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Abstract

We present RARL, an approach to discover rules of the
form body ⇒ head in large knowledge bases (KBs) that typ-
ically include a set of terminological facts (TBox) and a set
of TBox-compliant assertional facts (ABox). RARL’s main
intuition is to learn rules by leveraging TBox-information
and the semantic relatedness between the predicate(s) in the
atoms of the body and the predicate in the head. RARL
uses an efficient relatedness-driven TBox traversal algorithm,
which given an input rule head, generates the set of most
semantically related candidate rule bodies. Then, rule con-
fidence is computed in the ABox based on a set of positive
and negative examples. Decoupling candidate generation and
rule quality assessment offers greater flexibility than previous
work.

1 Introduction

Knowledge Bases (KBs) like Yago, Wikidata, and DBpedia
contain millions of facts (ABox) structured with the help of
an underlying schema (TBox), which in its essential form
allows to define entity types and their hierarchy along with
the domain and range of properties. Fig. 1 (a) shows part of
the DBpedia T-Box, where the class Artist is a subClassOf
Person and the predicate director has as a domain Film and
as a range Person. Fig. 1 (c) shows an excerpt of A-Box
conforming to the TBox. KBs are automatically populated
thus being inherently incomplete (Darari et al. 2018) and
prone to errors. As an example, the fact (Virginia Kelley,
spouse, Roger Clinton) is missing in DBpedia. One way
to overcome these issues is to define declarative logical rules
like:

child(x, y) ∧ parent(y, z) ⇒ spouse(x, z) (1)

where spouse(X, Z) is the rule head (a single atom) and
child(X, Y)∧parent(Y, Z) is the rule body (a conjunction
of atoms). The rule states that some X is the spouse of
some Z if some child Y of X has as a parent Z and al-
lows to infer, among the others, the above mentioned miss-
ing fact. Rules capture common correlations in the data
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and are useful in a variety of tasks including KB comple-
tion (Chen et al. 2016), ontology enrichment (d’Amato et al.
2016), fact -checking (Shi and Weninger 2016; Fionda and
Pirrò 2018), and storage optimization (Gayathri and Kumar
2015). Rules can be used to construct relatedness explana-
tions (Pirrò 2019) that allow to (visually) understand data
correlations; as an example, one may infer that a profession
typically involves a specialization in a particular field.

We present RARL (Relatedness-Aware Rule Learning), a
rule learning approach, which combines a relatedness-driven
TBox traversal algorithm for candidate rule generation (§
3.1) with an algorithm for candidate verification and rule
confidence assessment in the ABox (§ 3.2, § 3.3). Given a
rule head pred(D, R), candidate rule bodies (§ 2.1) are gen-
erated as TBox paths that start from one of the domains
D of pred and end into one of its ranges R. An exam-
ple of candidate rule body for spouse(Person, Person) is
the TBox path Person

child−−→ Person
parent−−−→ Person (Fig. 1

(b)). To prune the candidate search space, RARL consid-
ers bounded-length bodies only including the top-k semanti-
cally related predicates to pred (§ 2.2). However, not all can-
didate bodies are verified, that is, have bindings in the ABox
and not all of them offer the same confidence. RARL lever-
ages an algorithm based on positive/negative examples for
candidate verification and confidence assessment (§ 2.3). We
show (§ 4) that RARL is scalable and finds good rules, es-
pecially on schema-rich KBs like DBpedia, Yago, and Free-
base.

RARL has been inspired by Ontological Path Finding
(OPF) (Chen et al. 2016) for candidate generation. How-
ever, OPF generates an enormous amount of candidates, es-
pecially in schema-rich KBs like DBpedia. As an exam-
ple, on the TBox in Fig. 1 (b) and for the input predicate
spouse, OPF would not be able to distinguish between
the candidates child(x, y) ∧ parent(y, z) and lyrics(x, y) ∧
deathPlace(y, z), while our approach, which is driven by a
relatedness criterion, will discard the second candidate since
lyrics and deathPlace have a much lower degree of relat-
edness to the predicate spouse than child or parent. We
were inspired by RuDiK (Ortona, Meduri, and Papotti 2018)
for the usage of examples. However, while RuDiK focuses
on learning the smallest number of rules satisfying the ex-
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Figure 1: An example of T-Box (a), its T-Box graph (b) and an A-Box graph (c) conforming to the T-Box.

amples, RARL learns every possible rule prioritizing those
having high head-body relatedness. We refer the reader to
Section 5 for a more comprehensive discussion about related
work.

