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Abstract

Argumentation is a process of evaluating and comparing sets
of arguments. Ranking-based semantics received a lot of at-
tention recently. All of the semantics introduced so far are
applicable to binary attack relations. In this paper, we study a
more general case when sets of arguments can jointly attack
an argument. We generalise existing postulates for ranking-
based semantics to fit this framework, define a general variant
of h-categoriser, prove that it converges for every argumenta-
tion framework and study the postulates it satisfies. We also
study the link between binary and hypergraph version of h-
categoriser.

1 Introduction

Argumentation is the process of reasoning in presence of in-
consistent information by exchanging, evaluating or ranking
interactive arguments. The most popular way of represent-
ing this argumentation process was proposed by Dung in his
seminal paper (Dung 1995) which sees arguments as nodes
and attacks as edges in a directed graph. Then, one can apply
the several argumentation semantics (Baroni, Caminada, and
Giacomin 2011) to extract meaningful subsets of arguments
called extensions. However, for many applications, this two
level of acceptance (arguments belong or not to an exten-
sion) was not enough (Leite and Martins 2011). Against
this background, a solution consisted in having many lev-
els of acceptability by ranking arguments using the several
ranking-based semantics defined in the literature (Amgoud
and Ben-Naim 2013; Cayrol and Lagasquie-Schiex 2005;
Leite and Martins 2011; Matt and Toni 2008) for the Dung’s
framework along with a set of desirable properties that they
should satisfy (Bonzon et al. 2016; Amgoud and Ben-Naim
2013).

Classic Dung argumentation graphs only take into ac-
count a binary attack relation. Such binary attack relation
implicitly assumes that the logical language used underneath
the argument structure is closed under the “and” logical
connective. To free oneself from such assumption, Nielsen
and Parsons proposed a generalisation of the Dung frame-
work with sets of attacking arguments (Nielsen and Par-
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sons 2007). In their framework arguments can jointly attack
a single other argument. For instance, let us consider the
deductive argumentation framework (Besnard and Hunter
2001), also known as the (support, conclusion) represen-
tation, where support is a set of formulas and conclusion is
a formula that follows from the support. Now, let us further
consider the standard undercut attack relation where an ar-
gument attacks another based on the contradiction between
the conclusion of the former and a formula in the support
of the latter. However, if we are given a less expressive log-
ical language without conjunction, we are unable to model
attacks corresponding to ternary conflicts. Let x, y and z be
three formulas of the logic that form a ternary conflict. In or-
der to attack the argument ({z}, z), one would need to con-
struct the argument ({x, y}, x ∧ y) which is impossible if
the language does not include conjunction. To this end (Ver-
heij 1996; Nielsen and Parsons 2007) propose to have sets
of attacking arguments (i.e. ({x}, x) and ({y}, y) jointly at-
tack ({z}, z)). Furthermore, (Nielsen and Parsons 2007) ex-
tended the classical Dung semantics (stable, preferred, com-
plete and grounded) to this new hypergraph framework. In
view of this, we generalise ranking-based semantics for the
hypergraph argumentation framework.

The structure of the paper is as follows. In Section 2, we
recall the necessary definitions of a hypergraph argumen-
tation framework and ranking-based semantics. In Section
3, we define some desirable properties that such ranking-
based semantics should satisfy. In Section 4, we propose
the first ranking-based semantics for hypergraphs argumen-
tation frameworks following the insights from (Besnard and
Hunter 2001), we show that this new ranking-based seman-
tics converges and that it is a proper generalisation of the
categoriser semantics defined in (Besnard and Hunter 2001)
for classic Dung graphs.

2 Background

In the next definition, we extend Dung’s abstract framework
with sets of attacking arguments, i.e. sets of arguments can
now jointly attack an argument.

Definition 1 (Hypergraph argumentation framework). A hy-
pergraph argumentation framework is a pair AS = (A,R)
with A a finite and non-empty set of arguments and R ⊆
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Figure 1: A hypergraph argumentation framework

(2A \ {∅})×A.

Notation. We denote by AS the set of all possible hyper-
graph argumentation frameworks. Let AS = (A,R),AS ′ =
(A′,R′) ∈ AS, we define AS ⊕ AS ′ as the argumentation
framework (A ∪A′,R ∪ R′).

