The full proofs omitted here due to the space restrictions are
available in the extended version.

Logic Programming Preliminaries

We assume countably infinite and mutually disjoint sets
Sconst, Svar, and Spred of constants, variables, and predicate
symbols, respectively. Each p ∈ Spred is associated with a
non-negative arity, denoted by art(p). A term is a variable
or a constant, and an atom is an expression p(t1, . . . , tn),
where p ∈ Spred has arity n, and t1, . . . , tn are terms.

A program is a set of rules of the form

r : h← b1, . . . , bn,not bn+1, . . . ,not bm

where n,m ≥ 0, h, b1, . . . , bm are atoms, and every variable
occurring in h, bn+1, . . . bm must occur in some b1, . . . , bn.
We let head(r) = {h}, body+(r) = {b1, . . . , bn}, and
body−(r) = {bn+1, . . . , bm}. If p is an atom, the expression
not p is a negated atom. A literal is an atom or a negated
atom. A rule r is positive if |body−(r)| = 0. A program is
positive if all its rules are positive. An atom, a rule, or a pro-
gram is ground if it contains no variables. Facts are ground
rules of the form h←, where “← ” is often omitted. A con-
straint of the form ‘← β’ is a shorthand for ‘p← β,not p’,
where p is a propositional atom not occurring elsewhere. We
use h1| · · · |hk ← β as an abbreviation for the set of rules
{hi ← β,not h1, . . . ,not hi−1,not hi+1, . . . ,not hk |
1 ≤ i ≤ k}. Given a set of constants C ⊆ Sconst, the ground-
ing of a rule w.r.t. C, in symbols ground(r, C), is a set of
rules obtained from r by uniformly replacing variables in r
by all possible elements from C. The grounding of a pro-
gram w.r.t. C is then ground(P, C) =

⋃
r∈P ground(r, C).

An (Herbrand) interpretation over Σ ⊆ Spred is a set of
ground atoms using only predicates from Σ (if Σ is not spec-
ified we assume Σ = Spred). Given an interpretation I and a
set Σ ⊆ Spred, we let I|Σ = {p(�u) | p(�u) ∈ I and p ∈ Σ}.

An interpretation I is a model of a ground positive pro-
gram P if body+(r) ⊆ I implies head(r) ∩ I �= ∅, for
each rule r ∈ P . Further, I is a minimal model of P if there
exists no J ⊂ I that is a model of P . The semantics of
programs with negation is given using a program transfor-
mation due to Gelfond and Lifschitz (1988). Given an inter-
pretation I and a program P , we define a reduct of P w.r.t.
I as PI = {head(r) ← body+(r) | body−(r) ∩ I = ∅, r ∈
ground(P, Sconst)}. We say that I is an answer set of P if I
is a minimal model of PI .

Resilient Logic Programs

We next present our resilient logic programs. Syntacti-
cally, they consist of an ordinary program equipped with a
function-free FO theory and a partition of the signature.

We denote the predicate symbols that occur in a program
P and a theory T , by sig(P) and sig(T), respectively.
Definition 1 (Syntax). A resilient logic program (RLP) is a
tuple Π = (P, T ,Σout,Σowa,Σre) where P is a program, T
is an FO theory, and the sets Σout, Σowa, Σre are a partition
of sig(P) ∪ sig(T) with Σre ∩ sig(T) = ∅. We call Σout

the set of output predicates, Σowa the set of open predicates,
and Σre the set of response predicates of Π. The predicates
in Σout ∪ Σre are called closed predicates of Π.

Our semantics uses the following generalization of a
reduct. Given a program P , an interpretation I , and Σ ⊆

2918

Spred, the reduct PI,Σ of P w.r.t. I and Σ is the ground posi-
tive program obtained from ground(P, Sconst) as follows:

1. Delete every rule r that contains a literal p(�u) such that

(a) p(�u) ∈ body+(r), p(�u) �∈ I , and p ∈ Σ,
(b) p(�u) ∈ head(r), p(�u) ∈ I , and p ∈ Σ, or
(c) p(�u) ∈ body−(r) and p(�u) ∈ I .

2. In the remaining rules, delete all negated atoms and all
atoms p(�u) with p ∈ Σ.

This definition is inherited from Clopen KBs (Bajraktari,
Ortiz, and Šimkus 2018), which in turn borrow the princi-
ple from r-hybrid KBs (Rosati 2005). Intuitively, PI,Σ is the
result of partially evaluating P according to the facts in I ,
interpreting the predicates in Σ as open-world. Note that in
order to compute the regular reduct PI we evaluate only the
negated atoms in P . In contrast, the generalized reduct re-
quires us to additionally evaluate all atoms p(�u) with p ∈ Σ,
so that the remaining program contains no predicates from
Σ. Observe that if Σ = ∅, PI coincides with PI,Σ.