2 Definitions and Background

A Knowledge Base (KB) contains facts that can be di-
vided into an ABox and a TBox. We see the ABox as a
node and edge-labeled directed multi-graph G=(V,E, T )
where V is the set of uniquely identified vertices repre-
senting entities (e.g., D. Lynch), E the set of predicates
(e.g., director) and T a set of facts (s, p, o), where s,
o ∈ V and p ∈ E. We denote by ˆp the inverse of a
predicate (from the object o to the subject s). We repre-
sent a fact (s, p, o) as p(s, o) and (s, ˆp, o) as p(o, s).
The TBox is a set of facts Tf expressed via a reserved vo-
cabulary and is used to structure knowledge in the ABox.
We focus on RDFS TBoxes and in particular on the subset
of the RDFS vocabulary Eρ={rdf:type, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range}. An ex-
cerpt of facts about the DBpedia TBox is shown in Fig. 1
(a). We considered RDFS instead of more expressive lan-
guages like OWL for two main reasons. First, information
about class hierarchies along with information about the do-
main/range of predicates is widely available in many KBs
including DBpedia, Yago, Freebase, and Wikidata. Second,
new facts about the TBox can be efficiently derived by ap-
plying a subset of the RDFS inference rules (Munoz, Pérez,
and Gutierrez 2009; Franconi et al. 2013). We apply RDFS
inference rules to the TBox to deduct novel subclass/sub-
property and domain and range information. For instance,
by applying the RDFS inference rules on the facts of the
TBox in Fig. 1 (b), a new domain for the predicate director
is Work since Film is a subClassOf Work and Film has as
domain director.

Given a set of TBox facts Tf , its TBox graph is defined as
GS=(Vs, Es, Ts), where each vi ∈ Vs denotes a class (i.e.,
entity type) and Es includes all predicates defined in Tf .
Moreover, (vs, pi, vt) ∈ Ts is a triple, where vi (resp., vt) is
the domain (resp., range) of the predicate pi ∈ Es ∩ E. An
excerpt of TBox graph is shown in Fig. 1 (b). A rule consists
of a head (a single atom) and a body (conjunction of atoms).
A rule having pred(X,Y) as a head and B1 ∧B2 ∧ ...Bd

as a body is represented as B1 ∧B2 ∧ ...Bd ⇒ pred(X,Y)
where X and Y are variables. RARL, like many other ap-
proaches (e.g., (Galárraga et al. 2015; Omran, Wang, and
Wang 2018)) does not learn arbitrary Horn rules but intro-

duces a language bias towards what rules can be learned. In
particular, it focuses on closed path rules of bounded length,
that is, rules having at most d atoms in the body and where
the sequence of predicates in the body forms a path from the
domain to the range of the predicate in the input head.

2.1 Candidate Rule Bodies and Traversal Queries

Given a head pred(D, R) and an integer d, a candidate rule
body is a set of d atoms B1 ∧B2 ∧ ...Bd that form a closed
path. We use D and R for the domain (resp., range) of pred.
A candidate rule body is a TBox path that starts from some
D∈domain(pred) and ends into some R∈range(pred).
Consider the predicate spouse and d=2, we have
that domain(spouse)=range(spouse)={Person}. Hence,
child(PersonX, PersonY)∧parent(PersonY, PersonZ) is a
candidate body, where PersonX, PersonY, and PersonZ are
variables meaning that the bindings of these variables have
to be entities of type Person. RARL can relax typing infor-
mation constraints by substituting types with fresh variables
(e.g., child(X,Y) ∧ parent(Y,Z)). To verify candidates in
the ABox, we translate them into a subset of the language
of traversal queries (Fionda, Pirrò, and Gutierrez 2015;
Fionda, Pirrò, and Consens 2015) including concatenation
(/), inverse predicate (ˆ), and node tests ([·]).
Definition 1 (Traversal Query) Given Π=B1 ∧B2 ∧ ...Bd,
let vs be the shared variable between Bi and Bi+1 (we con-
sider closed-path rules), v11 and v12 (resp., v21 and v22) the first
(resp., second) other variable, and pi the predicate in Bi.

• If vs=v11=v21 , then Bi ∧Bi+1 becomes ˆpi/pi+1.
• If vs=v11=v22 , then Bi ∧Bi+1 becomes ˆpi/ˆpi+1.
• If vs=v12=v21 , then Bi ∧Bi+1 becomes pi/pi+1.
• If vs=v12=v22 , then Bi ∧Bi+1 becomes pi/ˆpi+1.

By concatenating the chunks from all Bi and Bi+1, we get
the traversal query associated with the candidate body.

When considering typed variables (e.g., PersonX),
each chunk also includes a type check (via the [·]
operator) of the endpoints. Given child(PersonX,
PersonY)∧parent(PersonY, PersonZ) the correspond-
ing traversal queries is [Person]child/parent[Person].
When no typing information is considered the query is
child/parent.

A candidate is verified if there exists a copy of it
in the ABox where all (typed) variables are substituted
by constants. For instance, the previous candidate is ver-
ified by child(D. Lynch, L. Lynch)∧parent(L. Lynch,
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E. Stofle) and child(D. Lynch, J. Lynch)∧parent(J.
Lynch, M. V. Lentz) while the candidate parent(PersonY,
PersonX)∧parent(PersonX, PersonZ) cannot be verified
(Fig. 1 (c)). Note that traversal queries get rid of variables
from candidate bodies. The usage of traversal queries in
our algorithm for body verification and confidence assess-
ment guarantees efficiency. Indeed, the rule learning algo-
rithm implemented by RARL algorithm runs in polynomial
time. On the contrary, if we were to consider bodies with
variables, that is, conjunctive queries, performance will sig-
nificantly worsen. We will treat this aspect in Section 4.1.

