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Abstract

Automatic KB completion for commonsense knowledge
graphs (e.g., ATOMIC and ConceptNet) poses unique chal-
lenges compared to the much studied conventional knowl-
edge bases (e.g., Freebase). Commonsense knowledge graphs
use free-form text to represent nodes, resulting in orders of
magnitude more nodes compared to conventional KBs ( ∼18x
more nodes in ATOMIC compared to Freebase (FB15K-
237)). Importantly, this implies significantly sparser graph
structures — a major challenge for existing KB completion
methods that assume densely connected graphs over a rela-
tively smaller set of nodes.
In this paper, we present novel KB completion models that
can address these challenges by exploiting the structural and
semantic context of nodes. Specifically, we investigate two
key ideas: (1) learning from local graph structure, using
graph convolutional networks and automatic graph densifi-
cation and (2) transfer learning from pre-trained language
models to knowledge graphs for enhanced contextual rep-
resentation of knowledge. We describe our method to in-
corporate information from both these sources in a joint
model and provide the first empirical results for KB com-
pletion on ATOMIC and evaluation with ranking metrics
on ConceptNet. Our results demonstrate the effectiveness of
language model representations in boosting link prediction
performance and the advantages of learning from local graph
structure (+1.5 points in MRR for ConceptNet) when training
on subgraphs for computational efficiency. Further analysis
on model predictions shines light on the types of common-
sense knowledge that language models capture well.1

1 Introduction and Motivation

While there has been a substantial amount of work on KB
completion for conventional knowledge bases such as Free-
base, relatively little work exists for KB completion for
commonsense knowledge graphs such as ATOMIC (Sap et
al. 2019) and ConceptNet (Speer and Havasi 2013). The
distinct goals of this paper are to identify unique challenges
in commonsense KB completion, investigate effective meth-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code and dataset are available at github.com/allenai/
commonsense-kg-completion.
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Figure 1: Subgraph from ConceptNet illustrating semantic
diversity of nodes. Dashed blue lines represent potential
edges to be added to the graph.

ods to address these challenges, and provide comprehensive
empirical insights and analysis.

The key challenge in completing commonsense KGs is
the scale and sparsity of the graphs. Unlike conventional
KBs, commonsense KGs consist of nodes that are repre-
sented by non-canonicalized, free-form text, as shown in
Figure 1. For example, the nodes ”prevent tooth decay” and
”tooth decay” are conceptually related, but not equivalent,
thus represented as distinct nodes. This conceptual diversity
and expressiveness of the graph, imperative for representing
commonsense, implies that the number of nodes is orders
of magnitude larger, and graphs are substantially sparser
than conventional KBs. For instance, an encyclopedic KB
like FB15K-237 (Toutanova and Chen 2015) has 100x the
density of ConceptNet and ATOMIC (node in-degrees visu-
alized in Figure 2).

In this work, we provide empirical insights on how the
sparsity of commonsense KGs poses a challenge to existing
KB completion models that implicitly assume densely con-
nected graphs. Figure 3 provides a brief preview of this ev-
idence, where the performance of ConvTransE (Shang et al.

2925



2019), a high performing KB completion model, degrades
quickly as we reduce the graph density of FB15K-237.

This motivates a strong need for investigating novel ap-
proaches to KB completion for commonsense KGs. We posit
that new methods need to better accommodate the implicit
conceptual connectivity across all nodes — both structural
and semantic – beyond what is explicitly encoded in exist-
ing commonsense KBs. Specifically, we investigate two key
ideas: (1) learning from local graph structure, using graph
convolutional networks and automatic graph densification.
and (2) transfer learning from language models to knowl-
edge graphs to improve contextual representation of nodes.