We next define the semantics of RLPs. For convenience,
we adopt the standard Herbrand semantics of FO theories.
Definition 2 (Semantics). Let Π = (P, T ,Σout,Σowa,Σre)
be an RLP, and let I be an interpretation over Σout. Then I
is an answer set of Π if

(i) there exists some model J of T such that I = J|Σout
, and

(ii) for each model J of T with I = J|Σout
, there is an in-

terpretation H such that J|Σout∪Σowa
= H|Σout∪Σowa

and
H|Σout∪Σre

is a minimal model of PH,Σowa .

We call H a response to J w.r.t. I and Π.

Intuitively, an answer set of an RLP Π = (P , T , Σout,
Σowa, Σre) is an interpretation I over the output predicates
that fulfills the following two conditions: (i) I is consistent
with the theory, i.e., we can extend I into a model of T by
interpreting the open predicates and (ii) no matter how we
extend I into a model of T , we can always find a matching
interpretation for the response predicates that, together with
I , will be justified by the program P .

RLPs provide an easy way of modeling and solving prob-
lems with an underlying exist-forall-exist structure. More
precisely, RLPs are suitable for problems where we have
control over some parameters that might, to some extent,
influence the environment that we can otherwise not con-
trol and is unknown to us a priori, but to which we have to
be able to respond adequately. Note that different states of
the environment will likely require different responses. In
such scenarios, we use the theory to describe the possible
states of the environment, and the rules of the program to
process a given state. The partitioning of the predicates into
three different sets can be intuitively explained as follows.
The output predicates are the predicates whose extensions
can be controlled and that do not depend on the unknown
environment, but rather might influence the set of possible
states of the environment one has to consider. The predicates
whose extensions we have absolutely no control over are
the open predicates. These predicates are used to describe
the unknown parts of the environment that we must react

to (e.g., things related to user input). Finally, the response
predicates are the predicates used in the rules for comput-
ing responses to the environment and their extensions are
dependent on the specific extensions of the open predicates.

We next illustrate RLPs through a few examples.
Example 1. We show how to express the graph problem
from the introduction as an RLP. Given nodes n1, . . . , nk,
let Π = (P, T , {V,E}, {in, out}, {E,R}), where

T = {∃xout(x), ∀x(V (x)→ in(x) ∨ out(x)),

∀x(V (x)→ ¬in(x) ∨ ¬out(x)),
∀x∀yout(x) ∧ out(y)→ x = y}

P = {V (n1), · · · V (nk), E(x, y)|E(x, y)← V (x), V (y),

R(x, z)← R(x, y), R(y, z),

R(x, y)← E(x, y),not out(x),not out(y),

← V (x), V (y), x �= y,not out(x),not out(y),not R(x, y)}

In each answer set of Π, E defines the edge relation of a
directed graph G such that removing any single node ni, i ∈
{1, . . . , k}, from G (i.e., ni is the only node in out), results
in a graph that is still strongly connected. For example, for
k = 4 we have that I = {V (n1), V (n2), V (n3), V (n4),
E(n1, n2), E(n2, n3), E(n3, n4), E(n4, n1), E(n1, n3),
E(n3, n1), E(n2, n4), E(n4, n2)} is an intended answer set
as removing any single node from this graph (and all edges
relating to this node) yields a strongly connected graph. The
set obtained from I by removing, e.g., E(n1, n2) is not an
intended answer set. In such a graph, removing n3 results in
n2 not being reachable from n1.

We also show that RLPs can elegantly capture ∃∀∃-
quantified Boolean formulas (QBFs).
Example 2. Consider the evaluation problem for QBFs of
the form Φ = ∃X1, . . . , Xn∀Y1, . . . , Ym, ∃Z1, . . . , Zkϕ.,
where ϕ is in 3-CNF. We define an RLP Π whose answer
sets directly correspond to the truth-value assignments for
X1, , . . . , Xn for which Φ evaluates to true.