Example 1. In this paper, we will consider the hy-
pergraph argumentation framework AS = (A,R) with
A = {a, b, c, d, e} and R = {({d}, a), ({b}, a), ({b}, c),
({b, e}, d), ({d, c}, e), ({a, c}, e)} (see Figure 1).

A ranking-based semantics is a function that returns a
ranking on arguments for every hypergraph argumentation
framework.

Definition 2 (Ranking-based semantics). A ranking-based
semantics σ associates to any hypergraph argumentation
framework AS = (A,R) a ranking �σAS on A where �σAS
is a total preorder (reflexive and transitive relation) on A.
The notation a �σAS b means that a is at least as acceptable
as b.

Notation. As usual, the notation a 	σAS b is used for a �σAS
b and b 
�σAS a. Likewise, we use a �σAS b for a �σAS b and
b �σAS a. By abuse of notation, if S and S′ are two sets of
arguments, we write that S �σAS S′ iff for every s ∈ S and
every s′ ∈ S′, we have s �σAS s

′. Let S be a set in (2A\{∅})
and σ be a ranking-based semantics, the set minσAS(S) is the
set {s ∈ S | for every s′ ∈ S, s′ �σAS s}.
Definition 3 (Path). Let AS = (A,R) ∈ AS and a ∈ A.
We say that a sequence of attacks ((S1, t1), . . . , (Sn, tn))
is a path of size n from S1 to a iff for every i ∈
{1, . . . , n}, (Si, ti) ∈ R, tn = a and for every i ∈
{1, . . . , n− 1}, it holds that ti ∈ Si+1.

Notation. Let AS = (A,R) ∈ AS, S ∈ 2A and a ∈ A, we
say that S ∈ R−

n (a) iff there exists a path of size n from S
to a. We say that S ∈ R−

1 (a) is a direct attacker of a and
S ∈ R−

2 (a) is a direct defender of a.

Example 2 (Example 1 Cont’d). The sequence
(({d}, a), ({a, c}, e)) is a path of size 2 from {d} to
e. Thus, {d} ∈ R−

2 (e) and {d} is a direct defender of e.

3 Properties

We first introduce the definition of an isomorphism between
two hypergraph argumentation frameworks.

Definition 4 (Isomorphism). An isomorphism between two
hypergraph argumentation frameworks AS = (A,R) and
AS ′ = (A′,R′) is a bijective function γ : A → A′ such
that for every S ∈ 2A and a ∈ A, (S, a) ∈ R iff ({γ(s) |
s ∈ S}, γ(a)) ∈ R′. With a slight abuse of notation, we will
note AS ′ = γ(AS).

In the rest of this section, we recall the properties for a
ranking-based semantics σ that have been defined in the lit-
erature (Amgoud and Ben-Naim 2013; Bonzon et al. 2016)
and we translate them for hypergraph argumentation frame-
works. We now begin with the properties that can be trans-
lated straightforwardly.

The Abstraction property states that the name of the argu-
ments should not be taken into account for the ranking.

Property 1 (Abstraction). We say that σ satisfies Abstrac-
tion iff for any AS,AS ′ ∈ AS and isomorphism γ such that
AS ′ = γ(AS), we have a �σAS b iff γ(a) �σAS′ γ(b)

The Independence property states that two arguments
with no paths connecting them should not influence each
other.

Property 2 (Independence). We say that σ satisfies Inde-
pendence iff for any AS = (A,R),AS ′ = (A′,R′) in AS
such that A ∩ A′ = ∅ and every a, b ∈ A we have a �σAS b
iff a �σAS⊕AS′ b.

The Void precedence property states that non-attacked ar-
guments should be ranked higher than attacked arguments.

Property 3 (Void precedence). We say that σ satisfies Void
precedence iff for any AS = (A,R) ∈ AS and a, b ∈ A

such that R−
1 (a) = ∅ and R−

1 (b) 
= ∅ we have a 	σAS b.

The Self-contradiction property states that self-
contradicting arguments should be ranked lower than
non self-contradicting arguments.