To integrate graph structure information, we present an
approach based on graph convolutional networks (GCN)
(Kipf and Welling 2017) to contextualize a node’s rep-
resentation based on its local neighborhood. For transfer
learning, we present effective approaches to fine-tune pre-
trained language models (Devlin et al. 2019) to common-
sense KGs, essentially achieving transfer learning from lan-
guage to knowledge. Our work shares the high-level spirit
of recent work from Petroni et al. (2019) that demonstrates
the use of pre-trained LMs for reconstructing KB entries,
but we provide a more focused study specifically for com-
monsense KGs. Empirical analysis leads to the observation
that GCNs, although effective on various densely connected
graphs (Schlichtkrull et al. 2018), are not as effective on
commonsense KGs out of the box, as sparse connections
do not allow effective knowledge propagation. Hence, we
propose an approach for automatic graph densification based
on semantic similarity scores between nodes. Finally, we
highlight strategies necessary to train models using infor-
mation from both the graph structure and language models.

Our main contributions are highlighted below:
1. Empirical insights about the unique challenges of com-

monsense KB completion compared to conventional en-
cyclopedic KB completion.

2. Novel KB completion methods to model the implicit
structural and semantic context of knowledge beyond
what is explicitly available in existing KGs.

3. The first empirical results on ATOMIC for KB comple-
tion and evaluation with ranking metrics on ConceptNet.

4. Analysis and insights on types of commonsense knowl-
edge captured well by language models.

In sum, our findings indicate that transfer learning is gen-
erally more effective than learning from graph structure.
Moreoever, we find that graph structure can indeed provide
complementary information which can boost performance,
especially when training with subgraphs for efficiency.

2 Knowledge Graphs

There have been several efforts in building graph-structured
representations of commonsense (Lenat 1995; Speer and
Havasi 2013; Cambria, Olsher, and Rajagopal 2014; Sap
et al. 2019). We focus our experiments on two prominent
knowledge graphs: ConceptNet and ATOMIC. Statistics for
both graphs are provided in Table 1, along with FB15K-237
– a standard KB completion dataset.

Figure 2: Heatmap showing the percentage of nodes with in-
degree belonging to the specified bins on the x-axis. The plot
illustrates the sparseness of commonsense KGs relative to a
standard KB completion benchmark (FB15K-237).

Figure 3: Trend of decreasing KB Completion Scores with
different values of graph density (in log scale) for the
FB15K-237 dataset with the ConvTransE model.

ConceptNet-100K2: CN-100K contains general com-
monsense facts about the world. This version (Li et al. 2016)
contains the Open Mind Common Sense (OMCS) entries
from ConceptNet (Speer and Havasi 2013). The nodes in
this graph contain 2.85 words on average. We used the orig-
inal splits from the dataset, and combined the two provided
development sets to create a larger development set. The
development and test sets consisted of 1200 tuples each.

ATOMIC3: The ATOMIC knowledge graph contains so-
cial commonsense knowledge about day-to-day events. The
dataset specifies effects, needs, intents and attributes of the
actors in an event. The average phrase length of nodes (4.40
words) is slightly higher than that of CN-100K. Multiple
targets may exist for a source entity and relation. The tuples
in this graph may also contain a none target in the case
that the relation type does not necessitate an annotation. The
original dataset split was created to make the set of seed
entities between the training and evaluation splits mutually
exclusive. Since the KB completion task requires entities to
be seen at least once, we create a new random 80-10-10 split
for the dataset. The development and test sets consisted of
87K tuples each.

2https://ttic.uchicago.edu/∼kgimpel/commonsense.html
3https://homes.cs.washington.edu/∼msap/atomic/
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Dataset # Nodes # Edges # Relations Density Average In-Degree

ConceptNet-100K 78088 100000 34 1.6e-5 1.25
ATOMIC 256570 610536 9 9.0e-6 2.25

FB15K-237 (for scale) 14505 272115 237 1.2e-3 16.98

Table 1: Knowledge Graph Statistics (Training Set Only). Graph density is calculated as D = V
N(N−1) , where N is the number

of nodes and V is the number of edges in the graph.

3 Machine Commonsense Completion

We investigate two key ideas for performing completion of
commonsense KGs – 1) transfer learning from language
to knowledge graphs and 2) learning from graph structure.
To address the challenge of sparsity of commonsense KGs,
we enrich the graph connectivity with synthetic semantic
similarity links to enable the effective use of GCNs. The
overall architecture of our model is illustrated in Figure 4.