Note that Π reflects the quantifier alternation in Φ: we
want to output an assignment for the Xi (i.e., an interpreta-
tion over TX and FX) such that for every assignment for the
open-world Yi we can respond with an assignment for the
Zi that satisfies the constraints, i.e., the clauses in Φ. We let
Π = (P, T ,{VX ,VY ,VZ ,TX ,FX},{TY ,FY },{TZ ,FZ}),

T = {∀x(VY (x)→ TY (x) ∨ FY (x)),

∀x(VY (x) ∧ TY (x) ∧ FY (x)→ ⊥)}
P = {Vα(c

α
1), . . . Vα(c

α
nα

),

TX(x)|FX(x)← VX(x), TZ(x)|FZ(x)← VZ(x),

← σ(Li,1), σ(Li,2), σ(Li,3), for each clause Ci in ϕ}

where, given a literal l, σ(l) is defined as:

σ(l) =

{
Tα(c

α
i) if l = ¬αi, i = 1, . . . , nα

Fα(c
α
i) if l = αi, i = 1, . . . , nα

where α ∈ {X,Y, Z}, nX = n, nY = m, and nZ = k.

Example 3. Assume a company has to process a fixed
amount of customer orders per day. The company does not

2919

know what the exact configuration of these orders will be,
but it knows that each of them consists of up to 5 tasks and
each task requires one service offered by the company. The
company has a task of selecting which services to offer so
that no matter what the actual configuration of the orders is,
the tasks can be scheduled to employees in a way that each
task will be completed by the end of the day.

This problem is solved by an RLP in which the offered
services are captured by the output predicates, models of the
theory correspond to possible configurations of orders, and
the models of the program define viable schedules of tasks to
employees. The answer sets of such an RLP then correspond
to sets of services that, if offered, guarantee that for every
configuration of orders there exists a schedule in which each
task is completed by the end of the workday.

We define a program P1 consisting of the rules that model
the timeline of the workday:

Next(i , i + 1), for 0 ≤ i < tmax ,

Time(y)← Next(x, y), Time(x)← Next(x, y),

ltHour(x0, xn)← Next(x0, x1), . . . ,Next(xn−1, xn), 0 ≤ n < 60

Assume that the employees work eight hours per day and the
granularity of Next is one minute. We set tmax = 480.

As facts, we store the employees, the services, as well as
which employee can provide which service. For simplicity
assume that each service takes the same amount of time to
be completed, e.g., 60 minutes, and that the company needs
to process two orders per day. We also encode this informa-
tion using facts. Consider, for demonstration purposes, the
following set of facts:

P2 = {Service(s1),Service(s2),Service(s3),
Employee(e1),Employee(e2),Order(o1),Order(o2),

Provides(e1, s1),Provides(e1, s2),

Provides(e2, s1),Provides(e2, s2),Provides(e2, s3)}

We further introduce two binary predicates hasTask and
Req for specifying which orders have which tasks associ-
ated to them and which tasks require which offered services,
respectively. Assume we have an FO theory T expressing the
following information: (i) each order has at least one and at
most five tasks associated to it, (ii) each task is associated
to exactly one order and (iii) each task requires exactly one
offered service. We show later that such a theory can be ele-
gantly expressed using description logics.

The rules that select services are defined as follows:

P3 = {OfferedService(x)|OfferedService(x)← Service(x)}

The set of rules P4 in Table 1 generates a viable schedule
(Sched) consisting of tuples (x, y, z), assigning task y to
employee x to be performed starting at time point z.

Let Σout = {Order ,OfferedService}, Σowa = sig(T) \
Σout, and Σre = sig(P) \ (Σout ∪ Σowa). The answer
sets of the RLP (P, T ,Σout,Σowa,Σre), where P = P1 ∪
P2 ∪ P3 ∪ P4, represent sets of services that can be
offered and completed within the given time constraints
regardless of the type of received orders. One example

of such an answer set is I = {Order(o1),Order(o2),
OfferedService(s1)OfferedService(s2)}. It can be verified
that whatever the configurations o1 and o2 might be, we
can always find a schedule in which all tasks are completed
on time.

Note that, unlike traditional ASP, RLPs can have com-
parable answer sets, e.g., {OfferedService(s1)Order(o1),
Order(o2)} ⊂ I is also an answer set of Π.

Let J = {OfferedService(s3),Order(o1),Order(o2)}
and consider a model of T in which each order consist of five
tasks associated with the service s3. Since only employee e2
can perform s3, she needs to perform this service ten times.
However, this takes more than the 480 minutes and so no
valid schedule can be found. This means that J is not an
answer set of Π.

From Disjunctive Programs to RLPs. There is a strong
connection between RLPs and disjunctive logic programs
with negation under the answer set semantics (Eiter, Gott-
lob, and Mannila 1997). Disjunctive logic programs consist
of rules that are similar to the rules defined in the previ-
ous section, but allow disjunctions of atoms in rule heads.
Namely, disjunctive rules are of the form

h1 ∨ . . . ∨ hl ← b1, . . . , bn,not bn+1, . . . ,not bm,

where l > 1, n,m ≥ 0, h1, . . . , hl, b1, . . . , bm are atoms and
every variable occurring in h1, . . . , hl, bn+1, . . . , bm must
occur in some b1, . . . , bn. The semantics to these programs is
given analogously to the semantics of programs introduced
in the preliminaries to this paper. We next show that disjunc-
tive logic programs under the answer set semantics are fully
captured by RLPs.