Property 4 (Self-contradiction). We say that σ satisfies Self-
contradiction iff for any AS = (A,R) ∈ AS and a, b ∈ A

such that there exists S1 ∈ R−
1 (a) with a ∈ S1 and there

exists no S2 ∈ R−
1 (b) with b ∈ S2 we have b 	σAS a.

The Cardinality precedence property states that if an argu-
ment a has more attackers than an argument b than it should
be ranked lower than b. The intuition is that an argument at-
tacked by more sets of arguments is seen as more conflicted
(and thus weaker).

Property 5 (Cardinality precedence). We say that σ satisfies
Cardinality precedence iff for any AS = (A,R) ∈ AS and
a, b ∈ A such that |R−

1 (a)| > |R−
1 (b)| we have b 	σAS a.

The Defense precedence property states that if a, b are two
arguments with the same number of attackers and a is de-
fended but b is not then a should be ranked higher than b.

Property 6 (Defense precedence). We say that σ satisfies
Defense precedence iff for any AS = (A,R) ∈ AS and
a, b ∈ A such that |R−

1 (a)| = |R−
1 (b)|,R−

2 (a) = ∅ and
R−

2 (b) 
= ∅ we have b 	σAS a.

The Total property states that two arguments should al-
ways be comparable.
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Property 7 (Total). We say that σ satisfies Total iff for any
AS = (A,R) ∈ AS and a, b ∈ A we have a �σAS b or
b 	σAS a.

The Non-attacked equivalence property states that two
non-attacked arguments should be ranked equivalently.
Property 8 (Non-attacked equivalence). We say that σ sat-
isfies Non-attacked equivalence iff for any AS = (A,R) ∈
AS and a, b ∈ A such that R−

1 (a) = R−
1 (b) = ∅ we have

a �σAS b
Definition 5 (Simple and distributed defense). Let AS =
(A,R) ∈ AS and a ∈ A. The defense of a is simple iff for
every direct defender S of a, there is a unique S′ ∈ R−

1 (a)
and s′ ∈ S′ such that (S, s′) ∈ R. The defense of a is dis-
tributed iff for every direct attacker S of a, there is at most
one direct defender S′ of a such that (S′, s) ∈ R where
s ∈ S.

The Distributed-defense precedence property states that if
argument a has a simple and distributed defense and argu-
ment b has a simple but not distributed defense than a should
be higher ranked than b.
Property 9 (Distributed-defense precedence). σ satisfies
Distributed-defense precedence iff for any AS = (A,R) ∈
AS, for any a, b ∈ A such that |R−

1 (a)| = |R−
1 (b)| and

|R−
2 (a)| = |R−

2 (b)| and that the defense of a is simple and
distributed and that the defense of b is simple but not dis-
tributed we have a 	σAS b.
Definition 6 (Cycle). Let AS = (A,R) be a hypergraph ar-
gumentation framework, S ∈ (2A \{∅}) and s ∈ A. We say
that a path from S to s is a cycle iff s ∈ S. An argumentation
framework is called acyclic iff there is no cycle.

An attack (resp. defense) branch of an argument a is a hy-
pergraph argumentation framework such that its fusion with
the original argumentation framework should result in the
addition of an even (resp. odd) path to a.
Definition 7 (Added attack/defense branch). Let AS =
(A,R) be a hypergraph argumentation framework and a ∈
A. P+(a) (resp. P−(a)) is a pair (A0,R0) called a defense
(resp. attack) branch added to a iff:
• A0 = {a, x1, . . . , xk} and A ∩A0 = {a}
• there exists n ∈ 2N (resp. n ∈ 2N+1), S1 ∈ (2A0 \ {∅})

and an acyclic path ((S1, t1), . . . , (Sn, tn)) of size n such
that tn = a.

• R0 = {(Si, ti) | i ∈ {1, . . . , n}} and (
n⋃
1
Si) ∪ {a} = A0

The Strict addition of defense branch property states that
adding a defense branch to an argument should increase its
rank.
Property 10 (Strict addition of defense branch). We say
that σ satisfies Strict addition of defense branch iff for any
AS ′,AS = (A,R) ∈ AS and any a ∈ A such that
there exists an isomorphism γ with AS ′ = γ(AS) we have
γ(a) 	σAS⊕AS′⊕P+(γ(a)) a.