2.2 Predicate and Rule Relatedness

To assess the relatedness between a pair of predicates pi
and pj , we start by computing the Triple Frequency de-
fined as: TF (pi, pj)=log(1 + Ci,j), where Ci,j counts how
many times pi and pj connect the same subjects and ob-
jects in the ABox. The Inverse Triple Frequency is de-
fined as: ITF (pj , E)=log |E|

|{pi:Ci,j>0}| . This approach re-
sembles the TF-IDF scheme used in information retrieval
that has been further extended to KGs (Shiralkar et al. 2017;
Pirrò 2012). Hence, we can build a (symmetric) matrix CM

where each element is CM (i, j)=TF (pi, pj)×ITF (pj , E).
At this point, a relatedness matrix MR can be con-
structed, where MR(pi, pj)=Rel(pi, pj)=Cosine(Wi,Wj),
where Wi (resp., Wj) is the row of pi (resp., pj) in CM .
The intuition of RARL is that meaningful rules contain (se-
quences of) predicates in the body that are semantically close
to the predicate in head. Let r: B1 ∧ B2, ..., Bd ⇒ p(X,Y)
be a rule where p and pi ∈ Bi are predicates. Hence, we
define three rule relatedness measures:

1. relH(r) = Rel(p,p1)+...+Rel(p,pd)
d , which is the average

relatedness between the predicate in the head and the
predicates in the body.

2. relB(r)=
d∑

i=2

i−1∑
j=1

Rel(pi, pj), which considers

relatedness values between predicates in the body, where:

M =

⎡
⎢⎣
Rel(p1, p1) Rel(p1, p2) · · · Rel(p1, pd)
Rel(p2, p1) Rel(p2, p2) · · · Rel(p2, pd)

· · · · · · · · · · · ·
Rel(pd, p1) Rel(pd, p2) · · · Rel(pd, pd)

⎤
⎥⎦

3. relHB(r) = γ · relH(r) + θ · relB(r), with γ + θ=1

2.3 Rule Confidence

The confidence of a rule is usually defined as the num-
ber of body groundings, divided by the number of those
body groundings that make the head true. The Partial Com-
pleteness Assumption (PCA) (Galárraga et al. 2015) allow
to guess counter-examples for rules assuming that if a KB
contains one or more object values for a given subject and
predicate, then it contains all possible values. Zupanc et
al. (Zupanc and Davis 2018) further refine the PCA as for
information about triples not in the KBs. Other approaches
like (Tanon et al. 2017) consider completeness-aware scores.
These approaches can be computationally demanding in
large KBs due to the potential many joins to be evaluated

that are related to the number of body atoms. In this work,
to better cater for data errors and incompleteness that charac-
terize KBs (Ortona, Meduri, and Papotti 2018) RARL com-
putes rule confidence based on a set of (automatically gen-
erated) positive (V +) and negative (V −) examples (Ortona,
Meduri, and Papotti 2018). Positive examples (ps, pe) ∈ V +

can be directly found by sampling from the ABox triples
of the form (ps, p, pe), where p is the predicate in the rule
head. As for the set V −, a negative pair (rs, re) is gener-
ated if (i): either rs (resp., rs ) is the subject of one or more
facts (rs, p, re) (resp.,(rs, p, re) with re �=re and rs �=rs; (ii):
(rs, re) belongs to (rs, p, re) with p �=p; (iii) the constrain
type(rs)=domain(p) and type(re)= range(p) is respected.

The confidence measure for a candidate rule body Π and
a set of positive and negative pairs is :

cex(Π, V +, V −) = α · |S
+|

|V +| − β · |S
−|

|V −| (2)

where |S+| (resp., |S−|) is the number of positive (resp.,
negative) pairs that verify the candidate body and α+β=1.
RARL learns uncertain rules covering at least some posi-
tive and usually also some negative example. Moreover, by
switching the role of positive and negative examples RARL
can mine negative rules useful to spot inconsistencies (e.g.,
if A is married to B, then A cannot be the child of B).

3 Rule Learning Algorithm

We now describe the RARL rule learning algorithm (Algo-
rithm 1). Given an input predicate p, the algorithm finds can-
didate rule bodies having at most d atoms, including the top-
k predicates related to p, and ranked by the measure relR
(§ 2.2) (line 2). The algorithm builds a reduced (typically
smaller) ABox graph by considering the examples V + and
V − upon which rule confidence is assessed (line 6) based on
the weight of positive (α) and negative (β) examples.