Problem Formulation

Given a knowledge graph G = (N,V ) where N is the set of
nodes and V is the set of edges, we consider a single training
instance as the tuple vi = (e1, rel, e2) with source entity
e1 represented in text as ē1, relation type rel and target
entity e2, represented as ē2.4 Here, vi ∈ V and e1, e2 ∈ N .
The objective of the KB completion task is to maximize the
score of a target entity e2 given a tuple prefix (e1, rel).
Following previous work (Dettmers et al. 2018), we also
include inverse relations in our graph structure – for every
edge (e1, rel, e2), we add an inverse edge (e2, rel

−1, e1).

Transfer Learning from Text to Knowledge Graphs

Transfer learning from language to knowledge graphs has
recently been shown to be effective for commonsense
knowledge graph construction (Bosselut et al. 2019). To
transfer from language to knowledge graphs for completion,
we finetune BERT (Devlin et al. 2019) with the masked
language modeling loss and obtain rich semantic representa-
tions of nodes based on their text phrase. This allows BERT
to be attuned to a KG’s specific style of text. The input for
finetuning is the list of unique phrases used to represent
nodes in the KG. The format of the input to the model is
[CLS] + ēi + [SEP], where ēi is the natural language
phrase represented by a node. We use representations of
the [CLS] token from the last layer of the BERT model
as node representations in our models. We represent the
node embedding matrix obtained from the BERT model as
T ∈ R

|N |×M , where M is the dimensionality of BERT
embeddings.

Learning from Graph Structure

Graph Convolutional Networks (GCNs) (Kipf and Welling
2017) are effective at incorporating information from the
local neighborhood of a node in the graph. A graph con-
volutional encoder take as input a graph G, and encodes
each node as a D-dimensional embedding hi ∈ R

D for
all nodes ei ∈ N . The GCN encoder operates by sending

4we use the terms tuple and edge synonymously.

Figure 4: Model Architecture for machine commonsense
completion.

messages from a node to its neighbors, optionally weighted
by the relation type specified by the edge. This operation
occurs in multiple layers, incorporating information multi-
ple hops away from a node. The last layer’s representation
is used as the graph embedding of the node. Several variants
(Schlichtkrull et al. 2018; Veličković et al. 2018) of these
models have been proposed recently, all of which use the
same underlying local neighborhood aggregation mecha-
nism. We choose to use a version of the GCN which allows
us to 1) parameterize the relation type corresponding to an
edge and 2) account for the importance of a node’s neighbor
during aggregation. Given the graph G with R relation types
and a GCN with L layers, the operation for computing the
node representation of a node ei in layer l + 1 is:

hl+1
i = tanh

⎛
⎝∑

r∈R

∑
j∈Ji

αrβ
l
ijW

lhl
j +W l

0h
l
i

⎞
⎠ (1)

where Ji represents the neighbors of the node ei in the
graph, and W l is a linear projection matrix specific to layer
l. The initial node representation h0

i is computed using an
embedding layer. The second term in Equation 1 represents
the self-connection for the node, and is used to propagate
information from one layer to the next. αr is the weight for
the relation type of the edge and βl

i is a vector denoting the
relative importance of each of ei’s neighbors:

βl
i = softmax( ˆβl

i) (2)
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where each element of ˆ
βl
i is computed as,

ˆ
βl
ij = hl

ih
l
j (3)

Here, hl
i and hl

j are the representation of a node ei and its
neighbor ej . The output of the GCN is a node embedding
matrix H ∈ R

|N |×D.

Graph Densification The sparsity of commonsense KGs
makes it challenging for GCNs to perform information prop-
agation over a node’s neighborhood. To tackle this issue,
we add synthetic edges between nodes with semantically
similar meanings to boost the learning of graph embeddings.
These edges form a new synthetic sim relation and are only
used for computing graph embeddings but not scored by the
decoder. To form these edges, we use the fine-tuned BERT
model described earlier to extract node representations and
use these representations to compute the cosine similarity
between all pairs of nodes in the graph.