The Addition of defense branch property states that
adding a defense branch to an attacked argument should in-
crease its rank.

Property 11 (Addition of defense branch). We say that σ
satisfies Addition of defense branch iff for any AS ′,AS =
(A,R) ∈ AS and any a ∈ A such that there exists an iso-
morphism γ with AS ′ = γ(AS) and R−

1 (a) 
= ∅ we have
γ(a) 	σAS⊕AS′⊕P+(γ(a)) a.

The Addition of attack branch property states that adding
an attack branch to an argument should decrease its rank.
Property 12 (Addition of attack branch). We say that σ
satisfies Addition of attack branch iff for any AS ′,AS =
(A,R) ∈ AS and any a ∈ A such that there ex-
ists an isomorphism γ with AS ′ = γ(AS) we have
a 	σAS⊕AS′⊕P−(γ(a)) γ(a).

The Increase of attack branch property states that increas-
ing the length of an attack branch of an argument a should
increase the ranking of a.
Property 13 (Increase of attack branch). We say that σ
satisfies Increase of attack branch iff for any AS ′,AS =
(A,R) ∈ AS and any a ∈ A such that there exists an iso-
morphism γ with AS ′ = γ(AS), for every S ∈ (2A \ {∅})
such that for every s ∈ S,R−

1 (s) = ∅, there exists a path of
size n from S to a with n ∈ 2N + 1 and there is no path
of size m from S to a with m ∈ 2N then for every s ∈ S,
γ(a) 	σAS⊕AS′⊕P+(γ(s)) a.

The Increase of defense branch property states that in-
creasing the length of a defense branch of an argument a
should decrease the ranking of a.
Property 14 (Increase of defense branch). We say that σ
satisfies Increase of defense branch iff for any AS ′,AS =
(A,R) ∈ AS and any a ∈ A such that there exists an iso-
morphism γ with AS ′ = γ(AS), for every S ∈ (2A \ {∅})
such that for every s ∈ S,R−

1 (s) = ∅, there exists a path
of size n from S to a with n ∈ 2N and there is no path of
size m from S to a with m ∈ 2N + 1 then for every s ∈ S,
a 	σAS⊕AS′⊕P+(γ(s)) γ(a).

The Attack vs full defense property states that, in an
acyclic hypergraph argumentation framework, an argument
with only one direct attacker should be ranked lower than an
argument without any attack branch.
Property 15 (Attack vs full defense). We say that σ sat-
isfies Attack vs full defense iff for any AS = (A,R) ∈
AS that is acyclic and a, b ∈ A such that |R−

1 (b)| =
1,R−

2 (b) = ∅, there exists no S ∈ (2A \ {∅}) with for every
s ∈ S,R−

1 (s) = ∅ and a path of size n from S to a with
n ∈ 2N+ 1 then a 	σAS b.

In the next properties, we make the assumption that the
set of arguments should be compared w.r.t. their weakest ar-
guments. We work under this hypothesis since, for an attack
to exist, all arguments from S are necessary. Of course, an-
other aggregation function could be used – most of the cor-
responding definitions could easily be changed to take this
change into account.

The Quality precedence property states that if an argu-
ment a has an attacker S such that the weakest element of S
is ranked higher than every weakest element of any attacker
of b than a should be ranked lower than b.
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Property 16 (Quality precedence). We say that σ satisfies
Quality precedence iff for any AS = (A,R) ∈ AS and
a, b ∈ A such that there exists S ∈ R−

1 (a) and for ev-
ery S′ ∈ R−

1 (b) we have minσAS(S) 	σAS minσAS(S
′) then

b 	σAS a.

Before introducing the next properties, we need to intro-
duce a relation that compares sets of sets of arguments by
inspiring ourselves from (Amgoud and Ben-Naim 2013).

Definition 8 (Group comparison). Let AS = (A,R) and
G,G′ ⊆ (2A \ {∅}). We say that G ≥ G′ iff there exists
an injective function f : G′ → G such that for every g′ ∈
G′,minσAS(f(g

′)) �σAS minσAS(g
′).