Algorithm 1: RARL (p, k, d, G, GS , MR, V +,
V −, relR, α, β)

1 R = ∅
2 B=

generateCandidateBodies(p, k, d,GS ,MR, relR)
3 while B �= ∅ do
4 Πi = REMOVEFIRST(B) /* priority queue ranked by

rule relatedness*/
5 Ge(V

+, V −) = getReducedABoxGraph(G, Πi,
V +, V −)

6 r=getRuleAndConfidence
(Πi, α, β, V

+, V −,Ge)
7 R = R∪ r

3.1 Candidate Generation

Candidate generation (Algorithm 2) is based on a traversal
of the TBox graph GS , which is treated as an undirected
graph. To prune the search space during the traversal, the
algorithm adopts two strategies. First, it only considers the
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top-k most related predicates to p (found via the relatedness
matrix MR) and the domains and ranges of these predicates
as starting and ending nodes, respectively (lines 3-4). To
avoid the generation of too abstract rules, for each predicate
it considers the domain/range Ca asserted in the TBox and,
among those inferred, only that immediately up to Ca in the
class hierarchy, if any. For instance, in the TBox in Fig. 1
(b) for director, it considers Film and Work, but do not con-
sider Agent. On the other hand, for producer it considers
Agent. Second, the traversal is bound by the value d, that is,
the distance (in terms of edges) from the starting node (one
of the domains of the target or related predicates) to the end
node (one of the ranges of the target or related predicates).
The algorithm in parallel (lines 5-19):

1. Generates length-1 candidate bodies (lines 6-11) starting
from the domains or ranges of predicates in R. For in-
stance, if writer is the input predicate and director is a
related predicate, length-1 candidate bodies must start ei-
ther from Work or Film (i.e., the domain of writer and
director, respectively) and end into Person (the range
of both writer and director). In this case, writer(Work,
Person) and director(Work, Person) (the edge director
from Work was inferred via RDFS reasoning) are both
length-1 valid candidates (see Fig.1 (b)) that are added to
the results along with their rule relatedness values (line
11).

2. Expands length-1 candidates up to length d and add
to the results if a valid range is reached (lines 12-
19). For instance, from Person, that is, the last
node of the previously found length-1 candidates,
the traversal continues (via expandBody line 15) and
leads to Film and Work. This gives, among the
others, the length-2 candidates writer(Work, Per-
son)∧writer(Person, Work) and writer(Work, Per-
son)∧director(Person, Work). However, for both can-
didates, the check at line 18 fails since they do not
reach the only valid range Person. When further ex-
panding these candidates the algorithm gets, among
the others, the length-3 candidate writer(Work, Per-
son)∧writer(Person, Work)∧writer(Work, Person),
which passes the check and becomes a valid result (line
19).

We mention a couple of important aspects. First, we ex-
clude the RDFS vocabulary predicates during the traversal
of the TBox graph as we are interested in learning rules that
are reflected in the ABox. Second, candidate rule bodies in-
clude predicates and entity types (i.e., class names). To re-
lease the constraint on entity types, RARL can replace the
latter with fresh variables. Finally, when domains/ranges are
missing RARL considers them to be the abstract concept
Thing. Note that in this case, our approach is still useful as
it can prune the search space by only considering the top-k
related predicates to the input predicate during the traversal
of the TBox.

3.2 Verification and Confidence Computation

To build the reduced ABox graph from a candidate rule
body Π=B1 ∧B2 ∧ ...Bd, Algorithm 3 first translates it into

Algorithm 2: generateCandidateBodies(p, k, d,GS ,
MR)

1 B = ∅; /* priority queue based on rule relatedness */
2 R= getTopKPredicates(p,k)
3 Doms= getDomains(R) /* set of domains of predicates

in R */
4 Rangs= getRanges(R) /* set of ranges of predicates in

R */
// Parallel Execution:

5 for each predicate pi ∈ R do
6 Let Δ1 = ∅
7 for (tr, pi, ts) ∈ GS do
8 if tr ∈ Doms then
9 Δ1=Δ1 ∪ {pi(tr, ts)}

10 if ts ∈ Rangs then
11 B = B ∪

{pi(tr, ts),getRuleRelatedness(p, pi)}
// Same for ts ∈ Rangs

12 for j = 2, ..., d do
13 Let Δj = ∅;
14 for each candidate body π ∈ Δj−1 do
15 for (ti, p, tj)∈expandBody(π,GS , R) do
16 Δj = Δj ∪ {π ∧ p(ti, tj)} //add atom
17 for each candiate body πj ∈ Δj do
18 if checkRange(πj ,Rangs) then
19 B=B ∪ {πj , getRuleRelatedness(p, πj)}
20 return B

its corresponding traversal query (Definition 1) e=p̄1/p̄2/p̄d
(where p̄i denote a predicate pi or its inverse ˆpi).