Upon computing the pairwise similarities, we use a hard
threshold τ to filter the pairs of nodes that are most similar.
This threshold is computed using different criteria for each
graph, each prioritizing the precision of these links. For CN-
100K (τ = 0.95 results in 122,618 sim edges), we plot the
distribution of pairwise similarity values between all pairs
of nodes and select the top σ/2 pairs of nodes to form
these synthetic links, where σ is the standard deviation of
the normally-distributed pairwise similarity distribution. For
ATOMIC (τ = 0.98 results in 89,682 sim edges), we obtain
a pairwise similarity distribution that is not normal, and
hence use a threshold (measured up to 2 decimal points) that
would only increase up to 100K edges in the graph5. After
this step, we obtain a set of edges V ′, where |V ′| > |V |.

Progressive Masking for Fusion

Models that use node embeddings from GCNs and BERT
tend to overly rely on BERT embeddings, rendering graph
embeddings ineffective (we verify this using a random per-
mutation test (Fisher, Rudin, and Dominici 2018) where we
randomly shuffle graph embeddings in a minibatch and ob-
serve little drop in performance). At the beginning of train-
ing, graph embeddings are not informative whereas fine-
tuned BERT embeddings provide useful information – caus-
ing the model to safely ignore graph embeddings. To prevent
this issue, we randomly mask BERT embeddings starting
with an all-zeros mask at the beginning to an all-ones mask
at the end of 100 epochs6. The ratio of dimensions masked
is set as (epoch/100) for the first 100 epochs. This strategy
forces the model to rely on both sources of information. A
similar technique was used to enforce multimodal machine
translation models to rely on images by masking out tokens
in the source (Caglayan et al. 2019).

5There are possibly other ways to choose the similarity thresh-
old from a non-normal distribution, but we choose this criterion for
the sake of simplicity. Decreasing this threshold resulted in minute
drops in performance.

6midway while training for 200 epochs.

Convolutional Decoder

Convolutional models provide strong scores for KB comple-
tion (Dettmers et al. 2018; Shang et al. 2019) and hence, we
use a convolutional decoder. Given an edge prefix (ei, rel),
graph embeddings H ∈ R

|N |×D from the GCN (§3) and
BERT-based node embeddings T ∈ R

|N |×M (§3), the de-
coder produces a score for (ei, rel, ej) where ei, ej ∈ N .
We use the convolutional decoder CONVTRANSE (Shang et
al. 2019), to score a tuple. This model is based on ConvE
(Dettmers et al. 2018) but additionally models the transla-
tional property of TransE (Bordes et al. 2013).

The model uses one of the following as input node em-
beddings – (i) graph embeddings ei = hi, (ii) BERT-based
node embeddings ei = ti, or (iii) a concatenation of both
ei = [hi; ti].7 The model proceeds by first stacking the
source node embeddings ei, and relation embeddings erel,
which are randomly initialized. The relation embeddings are
chosen to have the same dimensionality as the embedding
dimension of ei, so that the stacking operation is possible.
Assuming C different kernels and K as the width of a
kernel, the output of kernel c is given by,

mc(ei, rel)[η] =

K−1∑
τ=0

Wc(τ, 0)ei(η + τ)

+Wc(τ, 1)erel(η + τ) (4)

We denote the output for the kernel c to be Mc ∈ R
|ei| and

the concatenated output for all kernels to be M ∈ R
C|ei|.

Finally, the score for a tuple (ei, rel, ej) is computed as,

s(ei, rel, ej) = σ(M(ei, erel)Wconvej) (5)
where Wconv ∈ R

C|ei|×|ei| is a bilinear projection matrix
and σ is the sigmoid function. Upon computing scores for all
candidate tuples s(ei, rel, ej), we use a binary cross entropy
loss to train the model. All target nodes found in the training
set are treated as positive instances while all non-existing
target nodes are treated as negative instances.

Subgraph Sampling

As the graph size increases, it becomes computationally in-
tensive to train with the entire graph in memory. Specifically,
it is intensive to perform graph convolution over the entire
graph and compute scores for all nodes in the graph using
the decoder. For instance, the model with GCN and BERT
representations for ATOMIC occupies ∼30GB memory and
takes 8-10 days for training on a Quadro RTX 8000 GPU.
Hence, we sample a smaller subgraph for training. We exper-
iment with different sampling criteria and find that sampling
edges uniformly at random provides the best performance.8
For graph densification, we link all pairs of nodes in the
subgraph that cross the semantic similarity threshold τ .

