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Abstract

Information asymmetry occurs when an imbalance of knowl-
edge exists between two parties, such as a buyer and a seller, a
regulator and an operator, and an employer and an employee.
It is a key concept in several domains, in particular, in eco-
nomics. We propose in this work a general logic-based frame-
work for measuring the information asymmetry between two
parties. A situation of information asymmetry is represented
by a knowledge base and a set of questions. We define the no-
tion of information asymmetry measure through rationality
postulates. We further introduce a syntactic concept, called
minimal question subset (MQS), to take into consideration
the fact that answering some questions allows avoiding oth-
ers. This concept is used for defining rationality postulates
and measures. Finally, we propose a method for computing
the MQSes of a given situation of information asymmetry.

Introduction
Information asymmetry refers to situations of interactions
between two parties in which one has more relevant pieces
of information than another. This concept plays a central
role in explaining different important phenomena in several
domains, particularly in economics. It was originally intro-
duced in Akerlof’s article: The Market for ’Lemons’: Qual-
ity Uncertainty and the Market Mechanism (Akerlof 1970).
In particular, Akerlof explained in this article the negative
effect of information asymmetry on the quality of goods
by considering the example of the used car market. Intu-
itively, the fact that the buyers and the sellers of cars do
not have the same knowledge about the quality provides in-
centives to favor the cars of less than the average market
quality (adverse selection); the buyers tend to pay less and
the sellers are thereby conduced to reduce the quality of
the proposed cars. In order to resolve the problems caused
by information asymmetry, the most known approaches are
the method of signaling proposed by Spence (Spence 1973;
Connelly et al. 2011) and the method of screening proposed
by Stiglitz (Stiglitz 1975). For their works on information
asymmetry, George Akerlof, Michael Spence and Joseph E.
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Stiglitz received the Bank of Sweden Prize in Economic Sci-
ences in Memory of Alfred Nobel in 2001.

Since information asymmetry plays a key role in many
economic settings, defining measures in this context has re-
ceived considerable attention (e.g. (Glosten and Harris 1988;
Easley, Hvidkjaer, and O’Hara 2002; Chen, Goldstein, and
Jiang 2006; Armstrong, Balakrishnan, and Cohen 2012)).
However, to the best of our knowledge, no general frame-
work for defining such measures has been proposed in the
literature in the sense that the previous works concern very
specific questions in economics and our framework uses an
abstract formalism (a formal logic). The main purpose of
this work is to introduce a general logic-based framework
for measuring information asymmetry. The measures de-
fined through this framework are motivated by different ap-
plications. In particular, they can be used for selecting ap-
propriate partner agents: less information asymmetry leads
to more appropriate partner agent. They can also be used for
better appraising products (e.g. in auctions) by taking into
account adverse selection: information asymmetry causes in
general erroneous price evaluation. In addition, these mea-
sures can be used in combination with methods for resolving
problems related to information asymmetry. Indeed, they al-
low one to detect situations where it is important to involve
methods that reduce the negative impact.

In our framework, classical propositional logic is used for
representing pieces of knowledge as well as questions. A
situation of information asymmetry, called in this paper IA-
instance, is described through two sets of formulas repre-
senting respectively the pieces of knowledge and the ques-
tions. More precisely, the first set represents the knowledge
state of one of the two involved parties, and the questions are
those that this party wants to answer knowing that the other
party has the answers. In this context, the notion of infor-
mation asymmetry measure is defined as a function that as-
sociates a non-negative numeric value to every IA-instance:
the greater the number returned by a measure, the greater
is the amount of information asymmetry. We provide postu-
lates for measuring information asymmetry in order to char-
acterize important rational aspects. In addition, we propose
different measures that illustrate different important points.
It is worth noting that our approach is similar in a sense to
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that used for measuring inconsistency in knowledge bases
(e.g. see (Hunter and Konieczny 2010)). Moreover, let us
mention that we do not use in this work the word measure
in the mathematical sense, but only to invoke the informal
meaning like in the case of the inconsistency measures.

In order to consider the fact that answering some ques-
tions allows avoiding others, we introduce a syntactic
concept, called minimal question subset (MQS). Roughly
speaking, an MQS is a subset of questions that is minimal
w.r.t. the set inclusion and their elements allow obtaining an-
swers for all the considered questions. The MQSes are used
for defining rationality postulates and information asymme-
try measures. Finally, we introduce a method for generat-
ing all the MQSes of an IA-instance using, in particular, the
problem of computing X-minimal models (e.g. (Avin and
Ben-Eliyahu-Zohary 2001)).

Background
Given a finite set S, we use 2S and |S| to denote respec-
tively its powerset (the set of its subsets) and its cardinality.
Furthermore, we use Prop to denote the set of propositional
variables. The propositional formulas of classical proposi-
tional logic are built using Prop, the constants � and ⊥,
denoting respectively true and false, and the unary logical
connective ¬ and the usual binary connectives ∧, ∨ and→.
The set of propositional formulas is denoted Form. We use
the letters p, q, r, s to denote the propositional variables, and
the Greek letters φ, ψ and χ to denote the propositional for-
mulas. Moreover, given a syntactic object o involving propo-
sitional variables (a formula, a set of formulas, etc.), we use
V ar(o) to denote the set of propositional variables occurring
in this object.