From e, it is possible to construct the associ-
ated Nondeterministic Finite-state Automaton with ε-
transitions (Hopcroft, Motwani, and Ullman 2006) Ae,
which recognizes strings belonging to the language defined
by e. Let Σe be the set of predicates that appear in e and |e|
its size (number of symbols). The automaton corresponding
to e is Ae=(Q,Σe, δ, q0, F ), where Q is the set of states,
δ:Q× (Σe ∪ {ε, ps}) → 2Q the transition function, q0 ∈ Q
the initial state and F ⊆ Q the set of accepting (final) states.
Ae can be built with costs O(|e|) following the Thomson’s
construction rules (Hopcroft, Motwani, and Ullman 2006).
For instance, Fig. 2 (b) shows a candidate body along with
the associated traversal query and automaton. Algorithm 3
builds Ge(V

+, V −) by evaluating the expression e on G.
We observe that Ge(V

+, V −) is a graph where each node
is a pair (id, state), where id is the label of a node in the
original ABox G and state is the state of Ae at which the
node has been reached during the evaluation of e (see Fig. 2
(c)). The algorithm consists of two main phases:

1. Initialization: A node n∗
s is added to the set of nodes of

the ABox graph G; moreover, an edge labeled with the
special label ps, not present in the KB, connects n∗

s to the
first element of both positive and negative examples (line
4). This serves the purpose of starting the algorithm from
the node n∗

s no matter the sets V + and V −. Fig. 2 (a)
shows the ABox after the initialization with the examples
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Algorithm 3: getReducedABoxGraph(G, Πi, V +,
V −)

1 e=getTraversalQuery(Π) /* Definition 1 */
2 Ae = (Q,Σe, δ, q0, F ) /* NFA associated with e */
3 S=V +∪V − /* S contains pairs (vs, ve) /*
4 V =V ∪ {n∗

s}, E = E ∪ {ps},
T = T ∪ {(n∗

s, ps, vs)}, ∀vs ∈ S.
5 Q′= {(n∗

s, q0)}
6 δ′= ∅
7 Ge(V

+, V −)=({(n∗
s, q0)},Σe, ∅, (n∗

s, q0), ∅)
8 foreach (n, q) ∈ Q′ do
9 foreach δ(q, p) ∈ Ae do

10 if p in Σe then
11 foreach q′ in δ(q, p) ∧ (n, p, n′) in

traverseEdge(n, p) do
12 Q′= Q′ ∪ {(n′, q′)}
13 add (n′, q′) to δ′((n, q), p)
14 if q′in F then
15 add (n′, q′) to F ′

16 return Ge(V
+, V −)

qFq0 q1
p1p1 p2p2

AeAe
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Figure 2: An example of reduced ABox graph computation.

in Fig. 2 (b).
2. Loops: For each pair of (node, state) (n, q) in Q′ (line

8), the algorithm considers all outgoing transitions and
the transition function. The state (n′, q′) and the transi-
tion ((n, q), p, (n′, q′)) are added to Ge(V

+, V −) if and
only if q′ ∈ δ(q, p), p ∈ Σe and the triple (n, p, n′) ∈
traverseEdge(n, p), which find nodes n′ reached in the
ABox when traversing edges labeled as p starting from
n. If a node n′ is reached at a final state q′ in F , the pair
(n′, q′) is added to the final states F ′ of Ge(V

+, V −).
In Fig. 2, we note that the reduced ABox graph contains
in the leftmost part all starting nodes reached at the ini-
tial state of Ae. These nodes are linked to other nodes
reached at the state q1 when traversing edges labeled as
p1 (note that p1 links the state q0 to the state q1 in Ae).
From e4 it is not possible to reach a final state; this is be-
cause there is no path in the ABox, which starting from
e4 allows reaching any node via the sequence of edges
p1, p2. Note also that the node (e13, qF ) in Ge(V

+, V −)
is not useful; this is because from e2 we are interested
in finding a path that leads to e11 while the path found
allows reaching e13.

Our implementation of Algorithm 3 parallelizes lines 3-
17; moreover, it constructs Ge(V

+, V −) by only loading

into main memory the portion of the ABox G traversed
(via repeated calls to the procedure traverseEdge(n,p)) when
evaluating e (line 11).
Theorem 2 Let Ge=(Ve, Ee, Te) the subgraph of the ABox
graph G traversed when evaluating the traversal query e
starting from n∗

s . The reduced ABox graph Ge(V
+, V −) can

be built in time O(|Ge| × |e|) using Algorithm 3.
The result holds since the maximum number of transitions
in Ge(V

+, V −) is bound by |Te| × |Q| (lines 8-10); more-
over additional |Ve| × |Ae| can be ε transitions. Hence, the
maximum number of transitions in Ge(V

+, V −) is |δ′| =
O(|Ge| × |Ae|) = O(|Ge| × |e|).