7We experimented with other fusion methods (e.g., summation,
linear transformation of concatenated representations, initializing
GCN with BERT embeddings, tying initial graph embeddings with
BERT embeddings), and found that concatenation as a fusion
method works best.

8We tried using random walk sampling, snowball sampling and
uniform random sampling.
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4 Experimental Setup

Evaluation Metrics

Following previous work on KB completion (Yang et al.
2015; Dettmers et al. 2018), we use ranking metrics (HITS
and Mean Reciprocal Rank) for the purpose of evaluation.
Similar to Dettmers et al. (2018), we filter out all remaining
entities valid for an (e1, rel) pair (found across training +
validation + test sets) from the ranking when computing
scores for a gold target entity. The scores are measured in
both directions, where we compute the ranking of e2 given
(e1, rel) and the ranking of e1 given (e2, rel

−). We report
the mean HITS and MRR scores averaged across both direc-
tions. We note that there are problems with these automatic
metrics. Since commonsense KGs are highly sparse, several
false negative target entities appear at the top of the ranking.
Hence, we also perform human evaluation.

Baselines

We compare several high performing KB completion models
and a transformer-based commonsense generation model.

DistMult DistMult, proposed by Yang et al. (2015), is an
embedding-based method based on a bi-linear product be-
tween the entities and a relation matrix, which is constrained
to be a diagonal matrix. The score function for a tuple is
formulated as s(e1, rel, e2) = eT1 Wrele2.

ComplEx Trouillon et al. (2016) proposed the use of
complex-valued embeddings for nodes and relations, with
the motivation that composition of complex embeddings can
allow the model to handle a large number of relations. The
model uses a tri-linear dot product as the scoring function.

ConvE ConvE (Dettmers et al. 2018) is a convolution-
based model that stacks the node embedding and relation
embedding for an entity prefix (e1, rel) and reshapes the
resulting tensor. The model performs 2D convolution upon
this reshaped tensor and projects the output to a vector with
the same dimensionality as the node embeddings.

ConvTransE Shang et al. (2019) proposed the CON-
VTRANSE model that builds upon the ConvE model but
additionally models the translational properties of TransE.
This model is discussed in depth in Section 3.

COMeT We adapt a commonsense generation model
COMET (Bosselut et al. 2019) for completion. COMET
generates the target phrase for a given (source entity, rela-
tion) prefix. Since COMET was not trained using inverse
relations, we only compute scores in the forward direction.
We use the COMET model by ranking target nodes based
on the total and normalized negative log-likelihood score of
each candidate tuple. In the absence of a standard approach
for calibrating generation log-likelihoods, we report results

using both metrics.9 The COMET scores for ATOMIC have
been computed on a smaller evaluation set with 2000 tuples
due to computational limitations (denoted by * in table).

Proposed Models

All our proposed models use the CONVTRANSE decoder.
We experiment with using a GCN as the encoder for obtain-
ing node embeddings, these models are labeled with the pre-
fix GCN +. Models that utilize synthetic links in the graph
are labeled with the affix SIM +. For models enriched with
BERT representations, the CONVTRANSE decoder takes
phrase representations extracted from BERT (BERT +) or a
concatenation of graph embeddings and BERT embeddings
(GCN + BERT +) as input node embeddings.

Training Regimen

We train all models for at least 200 epochs and continue
training until the MRR on the development set stops improv-
ing. The MRR is evaluated on the dev set every 10 epochs
for CN-100K and every 30 epochs for ATOMIC, and the
model checkpoint with the highest MRR is used for testing.
Further details about hyperparameter settings are specified
in the supplemental material.

5 Results and Discussion

KB Completion Performance

We report our results on completion with subgraph sampling
in Table 2. For completeness, we also report results for CN-
100K with the full graph in Table 3. The baseline models are
trained with the full graph in memory. We attempt to answer
some pertinent research questions based on our results.

What does BERT know about commonsense
assertions?

Main Finding: BERT is proficient at capturing taxonomic
relations and hence, provides significant boosts for CN-
100K but is not as effective for ATOMIC.