Notation. As usual, we use the notation G > G′ iff |G′| <
|G| or there exists g′ ∈ G′ such that minσAS(f(g

′)) 	σAS
minσAS(g

′).
The Counter-transitivity property states that if the attack-

ers of a are better than the attackers of b w.r.t. the group
comparison then b should be better or equal ranked than a.

Property 17 (Counter-transitivity). We say that σ satisfies
Counter-transitivity iff for any AS = (A,R) ∈ AS and
a, b ∈ A such that R−

1 (a) ≥ R−
1 (b) then b �σAS a.

The Strict counter-transitivity property states that if the at-
tackers of a are better than the attackers of b w.r.t. the group
comparison then b should be ranked strictly better than a.

Property 18 (Strict counter-transitivity). We say that σ sat-
isfies Strict counter-transitivity iff for any AS = (A,R) ∈
AS and a, b ∈ A such that R−

1 (a) > R−
1 (b) then b 	σAS a.

4 The nh-categoriser

As mentioned before, in each set of attacking arguments, all
the components are necessary. Thus, an important intuition
is that removing one argument from the set of attacking ar-
guments would make the attack void. In the definition of the
nh-categoriser, we thus consider the force of the set of at-
tacking arguments to be the force of the weakest argument
of the set. Of course, the approach that we use can be gener-
alised with other aggregating methods.

Please note that we chose to generalise the h-categoriser
because of several reasons: (1) the h-categoriser is a well-
known ranking-based semantics in the argumentation com-
munity, (2) it converges for every argumentation graph and
(3) it satisfies a maximal (for set inclusion) number of pos-
tulates introduced by (Amgoud and Ben-Naim 2013).

Definition 9 (nh-categoriser). Let AS = (A,R) be a hyper-
graph argumentation framework. The nh-categoriser is the
function C : A → (0, 1] defined as, for all a ∈ A :

C(a) =

⎧⎨
⎩

1 if R−
1 (a) = ∅

1
1+

∑

S∈R
−
1 (a)

min
s∈S

C(s) otherwise

The ranking on arguments obtained by the nb-categoriser
is denoted by �nhAS , where for every a, b ∈ A, a �nhAS b iff
C(a) ≥ C(b).

Example 3 (Example 1 Cont’d). The nh-categoriser scores
of arguments are C(a) ≈ 0.38, C(b) = 1, C(c) =
0.5, C(d) ≈ 0.65 and C(e) ≈ 0.53. We obtain the ranking:
b �nhAS d �nhAS e �nhAS c �nhAS a.

The ranking outputted by the nh-categoriser is expected as
it only considers the minimum in each set of attacking argu-
ments. As a result, although the argument c is only attacked
by the set {b}, it is ranked lower than argument e which is
attacked by both {d, c} and {a, c} because b is stronger than
both c and a combined.

In the rest of this section, we consider the argumenta-
tion framework AS = (A,R) where A = {a1, . . . , an}.
We now answer the two following questions for the nh-
categoriser: (1) “How many solutions exists?” and (2) “how
to find them?”

We first transform the problem into a fixed point form. Let
us consider v ∈ [0, 1]n such that:

v = F (v) = [f1(v), f2(v), . . . , fn(v)]
T (1)

where the function F maps [0, 1]n to [0, 1]n, and for ev-
ery i ∈ {0, . . . , n}, the function fi from [0, 1]n to [0, 1] is
defined by the nh-categoriser function:

fi(v) =

⎧⎨
⎩

1 if R−
1 (ai) = ∅

1
1+

∑

S∈R
−
1 (ai)

min
aj∈S

fj(v)
else (2)

The function F is continuous and non-increasing as for
every two vectors u = (u1, . . . , un) and u′ = (u′1, . . . u

′
n)

of [0, 1]n with u1 ≤ u′1, . . . , un ≤ u′n, F (u) ≥ F (u′) holds.
Proposition 1 (Solution existence). For any argumentation
framework AS = (A,R), the nh-categoriser valuation de-
fined in (2) has at least one solution in [0, 1]n.