A Boolean interpretation B of a formula φ is defined
as a function from a set of propositional variables V , with
V ar(φ) ⊆ V , to {0, 1}. It is inductively extended to the
propositional formulas as usual. A formula φ is consistent
if there exists a Boolean interpretation B of φ such that
B(φ) = 1, and B is called a model in this case. Given a set
of variables S such that V ar(φ) ⊆ S, we use Mod(φ, S)
to denote the set of all the models of φ defined over S. In
addition, φ is said to be valid if every Boolean interpretation
of φ is one of its models. For convenience purposes, we also
note a Boolean interpretation as a set of expressions of the
form p �→ v to state that the propositional variable p takes
the truth value v.

Given a finite set of formulas Γ, a formula φ is said to be
a logical consequence of Γ, written Γ 	 φ, if

∧
Γ → φ is

valid, where
∧
Γ stands for the conjunction of the proposi-

tional formulas occurring in Γ with
∧ ∅ = �. In the case

where Γ contains a single formula ψ, we write ψ 	 φ. In
addition, if both φ 	 ψ and ψ 	 φ hold, we write φ ≡ ψ.
Furthermore, we use PA(Γ) to denote the set of formulas
Γ ∪ {¬φ : φ ∈ Γ}.

We define an equivalence relation, denoted �, over Form
as follows: φ � ψ if and only if φ ≡ ψ or φ ≡ ¬ψ. More-
over, given a finite set of formulas Γ, we use Eq�(Γ) to
denote the partition of Γ into equivalence classes w.r.t. the
relation �.

Figure 1: An illustration for information asymmetry

Measuring Information Asymmetry
This section is devoted to the introduction of the notion
of information asymmetry measure. Accordingly, we first
provide an example describing a case where information
asymmetry occurs. Then, using a postulate-based approach,
we formally introduce the notion of information asymmetry
measure. Some interesting measures are proposed to illus-
trate different addressed aspects.

Example 1. In order to illustrate the notion of information
asymmetry, we provide a simple example of a voter and three
candidates for an election c1, c2 and c3. The voter plans to
give his voice according to the answers to three questions:

• Is the candidate in favor of the law l?
• Is the candidate in favor of the public policy p? (making

laws, allocating resources, etc.)
• Is the candidate in favor of the public policy q?

In this context, we assume the voter knows that if a candidate
is for the policy p then she/he is also for the law l (p → l);
and if a candidate is against the policy q then she/he is for
the law l (¬q → l). In addition, the voter has the two follow-
ing pieces of information: if the candidate c1 is for q then
she/he is also for p (q → p); the candidate c2 is in favor
of the policy p or the policy q (p ∨ q). We use Ki to denote
the set of pieces of information of the voter about the can-
didate ci. Thus, we have K1 = {p → l,¬q → l, q → p},
K2 = {p→ l,¬q → l, p ∨ q} and K3 = {p→ l,¬q → l}.
The answers to the three previous questions consist in know-
ing whether or not each of the following formulas, which
corresponds to propositional variables, is true: l, p and q.

Clearly, the knowledge of the voter does not allow hav-
ing all the desired answers in the case of any candidate.
Therefore, there exists a situation of information asymmetry
between the voter and each candidate in the sense that the
latter has more information than the former. Furthermore,
the pieces of information about the candidate c1 allow the
voter to have an answer to the first question since K1 	 l,
but the pieces of information about the two other candidates
do not allow having any answer. Thus, one can reasonably
consider that the amount of information asymmetry between
the voter and c1 is lower that those between the voter and
the other candidates. It is also possible to consider that the
information asymmetry between the voter and c2 is lower
than that between the voter and c3 since K3 is included in
the set K2.
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The following definition presents the way we describe sit-
uations of information asymmetry.
Definition 1 (IA-Instance). An IA-instance is a structure of
the form 〈K | Q〉 where K (the knowledge base) and Q (the
questions) are finite subsets of Form such that K � ⊥.

We use IAForm to denote the set of IA-instances.
Let us consider again Example 1. The situations of in-

formation asymmetry between the voter and the candidates
corresponds to the three following IA-instances: 〈{p →
l,¬q → l, q → p} | {l, p, q}〉, 〈{p → l,¬q → l, p ∧ q} |
{l, p, q}〉, and 〈{p→ l,¬q → l} | {l, p, q}〉.

In the following definition, we use R+
∞ to refer to the set

of positive real numbers augmented with a greatest element
denoted∞.
Definition 2 (Information Asymmetry Measure). A function
A : IAForm → R+

∞ is an information asymmetry measure if
it satisfies the following properties:
• CompleteInformation: ∀I = 〈K | Q〉 ∈ IAForm, A(I) =

0 iff ∀ψ ∈ Q, we have either K 	 ψ or K 	 ¬ψ.
• MoreInformation: ∀I = 〈K | Q〉 ∈ IAForm, ∀φ ∈ K and
∀K ′ ⊂ Form with K ′ is finite, K ∪K ′ � ⊥ and K ′ 	 φ,
A(I) ≥ A(〈(K \ {φ}) ∪K ′ | Q〉).
• Weakening: ∀I = 〈K | Q〉 ∈ IAForm and ∀ψ ∈ Q, if
K 	 ψ or K 	 ¬ψ, then A(I) = A(〈K | Q \ {ψ}〉).
• Equivalence: ∀I = 〈K | Q〉 ∈ IAForm, ∀ψ ∈ Q and
∀χ ∈ Form with ψ � χ, A(I) = A(〈K | (Q \ {ψ}) ∪
{χ}〉).
The rationality postulate CompleteInformation states that

an information asymmetry measure must allow distinguish-
ing between the case where the knowledge allows obtain-
ing all the answers and the case where there are missing
answers. MoreInformation means that information asymme-
try cannot increase if one replaces a piece of knowledge
with more informative pieces of knowledge: more infor-
mation leads to less information asymmetry. The property
Weakening states that the amount of information asymmetry
depends only on the questions that cannot be answered from
the knowledge. This postulate results from the simple fact
that information asymmetry is only caused by the ignored
answers. Equivalence says that replacing a question with an
equivalent formula or a formula equivalent to its negation
does not change the amount of information asymmetry. In
particular, this property implies that the amount of informa-
tion asymmetry is free from the syntax of the questions.