When BERT representations are incorporated into a
model, performance improvements ranging from ∼19-35
points on MRR are observed for CN-100K. This indicates
that BERT can provide crucial information for the model to
discriminate between target entities. We discuss the reasons
for the usefulness of BERT representations below.

Assertions of the style present in CN-100K are preva-
lent in large text corpora, which indicates that masking of
tokens during pre-training would have enabled BERT to
already gain a headstart on the task of KB completion. For
instance, consider a sentence ”John bought plastic cups for
the party.” where we mask one token to obtain ”John bought
[MASK] cups for the party.” during pre-training. Now when
the BERT representations are used to score a candidate tuple
[cups, MadeOf, plastic], the model might compute
a high score for this tuple because the BERT model solved
a similar task during pre-training due to the masked LM
objective. This result concurs with recent investigations on

9The total score can be biased against longer sequences; the
normalized score can be biased against shorter sequences.
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CN-100K ATOMIC
MRR HITS@1 @3 @10 MRR HITS@1 @3 @10

DISTMULT 8.97 4.51 9.76 17.44 12.39 9.24 15.18 18.30
COMPLEX 11.40 7.42 12.45 19.01 14.24 13.27 14.13 15.96
CONVE 20.88 13.97 22.91 34.02 10.07 8.24 10.29 13.37
CONVTRANSE 18.68 7.87 23.87 38.95 12.94 12.92 12.95 12.98
COMET-NORMALIZED 6.07 0.08 2.92 21.17 3.36* 0.00* 2.15* 15.75*
COMET-TOTAL 6.21 0.00 0.00 24.00 4.91* 0.00* 2.40* 21.60*
BERT + CONVTRANSE 49.56 38.12 55.5 71.54 12.33 10.21 12.78 16.20
GCN + CONVTRANSE 29.80 21.25 33.04 47.50 13.12 10.70 13.74 17.68
SIM + GCN + CONVTRANSE 30.03 21.33 33.46 46.75 13.88 11.50 14.44 18.38
GCN + BERT + CONVTRANSE 50.38 38.79 56.46 72.96 10.8 9.04 11.21 14.10
SIM + GCN + BERT + CONVTRANSE 51.11 39.42 59.58 73.59 10.33 8.41 10.79 13.86

Table 2: KB Completion Results on CN-100K and ATOMIC with subgraph sampling. We present baselines in the top half of
the graph and our implementations in the bottom half. ’*’ indicates difference in evaluation set described in Section 4.

CN-100K
MRR HITS@1 @3 @10

BERT + CONV.. 52.25 41.04 58.46 73.50
GCN + CONV.. 27.24 18.96 30.46 43.17
SIM + GCN + CONV.. 27.51 19.04 30.79 45.46
GCN + BERT + CONV.. 50.80 39.29 57.33 72.66
SIM + GCN + BERT + CONV.. 50.17 38.71 57.08 72.00

Table 3: KB Completion Results on CN-100K with full
graph training. CONV.. is ConvTransE.

retrieval of commonsense knowledge from language models
(Petroni et al. 2019; Feldman, Davison, and Rush 2019). In-
terestingly, BERT representations are found to be less useful
for ATOMIC, because of a significantly larger number of
nodes and more complex relation types (e.g. oEffect –
effect of event on others, xNeed – what actor might need to
do before event) in ATOMIC.

Finally, we attempt to use link prediction as a scaf-
fold to find the commonsense relations that BERT captures
well. Specifically, we use the BERT+CONVTRANSE model
trained for CN-100K to find the top scoring relations (by
rank) in the evaluation set (presented in Supp:Figure 8).
We observe that BERT is most proficient at picking up
on taxonomic relations such as MadeOf, PartOf and
additionally, also does well on temporal relations such as
HasPrerequisite and ReceivesAction. This can
be explained by the higher frequency of taxonomic knowl-
edge present in large text corpora as opposed to more com-
plicated relations found in ATOMIC.

How crucial is graph structure information?

Main Finding: Local graph structure information boosts
performance when training with subgraph sampling, but
improvements fade when training with the entire graph.