3.3 Rule Confidence Computation

The last step of the RARL algorithm is computing rule con-
fidence. Given a (positive or negative) pair (ei, ej), the ra-
tionale is to check in Ge(V

+, V −) whether from (ej , qF ),
with qF in F ′, it is possible to reach (ei, q0), where q0 is the
initial state, by navigating both Ge(V

+, V −) and Ae back-
ward. For instance, in Fig. 2, for the pair (e1, e5), the check
starts from (e5, qF); then the algorithm checks whether by
traversing the sequence of edges p2, p1 it is possible to reach
the node (e1, q0). As this is the case, the pair verifies the
candidate body and is added to the set S+. With the same
reasoning, the negative pair (e3, e6) is added to the set S−.
In this example, no other pair is verified. When α=β=0.5,
the confidence of the rule having as body p1(x, y)∧p2(y, z)
is 0.5. The verification of pairs to build the sets S+ and S− is
done in parallel. The algorithm runs in polynomial time as,
for each pair to be verified, each state and each transition in
Ge(V

+, V −) is visited at most once with cost O(|Q′|+ |δ′|).

4 Experiments

We considered four-real world datasets, that is, WN-18RR
and FB15-237 used in (Meilicke et al. 2019), and excerpts of
Yago3-10 (Yago) (Galárraga et al. 2015) and DBpedia (Shi-
ralkar et al. 2017). For all these datasets we used the portion
of the TBox schema including subclass information and do-
main and range of properties. Details about the datasets are
available in Table 1.

Table 1: Datasets characteristics.
WN-18RR FB15-237 YAGO DBpedia

Entities ∼40K ∼14K ∼123K ∼5.5M
Predicates 11 237 37 663

Triples ∼86K ∼272K ∼1M ∼12M
Testset 3K 20K 5K

Following (Meilicke et al. 2019), we computed the fil-
tered hits@1, filtered hits@10, and the mean reciprocal rank
(MRR); we did not compute the filtered MRR as we are only
interested in computing top-k ranks only. In this sense, we
assume a candidate entity to be an incorrect prediction if it
is ranked at a position >k. We considered the following de-
fault parameter values: d=3 (max. body length), topPs=10
(top-10 related predicates), topC=80% (percentage of can-
didate bodies for which we want to compute confidence),
α=β=0.5 (weights for the confidence score in equation (2)),

2979



nExs=80% (number examples used as a percentage of all
available positive facts for a predicate). We also found that
the relHB rule relatedness measure gave the best perfor-
mance and then consider it in the experiments that follow;
the weights of the two components were set to γ = θ = 0.5.
We implemented RARL in Java and ran experiments on a
laptop with 4 cores (each with 2,7 GHz) and 16GB RAM.
We pre-computed the (symmetric) relatedness matrices: on
the largest dataset DBpedia, the time required was ∼22m.

4.1 Performance Analysis

We tested several aspects of our approach on the largest DB-
pedia dataset. First, to show the benefits of our automata-
based algorithm for body verification and confidence com-
putation, we considered a variant of it, which generates can-
didate bodies via SPARQL queries on the TBox (loaded in
memory) and treats the candidates as a conjunctive query.
Then, examples are verified in the ABox (loaded on a local
endpoint) via Boolean (ASK) SPARQL queries. We refer to
this variant of our approach as RARL-SPARQL. Table 2
reports the running times for different values of the d pa-
rameter. Running times refer to the discovering of all rules
associated with each of the 663 predicates.

Table 2: Comparison between RARL-SPARQL and RARL
with topPs=10, nExs=100%, and topC=80%.

d≤1 d≤2 d≤3
TGen TConf TGen TConf TGen TConf

RARL-SPARQL 11.42 10.46 21.95 31.55 35.47 418.2
RARL 4.12 6.45 11.45 18.32 16.73 121.4

We observe that RARL-SPARQL is always slower than
RARL both in terms of candidate generation (TGen) and
verification and confidence assessment (TConf ). This dif-
ference becomes more evident as the length of the rule (pa-
rameter d) grows. The number of candidate bodies verified
by at least one positive example was of ∼13.5K. Second,
to dig deeper into the impact of parameters on the running
times of RARL, we conducted additional experiments vary-
ing nExs and fixing topPs=10 and d=3. We noted that the
running time increases almost linearly with the number of
examples. For instance, when nExs=20% the running time
for the computation of confidence was of ∼30 minutes and
the number of verified candidates decreased to ∼3K. Indeed,
with a lower number of examples, it is less likely that one of
them verifies a candidate. Third, we conducted additional
experiments varying topPs. Even in this case, we observed
an increase of both the running time and number of bodies
verified as topPs increases. For instance, when topPs=30
the running time for both the generation and the verifica-
tion almost doubled and the number of candidates verified
reached the value of ∼34K. However, the more predicates
are considered during the generation of candidates, the lower
will be their rule relatedness, which leads to the generation
of rules with lower confidence.