Let us note that an information asymmetry measure can
be seen as an incompleteness measure in the sense that the
knowledge part is unable to prove formulas derived from the
questions.

As shown throughout this work, the four key rationality
postulates that the information asymmetry measures must
satisfy bring about interesting measures that take into ac-
count several important aspects about the ignored answers.

Similarly to MoreInformation, one can consider an addi-
tional property stating that the information asymmetry can-
not decrease if one adds new questions:
• MoreQuestions: ∀I = 〈K | Q〉 ∈ IAForm and ∀ψ ∈ Form,
A(I) ≤ A(〈K | Q ∪ {ψ}〉).

However, we think that this property is not suitable in the
general case, since it can be appropriate in certain cases
to consider that adding new questions may allow avoiding
many other existing ones. To illustrate this point, let us con-
sider the IA-instance I = 〈{r → (p∧q),¬r → (¬p∧¬q)} |
{p, q}〉. Adding the question r in this case allows clearly
avoiding the two questions p and q. Indeed, we may reason-
ably consider in some cases that we have the same amount of
information asymmetry in 〈{r → (p∧q),¬r → (¬p∧¬q)} |
{p, q, r}〉 and 〈{r → (p ∧ q),¬r → (¬p ∧ ¬q)} | {r}〉.
This can be interpreted by the fact that the agent is aware of
a question that allows responding to all the others (”good”
questions allow reducing information asymmetry).

The rationality postulate MoreInformation leads to the
following proposition.
Proposition 1. The following properties are satisfied for ev-
ery information asymmetry measure A:
• ∀I = 〈K | Q〉 ∈ IAForm and ∀φ ∈ Form with K 	 φ,
A(I) = A(〈K ∪ {φ} | Q〉);
• ∀I = 〈K | Q〉 ∈ IAForm and ∀φ ∈ Form with K ∪ {φ} �
⊥, A(I) ≥ A(〈K ∪ {φ} | Q〉);
• ∀I = 〈K | Q〉 ∈ IAForm, A(I) = A(〈{∧φ∈K φ} | Q〉).

The following proposition stems from the postulate
Equivalence and the fact that ψ � ¬ψ holds for every for-
mula ψ ∈ Form.
Proposition 2. ∀I = 〈K | Q〉 ∈ IAForm and ∀ψ ∈ Q,
A(I) = A(〈K | (Q \ {ψ}) ∪ {¬ψ}〉).

For instance, one can easily see that the following func-
tions are information asymmetry measures:

Abin(〈K | Q〉) =
{

0 if ∀ψ ∈ Q,K 	 ψ or K 	 ¬ψ
1 otherwise

Ama(〈K | Q〉) = |Eq�({ψ ∈ Q | K � ψ and K � ¬ψ})|
where bin and ma refer to respectively binary and missing
answers. It is worth noting that they also satisfy the property
MoreQuestions.

Although we do not require the following properties for
all information asymmetry measures, they may be appropri-
ate in different contexts:
• VarAdditivity: ∀I = 〈K | Q〉, I ′ = 〈K ′ | Q′〉 ∈ IAForm

with V ar(K ∪ Q) ∩ V ar(K ′ ∪ Q′) = ∅, A(〈K ∪ K ′ |
Q ∪Q′〉) = A(I) +A(I ′).
• Subadditivity: ∀I = 〈K | Q〉, I ′ = 〈K ′ | Q′〉 ∈ IAForm

with K ∩ K ′ = ∅ and K ∪ K ′ � ⊥, A(〈K ∪ K ′ | Q ∪
Q′〉) ≤ A(I) +A(I ′).

The property VarAdditivity states that the amount of infor-
mation asymmetry of the combination of two IA-instances
that have nothing in common (namely they do not share
any propositional variable) is the sum of the amounts of
information asymmetry at each IA-instance. The property
Subadditivity says that the amount of information asym-
metry in a combination of two IA-instances that have dis-
joint knowledge parts is less than or equal to the sum of
the amounts of information asymmetry at each IA-instance.
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This property is due to the fact that combining pieces of
knowledge may allow obtaining additional answers and re-
ducing thereby information asymmetry.

Let us now introduce some interesting information asym-
metry measures. Before that, we need the following nota-
tional convention. Given an IA-instance I = 〈K | Q〉, we
use Π(I) to denote the set {{χ ∈ PA(Q) : B(χ) = 1} :
B ∈Mod(K,V ar(K ∪Q))}. Intuitively, Π(I) corresponds
to the set of all possible answer combinations.

Let us consider the two following functions on the IA-
instances:
• AΠ(I) = |Π(I)| − 1;
• Aerr(I) = |Q| − min{|P ∩ P ′| : P, P ′ ∈ Π(I)} with
I = 〈K | Q〉.