We note that in the absence of BERT representations,
incorporating graph embeddings provides strong improve-
ments (> +9 points on MRR for CN-100K and +∼0.2 points
for ATOMIC) over the model without a GCN encoder (i.e.
GCN+CONVTRANSE is better than CONVTRANSE). Sim-
ilarly in the presence of BERT representations, the graph
embeddings provide complementary information about the

local neighborhood of a node which boosts performance for
CN-100K. When training with the entire graph in memory,
the improvements with using graph embeddings fade away.
However, it is important to note that, using graph embed-
dings provides benefits when it is infeasible to train models
with the entire graph in memory.

We further verify the importance of graph embeddings
when BERT-based representations are used with a random
permutation test (Fisher, Rudin, and Dominici 2018). In
this test, we randomly shuffle the graph embeddings within
each minibatch during inference and note the drop in perfor-
mance. For the SIM+GCN+BERT+CONVTRANSE model,
we observe ΔMRR drops of -7.24, -8.98 for CN-100K and
ATOMIC, respectively.

Do similarity-induced edges help?

Main Finding: Similarity-induced edges boost learning of
graph embeddings resulting in improved performance.

We observe that when both graphs are trained
with subgraph sampling but in the absence of
BERT representations, augmenting the graph with
similarity-induced edges provides improvements
(SIM+GCN+CONVTRANSE > GCN+CONVTRANSE
). When BERT representations are incorporated, the
similarity-induced edges continue to help for CN-100K but
not for ATOMIC. The SIM+GCN+BERT+CONVTRANSE
model achieves the best MRR for CN-100K. For ATOMIC,
the SIM+GCN+CONVTRANSE model provides even
stronger results than models which use BERT (+1.5 MRR
points over BERT+CONVTRANSE ). This allows us
to conclude that augmenting commonsense KGs with
similarity-induced links can provide more context for
computing graph embeddings.

Can we use generative models for ranking tuples?

Main Finding: Generative models cannot easily be repur-
posed to rank tuples for KB completion.

Although generative models like COMET have shown
to produce diverse and precise target phrases, our results
from Table 2 indicate that it is non-trivial to repurpose them
to perform completion. This is partly due to the problems
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Figure 5: Human Evaluation Results (Average % of valid
tuples among top-10 target candidates for random subset of
entity-relation pairs)

associated with using log-likelihood as an estimate for the
truth of a tuple. Nonetheless, generative models such as
COMET have several merits. These models are faster to
train, require lower memory for storage and are transductive
in nature. However, we argue that reasoning models that rely
on KBs could benefit more from a discriminative approach
towards commonsense knowledge induction, one that would
make the graph denser without adding new nodes.

Human Evaluation

Upon looking at model predictions, we note that false neg-
ative entities can appear at the top of the ranking. For
instance, when e1=PersonX wins two tickets and
rel=xEffect and the gold target entity e2=elated and
excited, our model predicts elated and excited sep-
arately in the top 10 candidate entities. Automated metrics
fail to capture this semantic similarity in predictions. Hence,
we perform human evaluation by presenting the top 10 pre-
dicted targets to 3 annotators on Amazon Mechanical Turk
(AMT), for a subset of the instances in the dev set. This
subset was created by sampling 200 instances randomly for
CN-100K, and 450 instances (=50 instances for 9 relations)
for ATOMIC. The annotators were asked to answer whether
a tuple is valid, where a valid tuple is meaningful and true.
Our results are reported in Figure 5. Samples of our model
predictions with human annotations are provided in the sup-
plementary material. Human evaluation results indicate that
using graph embeddings computed with graph densification
in addition to BERT shows improvements.

6 Related Work

A host of techniques (Bordes et al. 2013; Yang et al. 2015;
Trouillon et al. 2016; Dettmers et al. 2018; Shang et al.
2019) have been proposed for KB completion. These can be
classified into graph traversal based and embedding-based
approaches. Although embedding-based methods are more
scalable, they usually assume enough training instances for
each relation and a relatively high average degree for nodes
to generalize well. Both these criteria are typically not satis-
fied by commonsense KGs.