Theorem 1. Every disjunctive logic program P can be
translated in polynomial time into a resilient logic program
Π = (P ′, {�},Σout, Σowa,Σre) whose answer sets coincide
with those of P .

Proof sketch. The core idea of the translation is to use two
copies of the signature of P , both encoding possible inter-
pretations over the signature and the constants of P . As the
theory component plays no role in this translation we use�.
Our strategy is the following. We first define rules that gen-
erate a candidate answer set I of P and use constraints to
ensure that I satisfies all the rules of P . For this we use the
signature of P – our set of output predicates, and one of its
copies – the response predicates. The other copy constitutes
the set of open predicates and is used to verify that I is in-
deed an answer set of P . To do this, we need to make sure
that there is no interpretation J � I that is a model of PI . In
other words, we need to check that for all possible interpre-
tations J , either (i) J = I , (ii) there is an atom h such that
h ∈ J and h �∈ I , i.e., J �⊂ I , or (iii) J violates some rule
in PI . We define the rules, using some additional response
predicates, to check for a given J if one of these conditions
holds. Since we have a universal quantification over inter-
pretations, we use open predicates to encode J . Our seman-
tics then ensures that if I is an answer set of Π then for any
possible interpretation J at least one of (i-iii) holds. Hence,

2920

P4 = {Sched(x, y, z) ← Task(y),Time(z),Req(y, u),Provides(x, u),not Illegal(x, y, z)
Illegal(x, y, z) ← Task(y),Time(z), ltHour(z, tmax),Employee(x)
Illegal(x, y, z) ← Sched(x′, y, z′), T ime(z),Employee(x), x �= x′
Illegal(x, y, z) ← Sched(x′, y, z′), T ime(z),Employee(x), z �= z′
Illegal(x, y, z) ← Task(y),Sched(x, y′, z′), ltHour(z′, z), z �= z′
Illegal(x, y, z) ← Task(y),Sched(x, y′, z′),Time(z), z = z′, y �= y′
OKTask(y) ← Sched(x, y, z) ← not OKTask(y), Task(y)}

Table 1: Rules that check whether viable schedules exist

the answer sets of P and Π coincide. The exact construction
can be found in the extended version.

Decidable RLPs

The main reasoning task for RLPs is deciding the answer set
existence, i.e., given an RLP Π, decide whether there exist
an answer set I of Π. We note that other common reason-
ing problems like skeptical (resp., brave) entailment can be
easily reduced to checking non-existence (resp., existence)
of an answer set. In particular, a ground atom p(�c) is true
in all answer sets of Π (i.e. p(�c) is a skeptical consequence)
iff the result of adding ← p(�c) to (the program component
of) Π does not have an answer set. Similarly, a ground atom
p(�c) is true in some answer set of Π (i.e. p(�c) is a brave con-
sequence) iff Π augmented with ← not p(�c) does have an
answer set. With this in mind, the rest of the paper is focused
on the problem of deciding answer set existence.

Unsurprisingly, this task is undecidable for RLPs in their
general form. This is not hard to show adapting analogous
results for some well-known hybrid languages (Levy and
Rousset 1998; Rosati 2007). In this section, we identify a
class of RLPs for which decidability can be regained.

The first step is to introduce a safeness condition for RLPs
that ensures that variables in the program range only over a
finite number of constants. To this end, we use the notion of
safeness presented in (Bajraktari, Ortiz, and Šimkus 2018)
which was inspired by the well-known DL-safeness (Motik,
Sattler, and Studer 2005; Rosati 2005):

Definition 3. An RLP Π = (P, T ,Σout,Σowa,Σre) is safe
if for each rule r ∈ P , each variable in r occurs in some
p(�u) ∈ body+(r), where p ∈ Σout ∪ Σre.

Intuitively, for RLPs that fulfill this condition, variables
in the program P range only over the set adom(P) of con-
stants explicitly mentioned in P . This is exploited to devise
a terminating algorithm for answer set existence of RLPs.

An obvious further requirement for decidability is that the
theory component of RLPs must belong to a fragment of FO
in which satisfiability is decidable. However, we need some-
thing stronger: the theory must be in a logic for which the
problem of satisfiability under closed predicates is decid-
able, i.e., given a theory T , a set of predicates Σ regarded as
closed, and an interpretation I , we can decide whether there
is a model J of T s.t. J|Σ = I .