The first measure AΠ captures the fact that the greater the
number of possible answer combinations, the greater is the
amount of information asymmetry. Regarding the measure
Aerr, it corresponds to the maximum number of the possible
wrong answers by considering an arbitrary possible answer
combination.
Proposition 3. The function Aerr is an information asym-
metry measure that satisfies VarAdditivity, Subadditivity
and MoreQuestions.

Proof. We only consider the case of VarAdditivity, the other
cases being simple or similar. Let I = 〈K | Q〉, I ′ = 〈K ′ |
Q′〉 ∈ IAForm with V ar(K ∪ Q) ∩ V ar(K ′ ∪ Q′) = ∅.
Then, let B1,B2 ∈ Mod(K,V ar(K ∪ Q)) and B′1,B′2 ∈
Mod(K ′, V ar(K ′ ∪ Q′)) such that Aerr(I) = |{ψ ∈ Q :
B1(ψ) �= B2(ψ)}| and Aerr(I ′) = |{ψ ∈ Q : B′1(ψ) �=B′2(ψ)}|. Using the fact V ar(K ∪Q)∩V ar(K ′ ∪Q′) = ∅,
we obtain B1∪B′1,B2∪B′2 ∈Mod(K∪K ′, V ar(K∪K ′∪
Q∪Q′)) and, as a consequence,Aerr(〈K∪K ′ | Q∪Q′〉) ≥
Aerr(I)+Aerr(I ′) holds. Assume now thatAerr(〈K∪K ′ |
Q∪Q′〉) > Aerr(I) +Aerr(I ′). Then, there exists B,B′ ∈
Mod(K∪K ′, V ar(K∪K ′∪Q∪Q′)) such thatAerr(〈K∪
K ′ | Q ∪ Q′〉) = |{ψ ∈ Q ∪ Q′ : B(ψ) �= B′(ψ)}|. Thus,
using the fact V ar(K ∪Q) ∩ V ar(K ′ ∪Q′) = ∅, we have
Aerr(I) < |{ψ ∈ Q : B(ψ) �= B′(ψ)}| or Aerr(I ′) <
|{ψ ∈ Q′ : B(ψ) �= B′(ψ)}|. Therefore, using the definition
of Aerr, we obtain a contradiction, and we thereby deduce
that Aerr(〈K ∪K ′ | Q ∪Q′〉) = Aerr(I) +Aerr(I ′).

The function AΠ is also an information asymmetry mea-
sure, but it does not satisfy the two additivity properties
VarAdditivity and Subadditivity.
Proposition 4. The functionAΠ is an information asymme-
try measure that satisfies MoreQuestions.

To be convinced that AΠ does not satisfy the additivity
properties, consider the two IA-instances I = 〈∅ | {p, q}〉
and I = 〈∅ | {p′, q′}〉. Then, we have AΠ(I) = AΠ(I

′) =
4, but we have AΠ(〈∅ | {p, q, p′, q′}〉) = 16 since every
interpretation leads to a possible answer combination.
Example 2. This example is inspired by Akerlof’s arti-
cle (Akerlof 1970). Let us consider the following statements
about a car:

• p: it has a high mileage;

• q: it was involved in a serious accident;
• r: it was repainted;
• s: it has worn tires; and
• t: tires were replaced.
Let I = 〈{q → r, s → p, t → s} | {p ∨ q, r}〉 and
I ′ = 〈{q → r, s → p, t → s, t ∨ q} | {p ∨ q, r}〉.
The Boolean interpretations B1 = {p′ �→ 0 for p′ =
p, q, r, s, t}, B2 = {p′ �→ 1 for p′ = p, q, r, s, t}, B3 =
{p �→ 1, p′ �→ 0 for p′ = q, r, s, t}, B4 = {r �→
1, p′ �→ 0 for p′ = q, s, t} are models of K = {q →
r, s → p, t → s}, and we have, as a consequence, Π(I) =
{{¬(p∨q),¬r}, {p∨q, r}, {p∨q,¬r}, {¬(p∨q), r}}. Thus,
AΠ(I) = 3 and Aerr(I) = 2 hold. Moreover, knowing that
K ∪ {t ∨ q} 	 p ∨ q and K ∪ {t ∨ q} � r, we obtain
AΠ(I

′) = 2 and Aerr(I ′) = 1.

Relationships between Questions
The information asymmetry measures described previously
do not take into consideration, in an explicit way, the fact
that answers may allow bringing about other answers, which
explains in particular why these measures satisfy the prop-
erty MoreQuestions. This fact calls for concepts that con-
sider relationships between questions. To this end, we partic-
ularly introduce in this section the concept of minimal ques-
tion subset, which is used for defining interesting properties
and information asymmetry measures.
Definition 3 (Minimal Answer Subset). Let I = 〈K | Q〉
be an IA-instance. A minimal answer subset (MAS) S of I is
a subset of PA(Q) where the following properties are satis-
fied:
1. K ∪ S � ⊥;
2. ∀ψ ∈ Q, K ∪ S 	 ψ or K ∪ S 	 ¬ψ; and
3. ∀S′ ⊂ S, ∃ψ′ ∈ Q s.t. K ∪ S′ � ψ′ and K ∪ S′ � ¬ψ′.