Proof. The proof is similar to the one of Pu et al. (2014)
and relies on the equivalence result that function F has at
least one fixed point. The proof uses Brouwer’s fixed point
theorem and the fact that [0, 1]n is homeomorphic to a closed
ball and function that F is continuous on it.

Proposition 2 (Uniqueness of nh-categoriser valuation). Let
AS = (A,R) be a hypergraph argumentation framework
with A = {a1, . . . , an} and R with sets of attacking argu-
ments. Then, the scores of the nh-categoriser converge to-
ward a unique solution v∗ ∈ [0, 1]n, which is the limit of
the sequence of {v(k)}∞k=0 defined from an arbitrary selected
v(0) in [0, 1]n and , for each k ≥ 1, generated by

v(k) = F (v(k−1)) (3)

Proof. First, let us consider that u(0) = (0, . . . , 0), u(1) =
F (u(0)) = (1, . . . , 1) and u(k) = F (u(k−1)) for each k ≥ 2.
We can easily check that

u(0) ≤ u(2) ≤ u(1) (4)
and that there exists 0 < ϕ < 1 such that

ϕu(1) ≤ u(2) (5)
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This is true because every element of u(2) is strictly posi-
tive and ϕ can be initialised to the minimum element.

Now, let us prove by induction that for all k ≥ 0, the
following statement holds

u(0) ≤ u(2) ≤ · · · ≤ u(2k) ≤ · · · ≤ u(2k+1)

≤ · · · ≤ u(3) ≤ u(1) (6)

Base case: We showed in (4) that u(0) ≤ u(2) ≤ u(1).
Inductive step: Suppose that u(0) ≤ u(2) ≤ · · · ≤

u(2k) ≤ · · · ≤ u(2k+1) ≤ · · · ≤ u(3) ≤ u(1) is true. We
need to prove that u(2k) ≤ u(2k+2) ≤ u(2k+3) ≤ u(2k+1).

First, we show that u(2k+2) ≤ u(2k+1). Since u(2k) ≤
u(2k+1) and that F is non increasing, we deduce that
F (u(2k+1)) ≤ F (u(2k)) and that u(2k+2) ≤ u(2k+1). Like-
wise, we show u(2k) ≤ u(2k+2) using the same reasoning.

Second, we show that u(2k+2) ≤ u(2k+3) ≤ u(2k+1).
Since we prove in the previous step that u(2k+2) ≤ u(2k+1)

and u(2k) ≤ u(2k+2), we deduce using the fact that F is non
increasing that u(2k+2) ≤ u(2k+3) and u(2k+3) ≤ u(2k+1)

respectively. This concludes the proof by induction.
From (5) and (6), we find that there exists ϕ such that

ϕu(2k−1) ≤ u(2k) for each k ≥ 1. Now, let us denote πk =
sup{π such that πu(2k−1) ≤ u2k)}. Then, 0 < ϕ ≤ π1 ≤
· · · ≤ πk ≤ · · · ≤ 1. We now show that lim

k→∞
πk = 1.

We first show fi(πu) = 1
π+fi(u)(1−π)fi(u) for all i ∈

{1, 2, . . . , n}.

fi(πu) =
1

1 +
∑

S∈R−
1 (ai)

min
aj∈S

fj(πu)

=
1

1 + π
∑

S∈R−
1 (ai)

min
aj∈S

fj(u)

=

1 +
∑

S∈R−
1 (ai)

min
aj∈S

fj(u)

1 + π
∑

S∈R−
1 (ai)

min
aj∈S

fj(u)
× fi(u)

=
1

1+π
∑

S∈R
−
1 (ai)

min
aj∈S

fj(u)

1+
∑

S∈R
−
1 (ai)

min
aj∈S

fj(u)

× fi(u)

=
1

(1+
∑

S∈R
−
1 (ai)

min
aj∈S

fj(u))π−π+1

1+
∑

S∈R
−
1 (ai)

min
aj∈S

fj(u)

× fi(u)

=
1

π + 1−π
1+

∑

S∈R
−
1 (ai)

min
aj∈S

fj(u)

× fi(u)

=
1

π + (1− π)fi(u)
× fi(u)