Theorem 2. The problem of answer set existence is decid-
able for safe RLPs whose theory is in a logic for which sat-
isfiability under closed predicates is decidable.

Proof sketch. Algorithm 1 decides the answer set existence
for such RLPs. In a nutshell, the algorithm takes an RLP
Π = (P, T ,Σout,Σowa,Σre), guesses an interpretation I
and subsequently uses two oracle calls to check whether I
is an answer set of Π. The first call checks whether there
is a model J of T s.t. J|Σout

= I . The second call tries to
verify whether each such model of T has a response w.r.t.
I and Π by attempting to guess a model J ′ of T for which
this does not hold. In order to check that J ′ has no response,
another oracle call is made which tries to guess a response.
If this fails, there is a counter example to I being an an-
swer set of Π. Note that, due to our safeness condition, it suf-
fices to make the guesses only over adom(P). Further, the
subroutine isConsistent(T , I,Σ) checks whether there exists
a model J of T s.t. J|Σ = I . For RLPs that fulfill the con-
ditions from Theorem 2 this problem is decidable and the
subroutine terminates, yielding a decision procedure.

A naive analysis of Algorithm 1 yields the following up-
per bound in terms of computational complexity:

Theorem 3. Let L be a logic in which satisfiability under
closed predicates is in some complexity class C that con-
tains NP. Deciding answer set existence of safe RLPs with
theories in L is in NEXPTIMECNP

.

One of the most expressive decidable fragments of FO is
the so-called guarded negation fragment (GNFO) (Bárány,
Cate, and Segoufin 2015), which extends the guarded frag-
ment of FO and also captures most decscription logics. As
in GNFO satisfiability under closed predicates is decidable
in 2EXPTIME (Benedikt et al. 2016; Bajraktari, Ortiz, and
Šimkus 2018), by Theorem 1, answer set existence for safe
RLPs with GNFO theories is decidable and belongs to the
class NEXPTIME2EXPTIMENP

= NEXPTIME2EXPTIME.

Translation into Disjunctive Datalog

We now identify a fragment of RLPs that can be translated
into disjunctive Datalog. First, we require that all RLPs in
this fragment are safe, as described in the previous section.

We next disallow default negation in front of response
predicates in rules other than constraints. This restriction has
as an effect that, given a candidate answer set I and a model
of the theory J that agrees with I on the output predicates,
deciding whether there is a response to J can be done deter-
ministically, which reduces the computational complexity of
reasoning with such RLPs. We note that many problems, like
Example 1 and Example 3, can be captured in this fragment.

2921

Algorithm 1: Answer set existence of RLPs.
Algorithm hasAnswerSet(Π)

Input : RLP Π = (P, T ,Σout,Σowa,Σre)
Output: true iff Π has an answer
Guess an interpretation I over Σout and adom(P)
return isConsistent(T , I,Σout) and
not hasCE(I,Π, adom(P),Σout)

Subroutine hasCE(I,Π,Δ,B)
Input : Interpretation I , RLP Π = (P, T , Σout,

Σowa,Σre), Δ ⊆ Sconst, and B ⊆ sig(T)
Output: true iff there is a counter example to I

being an answer set of Π
Guess an interpretation J over sig(P) ∩ sig(T) ∪
Σout and the constants from Δ s.t. J|Σout

= I|Σout

J ′ ← J ∪ {¬p(�c) | �c ∈ Δart(p),
p ∈ sig(P) ∩ (sig(T) \ B), and p(�c) �∈ J}

return isConsistent(T , J ′,B) and
not hasResp(J,Π)

Subroutine hasResp(J,Π)
Input : Interpretation J ,

RLP Π = (P, T ,Σout,Σowa,Σre)
Output: true iff there exists a response to J w.r.t.

J|Σout
and Π

Guess an interpretation H over sig(P) and the
constants from J and adom(P) s.t. H|Σout∪Σowa

= J

return H|Σout∪Σre
is a min. model of PH,Σowa

Finally, we restrict the theory component of RLPs in this
fragment to essentially a set of positive disjunctive rules
which allows us to easily encode formulas of the theory as
rules of the program component. More formally, we con-
sider FO formulas of the form ∀x1, . . . , xlϕ, where ϕ is
a disjunction of literals using only constants and variables
x1, . . . , xl in which every variable occurring in a positive
literal involving an output predicate also occurs in a neg-
ative literal involving a an output predicate. This fragment
of FO is particularly important for DL research as the for-
mulas in it can be seen as positive disjunctive rules and
many standard DLs are rewritable into positive disjunc-
tive Datalog (see, e.g., (Hustadt, Motik, and Sattler 2007;
Bienvenu et al. 2014)).