In other words, a minimal answer subset corresponds to a
set of possible answers that allows obtaining an answer for
every question in the IA-instance and is minimal w.r.t. the set
inclusion. We use MAS(I) to denote the set of the minimal
answer subsets of the IA-instance I .
Definition 4 (Minimal Question Subset). Let I = 〈K | Q〉
be an IA-instance. A minimal question subset (MQS)Q′ of I
is a subset of Q where the following properties are satisfied:
1. ∀S ⊆ PA(Q′) s.t. |S| = |Q′| and K ∪ S � ⊥, we have

either K ∪ S 	 ψ or K ∪ S 	 ¬ψ for every ψ ∈ Q; and
2. ∀Q′′ ⊂ Q′, Q′′ does not satisfy the property (1), i.e., Q′

is minimal w.r.t. the set inclusion.
Similarly to the notion of MAS, an MQS is a subset of

questions where every combination of the possible answers
of their elements consistent with the knowledge part (1) al-
lows obtaining an answer for every question and (2) it has to
be minimal w.r.t the set inclusion. We use MQS(I) to denote
the set of the minimal question subsets of I .

The following proposition relates the notion of minimal
answer subset with that of minimal question subset.
Proposition 5. Given an IA-instance I and Q′ ∈ MQS(I),
∀R ⊆ PA(Q′) s.t. |R| = |Q′| and K ∪ R � ⊥, there exists
S ∈ MAS(I) s.t. S ⊆ R.
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Definition 5 (Weak Question). Let I = 〈K | Q〉 an IA-
instance. A formula ψ in Q is said to be a weak question in
I if ∀Q′ ∈ MQS(I), ψ /∈ Q′.

The set of weak questions of an IA-instance I is denoted
by WeakQ(I).

The following proposition comes from the fact that a
question that can be answered by using only the knowledge
part cannot be useful for answering any other question.

Proposition 6. ∀I = 〈K | Q〉 ∈ IAForm, {ψ ∈ Q : K 	
ψ or K 	 ¬ψ} ⊆WeakQ(I) holds.

Example 3. Let I = 〈{p → q,¬p → r} | {p, q, r}〉, I ′ =
〈{(p ∧ q) ↔ r} | {p, q, r,¬p ∧ r}〉 be two IA-instances.
We have MAS(I) = {{p, r}, {¬r}, {¬p, q}, {¬q}}.
For example, {¬q} ∈ MAS(I) because we have
{p → q,¬p → r} ∪ {¬q} 	 ¬p ∧ r. Moreover,
we obtain MQS(I) = {{p, q, r}} and, consequently,
WeakQ(I) = ∅ holds. Furthermore, we have MAS(I ′) =
{{p, q}, {¬p, q}, {p,¬q}, {¬p,¬q}, {r}, {¬r, p}, {¬r, q}}.
Note that all the possible combinations of p and q are mini-
mal answer subsets. Thus, we obtain MQS(I ′) = {{p, q}}
and WeakQ(I ′) = {r,¬p ∧ r}.

Let us now introduce a notational convention that is used
in the sequel. Given a finite set S and two subsets T and T ′
of 2S , we have T � T ′ if (i) for all S′ ∈ T , there exists
S′′ ∈ T ′ such that S′ ⊆ S′′, and (ii) for all S′′ ∈ T ′, there
exists S′ ∈ T such that S′ ⊆ S′′.

The following additional properties on the information
asymmetry measures are based on the notion of minimal
question subset:

• WeakQuestion: ∀I = 〈K | Q〉 ∈ IAForm, A(I) =
A(〈K | Q \WeakQ(I)〉).
• MQSInclusion: ∀I, I ′ ∈ IAForm, if MQS(I) � MQS(I ′)

then A(I) ≤ A(I ′).
• EqualAsymmetry: ∀I, I ′ ∈ IAForm with |MQS(I)| =
|MQS(I ′)| = 1 (MQS(I) = {Q′} and MQS(I) =
{Q′′}), if |Q′| = |Q′′| then A(I) = A(I ′).
• MoreAsymmetry: ∀I, I ′ ∈ IAForm with |MQS(I)| =
|MQS(I ′)| = 1 (MQS(I) = {Q′} and MQS(I) =
{Q′′}), if |Q′| > |Q′′| then A(I) > A(I ′).
The property WeakQuestion says that the weak questions

do not impact the amount of information asymmetry. The
property MQSInclusion states that the information asymme-
try cannot decrease if we need in any case to answer more
questions to resolve information asymmetry. One can easily
see that MQSInclusion is stronger than WeakQuestion. The
properties EqualAsymmetry and MoreAsymmetry concern
the case where there is a single MQS and say the amount
of information asymmetry is strongly swayed by the size of
this MQS.

Let us now consider the following simple MQS-based
measures:

• AminMQS(I) = min{|Q′| : Q′ ∈ MQS(I)}
• AmaxMQS(I) = max{|Q′| : Q′ ∈ MQS(I)}
• AwqMQS(I) = |Eq�(Q \WeakQ(I))|

The measure AminMQS corresponds to the minimum number
of questions that one has to answer in order to obtain an-
swers for all the questions in the instance. In a sense, this
measure refers to the size of the best cases, whileAmaxMQS cor-
responds to the size of the worst cases. The measure AMQS

allows avoiding the questions that can always be answered
through other questions.
Proposition 7. The functions AminMQS, AmaxMQS and AwqMQS are
information asymmetry measures that satisfy the following
properties: VarAdditivity, MQSInclusion (and consequently
WeakQuestion), EqualAsymmetry, MoreAsymmetry.