Among embedding-based methods, convolutional mod-
els have proven useful for computing entity-relation feature
representations (Dettmers et al. 2018; Shang et al. 2019)

and hence, we use a convolutional decoder. Simultaneously,
we make use of GCNs to incorporate a node’s neighbor-
hood into its representation. Much as we do, Shang et al.
(2019) use a GCN to compute graph embeddings and the
ConvTransE decoder to score tuples. Our work differs from
their model, as we account for the relative importance of
neighbors in our graph convolution operation, tackle the
sparsity of the graph structure by graph densification, and
provide strategies to jointly train using graph embeddings
and BERT representations. Finally, the use of BERT em-
beddings follows from work which showed that initializing
node embeddings with pre-trained GloVe vectors (Penning-
ton, Socher, and Manning 2014) improves KB completion
performance (Guu, Miller, and Liang 2015).

Prior work on completing commonsense KBs (Li et al.
2016; Saito et al. 2018; Jastrzebski et al. 2018) uses BiL-
STMs to encode a tuple and performs linear transformations
to predict a score for binary classification. We argue that
commonsense KB completion models should be trained and
evaluated for ranking. A similar effort aimed at predicting
new knowledge in ConceptNet, using dimensionality reduc-
tion was made by Speer, Havasi, and Lieberman (2008).

We believe that completing commonsense KBs is bound
to translate into improvements on a range of tasks that rely
on these KBs, such as information retrieval (Kotov and Zhai
2012), question answering (Bauer, Wang, and Bansal 2018;
Musa et al. 2018), and reading comprehension (Ostermann
et al. 2018). Storks, Gao, and Chai (2019) provide a survey
of the use of commonsense KBs in downstream tasks.

7 Conclusion

In this work, we show that existing KB completion models
underperform with commonsense knowledge graphs, due to
the sparsity and scale of these graphs. As our solution, we
propose novel KB completion models, which are enriched
by structural and semantic context, obtained from GCNs and
language model representations. We describe a progressive
masking strategy to efficiently utilize information from both
sources. Further, we show that augmenting the graph with
semantic similarity edges can help with completion. Our
results indicate that 1) BERT-based node representations can
provide significant improvements, especially when text in
the graph is similar to pre-training corpora; 2) graph embed-
dings can provide rich local context for encoding nodes, and
boost performance when training with subgraphs.
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9 Supplementary Material

Hyperparameter Details

BERT Fine-tuning We used a maximum sequence length
of 64, batch size of 32, and learning rate of 3e-5 to fine-tune
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Figure 6: Randomly sampled top-1 predictions from best
model (SIM+GCN+CONVTRANSE+BERT) for CN-100K
along with human annotations for validity of tuples.

Figure 7: Randomly sampled top-1 predictions from best
model (SIM+GCN+CONVTRANSE) for ATOMIC along
with human annotations for validity of tuples. While the
complete relation descriptions can be found in Sap et al.
(2019), it is noted that ”x” refers to PersonX and ”o” refers
to other actors besides PersonX.

the uncased BERT-Large model with the masked language
modeling objective. The warmup proportion was set to 0.1.

Baseline Models To train the baseline models, we used the
implementations provided here.10 We tuned the batch size
and learning rate for the baseline models from 128, 256, 512
and 0.001, 0.002, 0.003 and used the default values for other
hyperparameters.

10https://github.com/TimDettmers/ConvE

Figure 8: Top scoring relations for BERT+CONVTRANSE
(top) and SIM+GCN+CONVTRANSE (bottom).

Our Implementations The graph convolutional network
used 2 layers (using more ({3,4,5}) layers did not result
in significant improvements) and an input and output em-
bedding dimension of 200. The message passing algorithm
for the GCN-based models was implemented using the Deep
Graph Library (DGL). All embedding layers are initialized
with Glorot initialization. The graph batch size used for
subgraph sampling was 30000 edges. For the ConvTransE
decoder, we used 500 channels, a kernel size of 5 and a
batch size of 128. Dropout was enforced at the feature map
layers, the input layer and after the fully connected layer
in the decoder, with a value of 0.2. The Adam optimizer
was used for optimization with a learning rate of 1e-4 and
gradient clipping was performed with a max gradient norm
value of 1.0. We performed L2 weight regularization with a
weight of 0.1. We also used label smoothing with a value of
0.1.

Example Predictions
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