4.2 Performance and Rule Quality Comparison

We compared RARL (Table 3) with two recent systems, that
is, anyBURL (Meilicke et al. 2019) and RLvLR (Omran,

Wang, and Wang 2018), in terms of num. of rules found
(#R), num. of high quality rules (#QR), where a rule is of
high quality if the confidence is ≥0.7 (Omran, Wang, and
Wang 2018), and running time in minutes (Time). As re-
ported in (Omran, Wang, and Wang 2018), RLvLR performs
better than other competitors like AMIE and Ontological
Path Finding (Chen et al. 2016); hence, we did not consider
them in the evaluation.

Table 3: Rule Learning Comparison on DBpedia.
Approach #R #QR Time

RLvLR 20 predicates 855 183 351
anyBURL(10Ks, sample=1000, d=3) 3609 425 48
anyBURL(10Ks, sample=100, d=3) 20564 3246 91

RARL(topPs=10, nExs=100%, topC=80%) 13561 3564 138
RARL(topPs=5, nExs=80%, topC=50%) 5465 2132 58

Running time for RLvLR refers to the 20 predicates se-
lected in (Omran, Wang, and Wang 2018). We stopped
RLvLR after 6h when using all predicates. For RLvLR we
considered the best configuration reported in (Omran, Wang,
and Wang 2018). The table shows that RLvLR is the slowest
system; indeed, it took 351m to learn rules for 20 predicates
only. The reason could be the fact that it uses embeddings
(expensive to compute) for rule learning. RARL took less
time than RLvLR and considered all DBpedia predicates.
As for anyBURL, we considered a time of 10K seconds and
set the max. rule length (parameter d) equal to 3, the same
as the other systems. When changing the sample size (used
for restricting the number of samples drawn for comput-
ing confidence) of anyBURL the system kept running for
a longer time. By digging into the kind of rules learned,
we observed that ∼80% of the high-quality rules learned by
anyBURL are of length 1 and include constants (e.g., stan-
dardTime(Y, Myanmar Standard Time)⇒birthPlace(Y,
Yin Yin Nwe), genre(Dsign Music, Y)⇒genre(Y, Re-
belde) having both confidence 1). We observed that longer
rules (including 2 or 3 atoms) are much less in number, have
much lower confidence values, and do not include constants.
The number of (constant-free) rules learned by RLvLR and
RARL including 2 or 3 atoms in the body is much larger.
When adopting a more restricted configuration for RARL,
focusing more on candidates having higher relatedness, we
observed a ∼7x speedup in terms of time. Although the
number of high-quality rules decreases, it is still higher than
that of the other systems. We point out that the decoupling
between candidate generation and confidence assessment
and the possibility to pick a specific predicate for rule learn-
ing is a useful feature. Indeed, one could quickly generate
candidate rules (TGen is lower than TConf ), inspect them
and proceed to confidence assessment.

4.3 Evaluation on Link Prediction

The goal of this experiment was use rules for link prediction.
Given a head p(e,X), the goal is to predict entities e′ ∈ G
that can be bound to the variable X; here, p is a predicate,
e ∈ G and p(e, e′) /∈ G. As these entities can be suggested
by multiple rules, following the methodology in (Meilicke
et al. 2019) we order the candidate entities via the maxi-
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Table 4: Experiments on Link Prediction.
WN-18RR FB15K-237 YAGO

Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

ConvE (Dettmers et al. 2018) 39 48 46 23.9 49.1 31.6 45 66 52
ComplEx-N3 (Lacroix, Usunier, and Obozinski 2018) 57 48 56 37 71 58
R-GCN+ (Schlichtkrull et al. 2018) 15.1 41.7 24.9
CrossE (Zhang et al. 2019) 21.1 47.4 29.9
AMIE+ (Galárraga et al. 2015) 35.8 38.8 1.4 40.9
RuleN (Meilicke et al. 2018) 42.7 53.6 18.2 42.0
RLvLR (Omran, Wang, and Wang 2018) 39.3 24.0 39.3 24
AnyBURL (Meilicke et al. 2019) 44.1 55.2 ≥47 23.3 48.6 ≥31 47.7 67.3 ≥54
RARL 35.1 40.9 ≥36 25.12 49.12 ≥32 48.2 69.3 ≥56
Δ topPs=20 -5.2 -2.1 -2 -7.5 -6.4 -5.3 -4.8 -4.5 -3.2
Δ nExs=100% +0.01 +0.11 +0.13 +0.3 +0.2 +0.01 +0.02 +0.04 +0.023