One can see that the property Subadditivity is satisfied by
AminMQS and AmaxMQS, while it is not satisfied by AwqMQS. For ex-
ample, let us consider the two IA-instances I = 〈{(p∧q)↔
r} | {p, q, r}〉 and I ′ = 〈{p ↔ q} | {s}〉. Similarly to the
second IA-instance described in Example 3, WeakQ(I) =
{r} holds. Moreover, we clearly have WeakQ(I ′) = ∅;
however, {r} belongs to the minimal question subsets of
I ′′ = 〈{(p ∧ q) ↔ r, p ↔ q} | {p, q, r, s}〉, and we
obtain WeakQ(I ′′) = ∅. Thus, we have AwqMQS(I) = 2

and AwqMQS(I
′) = 1, but AwqMQS(I

′′) = 4 > AmqMQS(I) +

AwqMQS(I
′).

Furthermore, it is worth noting that the measures AminMQS,
AmaxMQS and AwqMQS do not satisfy MoreQuestions. Con-
sider, for instance, the IA-instance I = 〈{(p ∧ q1) →
r1, . . . , (p ∧ qn) → rn} | {q1, . . . , qn, r1, . . . , rn}〉 where
p, q1, . . . , qn, r1, . . . , rn are pairwise distinct propositional
variables and n > 1. Then, we obtain MQS(I) =
{{q1, . . . , qn, r1, . . . , rn}} and WeakQ(I) = ∅. Thus,
AminMQS(I) = AmaxMQS(I) = AwqMQS(I) = 2n. Consider now
the IA-instance I ′ = 〈{(p ∧ q1) → r1, . . . , (p ∧ qn) →
rn} | {p, q1, . . . , qn, r1, . . . , rn}〉. We have MQS(I ′) =
{{p, q1, . . . , qn}} and, as a consequence, WeakQ(I ′) =
{r1, . . . , rn} holds. Therefore, we obtain AminMQS(I) =

AmaxMQS(I) = AwqMQS(I) = n+ 1.
It is important to point out that the minimal question sub-

sets, along with the minimal answer subsets, can be useful
for defining more complex properties and information asym-
metry measures than those that are put forward in this sec-
tion.

Computation Methods
In the present section we tackle the problem of computing
the minimal question subsets. We first propose an algorithm
for computing the minimal answer subsets. We then describe
an approach for computing the MQSes from the MASes,
which is based on the X-minimal model problem.

First, let us note that given an IA-instance I = 〈K | Q〉
and S ⊆ PA(Q), the problem of determining if S is a MAS
can be solved using at most |S|+ 2 NP-oracle calls. Indeed,
this can be shown by using the following method:
1. if K ∪ S 	 ⊥ (first call) then S is not a MAS, else let
S′ = {χ ∈ PA(Q) : B(χ) = 1} (B a model of K ∪ S);

2. if K ∪ S �
∧
χ∈S′ χ (second call) then S is not a MAS;

3. if ∃χ ∈ S, S \ {χ} 	 χ (|S| calls) then S is not a MAS,
else S is a MAS.
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Algorithm 1: An approach for computing the MASes
w.r.t. a given model of the knowledge part.

Data: An IA-instance I = 〈K | Q〉 and a model
B ∈Mod(K,V ar(K ∪Q))

Result: the set of all the MASes included in
S = {χ ∈ PA(Q) : B(χ) = 1}

1 Sol← ∅;
2 S0 ← ∅;
3 for χ ∈ S do
4 if K ∪ (S \ {χ}) � χ then
5 S0 ← S0 ∪ {χ};
6 if |S0| = |S| then
7 Sol← {S};
8 else
9 E1 ← {S};

10 B ← ∅;
11 k ← 2;
12 while Ek−1 �= ∅ do
13 Ek ← ∅;
14 R← ∅;
15 f ← true;
16 for S′ ∈ Ek−1 do
17 for χ ∈ S′ \ S0 do
18 if

S′\{χ} /∈ Ek and �S′′ ∈ B ∪ Sol s.t.
S′ \ {χ} ⊆ S′′ and K∪(S′\{χ}) 	 χ
then

19 Ek ← Ek ∪ {S′ \ {χ}};
20 f ← false;
21 if f then R← R ∪ {S′};
22 B ← B ∪ {S′ \ {χ} :

S′ ∈ Ek−1, χ ∈ S′ \ S0, S
′ \ {χ} /∈

Ek, �S′′ ∈ B ∪R s.t. S′ \ {χ} ⊆ S′′};
23 Sol← Sol ∪R;
24 k ++;
25 return Sol;

It is worth mentioning that the second call allows showing
the property 2 in Definition 3, while the last |S| calls allow
showing that S is minimal w.r.t. the set inclusion.

Let us now provide a proposition that allows us to reduce
the search space by considering only one question per equiv-
alence class w.r.t. �.