We next show that the considered fragment of RLPs is
captured by disjunctive logic programs with negation under
the answer set semantics.

Theorem 4. Every RLP Π = (P, T ,Σout, Σowa,Σre) in the
fragment described above can be translated into a disjunc-
tive program whose answer sets restricted to Σout coincide
with the answer sets of Π.

Proof sketch. For this translation, we employ the technique
from (Eiter and Polleres 2003) that transforms two non-
disjunctive programs P1 and P2 into a single disjunctive
programP3 whose answer sets correspond to the answer sets
S of P1 for which P2 ∪ S does not have an answer set.

As the first step, we can obtain from an RLP Π =
(P, T ,Σout, Σowa,Σre) two programs Pguess and Pcheck

that do the following:

• Pguess guesses a structure over the output predicates and
makes sure that it can be extended into a model of T by
interpreting the open predicates. Answer sets of Pguess

consist of such structures, extended into models of T .
• Pcheck checks, given an answer set S of Pguess , whether

there is a model of T that agrees with S on the output
predicates and has no response. Such models constitute
the answer sets of Pcheck ∪ S.

The second step is to use the above-mentioned technique to
obtain a disjunctive program Psolve whose answer sets cor-
respond to the answer sets S of Pguess for which Pcheck ∪S
does not have an answer set. This results in Psolve having
answer sets that correspond to structures S over output pred-
icates (extended into models of T in possibly multiple dif-
ferent ways) for which there is no model of T that agrees
with S on the output predicates and has no response. Thus,
we have that the answer sets of Psolve (restricted to the out-
put predicates) and the answer sets of Π coincide.

Resilient Logic Programs with DL Theories

In this section, our focus is on RLPs whose theory is speci-
fied using description logics.
Description Logics Preliminaries. Most description
logics, in particular those considered in this paper, are frag-
ments of FO with only unary and binary predicate symbols,
and a slightly modified syntax that allows us to write formu-
las more concisely. We consider the following three DLs: the
expressive ALCHI and ALCHOIQ, and the lightweight
DL-LiteF . We assume countably infinite sets Scn ⊆ Spred
and Srn ⊆ Spred of unary predicate symbols called concept
names and binary predicate symbols called role names, re-
spectively. A role R is defined according to the following
syntax: R := P | P−, where P ∈ Srn and P− is called the
inverse of P . We sometimes abuse the notation and write
R− to denote P if R = P−. We summarize the syntax of
(complex) concepts for our considered logics:

DL-LiteF : C :=⊥ | A| ∃R
ALCHI : C :=� | A | ¬C | C � C | ∃R.C | ∀R.C

ALCHOIQ : C :=� | A | ¬C | C � C |≥ nR.C |≤ nR.C | {a},

where A ∈ Scn, R is a role, a ∈ Sconst, and n ≥ 0,
Hereinafter, C,D denote complex concepts and R,S de-

note roles in the considered logic. Moreover, we abbreviate
≤ nR.C � ≥ nR.C by = nR.C.

DL knowledge bases consist of two components: an ABox
and a TBox. An ABox is a finite set of assertions of the
form C(a) and R(a, b), where a, b ∈ Sconst. In ALCHI and
ALCHOIQ, a TBox is a finite set of expressions of the
form C � D, called concept inclusions and R � S, called
role inclusions. In DL-LiteF , a TBox consists of concept in-
clusions of the form C � D and C � ¬D and axioms of
the form (funct R). We can view TBoxes as FO theories (see
(Borgida 1996)). For example, the FO theory in Example 3

2922

ALCHI DL-LiteF ALCHOIQ

combined complexity NEXPTIMENP- c NEXPTIMENP- c in NEXPTIMENEXPTIME

combined complexity with
bounded predicate arities

EXPTIME - c ΣP
3 - c in NPNEXPTIME

data complexity ΣP
3 - c ΣP

3 - c in NPNEXPTIME

Table 2: Complexity of answer set existence for RLPs (c denotes completeness results).

corresponds to the following ALCHOIQ TBox T :

Order � ≥ 1hasTask .�� ≤ 5hasTask .�,
≥ 1Req−.� � OfferedService, Task � = 1Req .�,
Task � = 1hasTask−.Order , ≥ 1hasTask−.� � Task

We say that an interpretation is a model of a TBox if it is a
model of its corresponding FO theory.