mum of the confidence of all rules that have generated them.
If the maximum score of multiple candidate entities is the
same we proceed by considering the second-best rule that
generated them and so forth until we find a rule that makes a
difference. For the evaluation we did not consider the FB-
15K and WN18 datasets as they have been criticized for
the presence of redundancies; we used their modified ver-
sions WN-18RR and FB15K-237 as done by (Meilicke et al.
2019) instead. Besides, we considered Yago (Dettmers et al.
2018). As competitors, we considered approaches using em-
bedding techniques, symbolic techniques and a combination
of them recently published. For RARL we started with the
configuration with topPs=10, nExs=80%, topC=80% but
we also experimented other parameter values and reported
the performance variation in the last block of Table 4. The
first block shows results for embedding-based techniques.
The performance of RARL is already competitive on both
FB15K-237 and Yago with the default configuration. We ob-
serve, for instance, that on FB15K-237 RARL outperforms
competitors (apart from ConvE on hit@1). At the same time,
we observe that on WN-18RR, RARL performs worse than
all other systems. The reason is that the WN-18RR schema is
very simple; it includes a few relations whose domain/range
is almost always a Synset. Hence, the rule generated may
not be adequate to finally predict missing links. Indeed, we
noted that the confidence of rules found by RARL on WN-
18RR is usually low. On the other hand, on FB15K and Yago
that feature a richer schema RARL behaves quite well. We
want to mention that the running time of embedding-based
approaches is usually much larger than that of RARL; we
were not able to run any of these approaches on the DB-
pedia dataset within a timeout of 5h (times for RARL are
reported in Table 3). Moreover, most of these approaches re-
quire the tuning of hyper-parameters via a time-consuming
grid search. We ran RARL on a laptop while most of the
embedding-based approaches require complex processing
infrastructures (e.g., based on expensive GPUs). The other
approaches in Table 4 includes AMIE and RuleN, both top-
down approach that explore the whole ABox to find rules
of bound-length. AMIE is based on (expensive) join oper-
ations for both rule learning and confidence computation
based on the Partial Completeness Assumption. Indeed, the
authors defined an approximation of PCA to reduce the run-
ning time. RuleN uses a sampling mechanism to speed-up

the learning process. In this group, we also considered any-
BURL, which differently from the previous systems adopts
a bottom-up approach to learn rules. It allows to learn rules
within a certain amount of time given as input. Apart from
WN-18RR, RARL outperformed all competitors. Finally,
we observe that increasing the number of related predicates
usually degrades the performance while increasing the num-
ber of examples brings a negligible improvement.

5 Related Work

Most of existing approaches rely on different kinds
of ABox-centered algorithms to discover rules.
AMIE (Galárraga et al. 2015) explores the ABox search
space and computes (approximate) rule quality measures.
This hinders its applicability to large KBs. RuDIK (Ortona,
Meduri, and Papotti 2018) learns approximate (negative)
rules relying on examples. It only considers the ABox and
aims at finding a small set of rules that cover the majority
of positive and as few negative examples as possible.
AnyBURL (Meilicke et al. 2019) learns rules that cover
at least some positive and some negative examples. Our
approach differs in several ways. First, it starts from the
TBox available in many KBs (e.g., DBpedia, Freebase) but
overlooked by these approaches. Second, it learns rules
driven by a relatedness criterion, prioritizing rules having
higher rule relatedness (§ 2.2). To verify candidate bodies
in the ABox, RARL relies on a examples like RuDIK.
However, while RuDIK focuses on learning the smallest
number of rules satisfying the examples, RARL learns
every possible rule prioritizing those with high relatedness.
RARL is inspired by Ontological Path Finding (OPF)
(Chen et al. 2016), which generates candidate rules from
the TBox. However, OPF disregards the fact that not all
candidates are the same, which leads to generating too
many candidates. For instance, for the head spouse(X, Y),
the candidate rule body child(x, y) ∧ parent(y, z) with
the predicates child and parent will be more plausible
than a body with lyrics or deathPlace since child and
parent are more related to the predicate spouse than lyrics
or deathPlace. Moreover, our algorithm for confidence
assessment has a lower memory footprint as it only loads
the portion of the ABox of interest for the verification and
thus can scale to large KBs.

Our work differs from embedding-based approaches like
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EMBEDRULE (Yang et al. 2015) and RLvLR (Omran,
Wang, and Wang 2018) in several respects. First, differently
from EMBEDRULE it does not impose the constraint on the
body atoms to include different predicates. Second, both ap-
proaches focus on simple confidence measures that do not
to capture all the subtleties of KB’s information (Galárraga
et al. 2015); RARL leverages positive/negative examples.
Finally, RARL can scale to large KBs.

6 Conclusions and Future Work

We introduced the RARL rule learning approach based on
the intuition that rule bodies for an input head can be found
by looking at the relatedness between the predicate in the
head and those in the bodies. RARL leverages an algorithm,
which traverses the TBox for the generation of candidate
rule bodies most related to the input head. RARL also fea-
tures an efficient automaton-driven algorithm that traverses
the ABox to verify candidate rule bodies and compute rule
confidence. We found that when the KB provides a rich
schema RARL offers good performance both in terms of
running time and rule quality. We also observed that generat-
ing a relatedness-controlled number of rule bodies from the
TBox offers an immediate benefit in itself. Indeed, we were
able to discover rules by ”reading” candidate bodies that our
approach ranks by rule relatedness. Projecting RARL in the
embedding space is in our research agenda.
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Fionda, V., and Pirrò, G. 2018. Fact Checking via Evidence Pat-
terns. In Proc. of International Joint Conference on Artificial Intel-
ligence, 3755–3761.
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