Proposition 8. The following properties are satisfied for ev-
ery IA-instance I = 〈K | Q〉:
1. ∀χ, χ′ ∈ PA(Q) with χ �= χ′ and χ ≡ χ′, and ∀S ∈

MAS(I), χ /∈ S or χ′ /∈ S;
2. ∀χ, χ′ ∈ PA(Q) with χ �= χ′ and χ ≡ χ′, and ∀S ⊆
PA(Q) with χ, χ′ /∈ S, S∪{χ} ∈ MAS(I) iff S∪{χ′} ∈
MAS(I);

3. ∀C ∈ Eq�(Q), ∀ψ, ψ′ ∈ C with ψ �= ψ′ and ∀Q′ ∈
MQS(I), ψ /∈ Q′ or ψ′ /∈ Q′ holds;

4. ∀C ∈ Eq�(Q), ∀ψ, ψ′ ∈ C with ψ �= ψ′ and ∀Q′ ⊆ Q
with ψ, ψ′ /∈ Q′, Q′ ∪ {ψ} ∈ MQS(I) iff Q′ ∪ {ψ′} ∈
MQS(I).

χ1, χ2, χ3, χ4

χ1, χ2, χ3 χ1, χ2, χ4 χ1, χ3, χ4 χ2, χ3, χ4

χ1, χ2 χ1, χ3 χ1, χ4 χ2, χ3 χ2, χ4 χ3, χ4

χ1 χ2 χ3 χ4

∅

Figure 2: Minimal Answer Subset Lattice

From now on, we consider IA-instances where there are
no two questions that are equivalent w.r.t. �.

The following propositions provide a simple characteri-
zation of the minimal answer subsets through the models of
the knowledge part.

Proposition 9. Let I = 〈K | Q〉 ∈ IAForm and S ⊆ PA(Q)
s.t. S � ⊥. Then, S ∈ MAS(I) iff ∃B ∈Mod(K,V ar(K ∪
Q)) s.t. (i) {χ ∈ PA(Q) : S 	 χ} = {χ ∈ PA(Q) :
B(χ) = 1}, and (ii) ∀χ ∈ S, S \ {χ} � χ holds.

Proposition 10. Let I = 〈K | Q〉 ∈ IAForm , B ∈
Mod(K,V ar(K ∪ Q)) and S ⊆ S′ = {χ ∈ PA(Q) :
B(χ) = 1}. Then, S ∈ MAS(I) iff K ∪ S 	 ∧

S′ and,
∀χ ∈ S, K ∪ S \ {χ} � χ holds.

Proposition 9 shows that all the MASes of an IA-instance
can be obtained from the models of its knowledge part, while
Proposition 10 shows how to obtain all the MASes associ-
ated to a given model.

In Algorithm 1, we describe our method for computing
the MASes of a given IA-instance w.r.t. a given model of
its knowledge part. This algorithm uses breadth-first search
to explore the possible subsets. Indeed, we start with the
largest candidate subset, namely S, and the subsets that con-
tain MASes are reduced one element at a time. To know that
a subset S′ contains at least a MAS, we only need to check
the property K ∪ S′ 	 ∧

χ∈S\S′ χ, which can be performed
using a solver for the problem of propositional satisfiability
(a SAT solver). In order to reduce the number of explored
candidates we use the property that if a subset S′ does not
contain a MAS or is a MAS, then we can avoid all its subsets.
Consider, for instance, the MAS lattice described in Fig-
ure 2. Knowing that {χ1, χ2 χ3} and {χ1, χ4} are MASes
and {χ2, χ3 χ4} does not contain any MAS allows avoiding
all their subsets. Moreover, to reduce the number of calls to
a SAT solver we use the fact that if S′ contains a MAS and
we have K ∪ (S′ \ {χ}) 	 χ then S′ \ {χ} contains also a
MAS for every χ ∈ S′. This property results from the fact
that K ∪ (S′ \ {χ}) 	 ∧

S since K ∪S′ 	 ∧
S (S′ contains

a MAS) and K ∪ (S′ \ {χ}) 	 χ.
Let us now describe more precisely important parts in Al-

gorithm 1. The first for-loop is used to compute the set S0

of the formulas that belong to every MAS included in S. It
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is worth noting that S0 is mainly used to reduce the search
space (see Line 17 and Line 22). At Line 6, if S0 contains
all the formulas in S, then there is a single MAS which is S;
otherwise, we start the approach of breadth-first search de-
scribed previously. The setEi contains the candidate subsets
that we have to consider at the step i, i.e., those having the
size |S| − (i− 1). In the for-loop between Lines 16 and 21,
we generate the candidate subsets that we have to explore
in the next step (each candidate subset contains at least one
MAS). The variableR contains the MASes found at the cur-
rent step. Further, the variable B contains the greatest sub-
sets that do not contain any MAS and are not included in any
MAS.

In order to avoid the MASes found w.r.t. a given model
B, we only need to require that the future models satisfy∨
χ∈S ¬χ with S = {χ ∈ PA(Q) : B(χ) = 1}. Indeed,

this ensures that the future MASes do not involve the same
answer combination.

Let us introduce a notational convention: given an IA-
instance I = 〈K | Q〉 and S ⊆ PA(Q), we use Qst(S, I)
to denote the set {ψ ∈ Q : ψ ∈ S or ¬ψ ∈ S}. The
set Qst(S, I) is used to determine the questions related to
a given set of answers.

The following proposition states that every MQS corre-
sponds to a set of questions involved in MASes.

Proposition 11. Let I = 〈K | Q〉 ∈ IAForm and Q′ ⊆
Q. If Q′ ∈ MQS(I) then ∃M ⊆ MAS(I) s.t. Q′ =⋃
S∈M Qst(S, I).
In particular, Porposition 11 says that every MQS of an

IA-instance I is included in the set
⋃
Q∈MAS(I)Qst(S, I).