Algorithm 1 and the known complexity results on ASP
and DLs with closed predicates allows us to characterize the
complexity of safe RLPs with DL theories. We provide re-
sults for both combined complexity, measured in terms of
the size of the whole RLP, as well as for data complexity
in which only the size of the facts matter, while the size of
the theory and the non-factual rules of the RLP’s program
component are treated as constant. Additionally, as the pro-
gram component can contain predicates of arbitrary arities,
we also provide some results for the case where these arities
are bounded by a constant.
Theorem 5. Table 2 provides correct complexity results for
the deciding the answer set existence for safe RLPs.

Note that Σ3
p-hardness in data-complexity ofALCHI and

DL-LiteF can be shown by slightly modifying the reduction
from ∃∀∃-QBFs to RLPs in Example 2. We discuss this and
other results in the extended version.

Relaxed Safeness. Recall the RLP from Example 3. This
RLP is unsafe as there are rules that contain atoms of the
form Task(x) in which the variable x is not safeguarded by
a closed predicate. However, as we know the number n of
orders that need to be processed per day, and the theory stip-
ulates that each order has at most five tasks and each task
belongs to exactly one order, we conclude that the maxi-
mum number of tasks to perform is 5n. This means that even
though the set of tasks is not known, there is an upper bound
on the number of constants that the variable x in a positive
atom of the form Task(x) can range over. Thus, it is safe to
consider Task as a quasi-closed predicate and allow positive
literals using Task to safeguard variables in rules.

We next formalize this intuition and significantly relax our
previous notion of safeness. To this end, we introduce the
notion of bounded concept name.
Definition 4. Let T be an ALCHOIQ TBox, Σ be a finite
set with Σ ⊆ Spred, and N = {{c} | c occurs in T }. The
set Bcn(T ,Σ) of bounded concept names in T w.r.t. Σ is the
smallest set that contains every concept name A ∈ sig(T)
for which at least one of the following holds:

1. A ∈ Σ,

2. there is a role R in sig(T) ∩ Σ s.t. T � A � ∃R.�,
3.T � A �

⊔
B∈B∪N B, or

4. there exists B ∈ Bcn(T ,Σ) ∪ N , a role R occurring in
T , and integers n,m ≥ 0 s.t. T � A �≥ mR.B and
T � B �≤ nR−.A.

If T is in ALCHI, item 4. in the definition above is omitted
andN = ∅. Similarly, if T is in DL-LiteF , item 3. is omitted
and item 4. is replaced by the following:

4a. there exists B ∈ Bcn(T ,Σ) and a role R occurring in T
s.t. T � A � ∃R−, T � ∃R � B, and (funct R) ∈ T .
Note that, given T and Σ, computing the set Bcn(T ,Σ)

requires a polynomial number of steps, some of which use
an entailment test as an oracle.
Proposition 1. Let T be a TBox in one of the DLs above,
Σ ⊆ Spred, and b ≥ 0. We can compute a constant b′ s.t.
|{c | A(c) ∈ J,A ∈ Bcn(T ,Σ)}| ≤ b′ holds in every model
J of T in which |{c | p(�c) ∈ J, p ∈ Σ, c occurs in �c}| ≤ b.
If T is in ALCHOIQ, b′ is at most exponential in the size
of T . Otherwise, b′ is polynomial in the size of T .

We remark that the definition above is incomplete, in the
sense that Bcn(T ,Σ) need not contain all concept names
for which a bound exists. Nonetheless, it is sufficient for
us to relax our previous notion of safeness. Given a pro-
gram P , for each p ∈ sig(P) and 1 ≤ i ≤ art(p), we
define a position p[i]. Given a set of predicates Σ, the set
ap(P,Σ) of affected positions (see (Calı̀, Gottlob, and Kifer
2013)) in P w.r.t. Σ is inductively defined as follows: (i)
p[i] ∈ ap(P,Σ), for p ∈ Σ and 1 ≤ i ≤ art(p), and (ii) if
there exists a rule r ∈ P s.t. a variable x appears in body+(r)
only in affected positions and x appears in head(r) in posi-
tion π, then π ∈ ap(P,Σ).

We call a predicate symbol p occurring in an RLP Π =
(P, T ,Σout,Σowa,Σre) bounded in Π if p ∈ Σout ∪ Σre ∪
Bcn(T ,Σout). We now relax the previous safeness condition.
Definition 5. An RLP Π = (P, T ,Σout,Σowa,Σre) fulfills
the relaxed safeness condition if for each rule r ∈ P: every
variable in r occurs in some p(�u) ∈ body+(r), where p is a
bounded predicate in Π and q[i] �∈ ap(P,Bcn(T ,Σout) \
Σout), for all q ∈ Σout and 1 ≤ i ≤ art(q).