In order to compute the MQSes from the MASes, we as-
sociate to the MASes an instance of the X-minimal model
problem such that its solutions corresponds to the MQSes.

Let B and B′ be two Boolean interpretations over the set
of propositional variables V and X a subset of V . Then,
B is said to be smaller than B′ with respect to X , written
B �X B′, if {p ∈ X : B(p) = 1} ⊆ {p ∈ X : B′(p) = 1}.
Definition 6 (X-Minimal Model). Let φ be a propositional
formula over V ,X ⊆ V and B a model of φ. Then, B is said
to be an X-minimal model of φ if there is no model B′ s.t.
B′ �X B and B ��X B′.

Different algorithms have been proposed in the liter-
ature for computing minimal models (e.g. (Ben-Eliyahu
and Dechter 1996; Avin and Ben-Eliyahu-Zohary 2001;
Ben-Eliyahu-Zohary 2005)). Note that the X-minimal model
problem has important applications in AI such as in proposi-
tional circumscription and in minimal diagnosis (McCarthy
1980; Reiter 1987).

To define our encoding in the X-minimal model prob-
lem for an IA-instance I = 〈K | Q〉, we associate
to every element in R ∈ E = {Qst(S, I) : S ∈
MAS(I)} a distinct propositional variable xR. Then, we
associate to every P ∈ Π(I) a clause cP =

∨{xR :
∃S ∈ MAS(I), S ⊆ PA(R) ∩ P}. Moreover, we associate
to every formula ψ ∈ Q a distinct propositional yψ . We use

Enc(I) to denote the following encoding:

(
∧

P∈Π(I)

cp) ∧
∧
R∈E

(xR →
∧
ψ∈R

yψ)

Proposition 12. Given an IA-instance I = 〈K | Q〉, we
have Q′ ∈ MQS(I) iff there exists a {yψ : ψ ∈ Q}-minimal
model B of Enc(I) s.t. Q′ = {ψ ∈ Q : B(yψ) = 1}.
Proof. We only consider in this proof the only if part, the
other being similar.
Part ⇒. Let Q′ ∈ MQS(I). We define the Boolean inter-
pretation B as follow: B(z) = 1 if z = yψ and ψ ∈ Q′,
or z = xR and R ⊆ Q; B(z) = 1 otherwise. Clearly, B
satisfies the formula

∧
R∈E(pr →

∧
ψ∈R yψ). Moreover,

we have for all T ⊆ PA(Q′) with Qst(T ) = Q′ and
K ∪ T � ⊥, there exists S ∈ MAS(I) s.t. S ⊆ T . Thus, for
all P ∈ Π(I), there exists S ∈ MAS(I) s.t. Qst(S) ⊆ Q′
and S ⊆ P . Therefore, B satisfies also

∧
P∈Π(I) cp, and it

is thereby a model of Enc(I). Furthermore, knowing that
Q′ is minimal w.r.t. the set inclusion, we obtain that B is a
{yψ : ψ ∈ Q}-minimal model of Enc(I).
Example 4. We describe in this example our method for
computing the set of MQSes from the MASes. Let us consider
again the IA-instance I ′ = 〈{(p∧q)↔ r} | {p, q, r,¬p∧r}〉
described in Example 3. We have MAS(I ′) =
{{p, q}, {¬p, q}, {p,¬q}, {¬p,¬q}, {r}, {¬r, p}, {¬r, q}}
and Π(I ′) = {P1 = {p, q, r,¬(¬p ∧ r)}, P2 =
{p,¬q,¬r,¬(¬p ∧ r)}, P3 = {¬p, q,¬r,¬(¬p ∧ r)}, P4 =
{¬p,¬q,¬r,¬(¬p ∧ r)}}. As a consequence, we have:
cP1

= x{p,q} ∨ x{r} ∨ x{p,r} ∨ x{q,r}
cP2

= x{p,q} ∨ x{p,r} cP3
= x{p,q} ∨ x{q,r} cP4

= x{p,q}
Then, we obtain Enc(I ′) = (cP1

∧ cP2
∧ cP3

∧ cP4
) ∧

(x{p,q} → (yp ∧ yq)) ∧ (xr → yr) ∧ (x{p,r} →
(yp ∧ yr)) ∧ (x{q,r} → (yq ∧ yr)). There is a single
{yp, yq, yr}-minimal model B that assigne 1 to x{p,q},
yp and yq , and 0 to all the other variables. Therefore,
MQS(I ′) = {{p, q}} holds.

Conclusion and Perspectives
In this paper, we introduced a framework for measuring in-
formation asymmetry, which is based on classical proposi-
tonal logic. Indeed, every considered situation of informa-
tion asymmetry is described by two sets of propositional
formulas that represent respectively the pieces of informa-
tion and the questions. The latter correspond to the possible
ignored pieces of information. In this context, we defined the
notion of information asymmetry measure through rational-
ity postulates. Moreover, we proposed concepts for consid-
ering relationships between questions; in particular, that of
minimal question subset (MQS). We also proposed a method
for computing all MQSes for a given instance. It is worth
noting that we provided different measures to illustrate sev-
eral addressed aspects.

In our future work, we intend first to improve the pro-
posed framework following two main directions: (1) con-
sidering additional properties for information asymmetry
measures that capture other interesting aspects; (2) studying
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more sophisticated measures than those introduced in this
work. We also plan to investigate the computational com-
plexity of computing specific measures.
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