Algorithm 1, which was originally designed for checking
answer set existence under the safeness condition in Defini-
tion 3, can be easily modified to cater to RLPs with DL the-
ories under relaxed safeness. In particular, we need to mod-
ify the main procedure hasAnswerSet to guess a candidate

2923

structure I over a set of constants whose number is at most
exponential in the size of the input RLP. Recall that, in the
original algorithm, this guess is limited to the constants that
already appear in the input rules.

The previously-obtained complexity results hold also for
RLPs with DL theories under relaxed safeness.
Theorem 6. Table 2 provides correct complexity results for
deciding the answer set existence for RLPs fulfilling the re-
laxed safeness condition.

Discussion

In this paper, we have formalized and studied resilient logic
programs as a novel hybrid language that addresses the
shortcomings of the previous world-centric and entailment-
centric approaches. There are several directions for future
research. First, it is important to identify syntactic restric-
tions to lower the complexity of reasoning. The use of strat-
ified negation for response predicates seems to be a promis-
ing approach, which we believe will allow us to avoid an NP
oracle for checking the existence of responses in the compu-
tation of answer sets (roughly, eliminating the third-level NP
oracle in the complexity results of this paper; see Theorem 2
and Table 2). The second direction is to study and implement
various rewritings of DL-based RLPs into disjunctive Data-
log, which has efficient reasoners (Leone et al. 2006). The
presented translation of the fragment of RLPs with theories
consisting of positive disjunctive rules provides the ground-
work for this.

In this paper, DL ontologies are interpreted over Herbrand
interpretations (whose domain is a fixed infinite set of con-
stants). This was done for mathematical clarity of the se-
mantics of RLPs, but it has some side-effects, e.g., ruling
out ontology models with a finite domain. This can be easily
fixed using a more complicated definition that handles two
kinds of interpretations: Herbrand interpretations for rules,
and ordinary first-order structures for DL ontologies.
Acknowledgements Funded by the Austrian Science
Fund (FWF) projects P30360, P30873 and W1255.

References

Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge Univ. Press.
Bajraktari, L.; Ortiz, M.; and Šimkus, M. 2018. Combin-
ing rules and ontologies into Clopen knowledge bases. In
Proc. of AAAI 2018.
Bárány, V.; Cate, B. T.; and Segoufin, L. 2015. Guarded
negation. J. ACM 62(3):22:1–22:26.
Benedikt, M.; Bourhis, P.; ten Cate, B.; and Puppis, G. 2016.
Querying visible and invisible information. In Proc. of LICS
2016, 297–306. ACM.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-based data access: A study through disjunctive
datalog, csp, and MMSNP. ACM Trans. Database Syst.
39(4):33:1–33:44.
Borgida, A. 1996. On the relative expressiveness of descrip-
tion logics and predicate logics. Artif. Intell. 82(1-2):353–
367.

Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the infi-
nite chase: Query answering under expressive relational con-
straints. J. Artif. Intell. Res. (JAIR) 48:115–174.
Eiter, T., and Polleres, A. 2003. Transforming co-np checks
to answer set computation by meta-interpretation. In Infor-
mal Proc. of Joint Conference on Declarative Programming
(AGP 2003), 410–421.
Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008. Combining answer set programming with
description logics for the semantic web. Artif. Intell. 172(12-
13):p. 1495.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunc-
tive datalog. ACM Transactions on Database Systems
22(3):364–418.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. of ICLP/SLP 1988,
1070–1080. MIT Press.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
description logics by a reduction to disjunctive datalog. J.
Autom. Reasoning 39(3):351–384.
Knorr, M.; Alferes, J. J.; and Hitzler, P. 2011. Local
closed world reasoning with description logics under the
well-founded semantics. Artif. Intell. 175(9-10):1528–1554.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The dlv system for knowledge
representation and reasoning. ACM Trans. Comput. Logic
7(3):499–562.
Levy, A. Y., and Rousset, M. 1998. Combining horn
rules and description logics in CARIN. Artif. Intell. 104(1-
2):165–209.
Motik, B., and Rosati, R. 2010. Reconciling description
logics and rules. J. ACM 57(5).
Motik, B.; Sattler, U.; and Studer, R. 2005. Query answering
for OWL-DL with rules. J. Web Sem. 3(1):41–60.
Rosati, R. 2005. On the decidability and complexity of
integrating ontologies and rules. J. Web Sem. 3(1):61–73.
Rosati, R. 2006. DL+log: Tight integration of description
logics and disjunctive datalog. In Proc. of KR 2006. AAAI
Press.
Rosati, R. 2007. The limits of querying ontologies. In
Proc. of ICDT 2007, volume 4353 of Lecture Notes in Com-
puter Science, 164–178. Springer.

2924