Then, there exists 0 < α < 1 and a continuous function
ψ(π) = 1

π+α(1−π) such that

F (πu) ≤ ψ(π)F (u), ∀π ∈ [ϕ, 1[, u ∈ [ϕ, 1]n (7)

Then, we show that

u(2k+1) = F (u(2k)) ≤ F (πku
(2k−1)) ≤ ψ(πk)u

(2k)

≤ ψ(πk)u
(2k+2) (8)

By definition of πk, it holds that πku
(2k−1) ≤

u(2k) and since F is non decreasing, we deduce that
F (u(2k)) ≤ F (πku

(2k−1)). Using (7), we conclude that
F (πku

(2k−1)) ≤ πkF (u
(2k−1)) = πku

(2k). Using (6), we
have that u(2k) ≤ u(2k+2) and πku(2k) ≤ πku

(2k+2).
Now, we show that πk+1 ≥ 1

ψ(πk)
by contradiction.

Suppose that this πk+1 < 1
ψ(πk)

. Using (8), we have that

u(2k+1) ≤ ψ(πk)u
(2k+2) and thus 1

ψ(πk)
u(2k+1) ≤ u(2k+2).

Contradiction with the definition of πk+1.
We now show that

1− πk+1 ≤ (1− α)(1− πk) ≤ . . .

≤ (1− α)k(1− π1) ≤ (1− α)k(1− ϕ) (9)

Using the previous result, we have that

πk+1 ≥ 1

ψ(πk)
= πk + α(1− πk)

απk − α− πk + 1 ≥ 1− πk+1

(1− α)(1− πk) ≥ 1− πk+1

This is sufficient to prove (9) by noticing that ϕ ≤ π1.
As 0 < α < 1, thus by (9) we have

lim
k→∞

(1− πk+1) = 0 ⇒ lim
k→∞

πk = 1 (10)

There by (6), we get for any integer p ≥ 1

0 ≤ u(2k+2p) − u(2k) ≤ u(2k+1) − u(2k)

≤ (1− πk)u
(2k+1) ≤ (1− πk)u

(1) (11)

Since [0, 1]n is normal, both {u(2k+1)}∞k=0 and
{u(2k)}∞k=1 are convergence sequences. By (10) and
(11), thus, there exists u∗ ∈ [0, 1]n such that

lim
k→∞

u(2k+1) = lim
k→∞

u(2k) = u∗ (12)

Hence, u(2k) ≤ u∗ ≤ u(2k+1) and u(2k) ≤ F (u∗) ≤
u(2k+1). Letting k → ∞ and combining with (12), it follows
that F (u∗) = u∗ (it is a fixed point of F .

We now show that the result holds for any arbitrary v(0) ∈
[0, 1]n. By induction, we have that for any k ≥ 1, u(2k) ≤
v(2k) ≤ u(2k−1) and u(2k) ≤ v(2k+1) ≤ u(2k+1). Then
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Properties nh-categoriser
Abstraction �

Independence �
Void precedence �

Self-contradiction �
Cardinality precedence �

Defense precedence �
Total �

Non-attacked equiv. �
Distributed-defense precedence �
Strict addition of defense branch �

Addition of defense branch �
Addition of attack branch �
Increase of attack branch �

Increase of defense branch �
Attack vs full defense �

Quality precedence �
Counter-transitivity �

Strict counter transitivity �

Table 1: Properties satisfied by the nh-categoriser

v(k) → v∗ = u∗ as k → ∞. In particular, let v(0) = w∗,
where w∗ is any fixed point of F in [0, 1]n, then v(k) = w∗
for all k ≥ 1, and we get w∗ = u∗. So F has a unique fixed
point in [0, 1]n.

In Table 1, we show that nh-categoriser satisfies the same
properties as h-categoriser. The proof is dropped because of
lack of space.

Our goal is achieved as the nh-categoriser is a proper in-
stantiation of the h-categoriser for hypergraph argumenta-
tion frameworks and satisfies the same properties as the reg-
ular h-categoriser. The set of properties of this paper can
be used to select the most suitable ranking-based semantics
for a specific task. There has been a lot of discussion about
whether some properties are more desirable than others, for
instance, the satisfaction of Abstraction is considered essen-
tial for most ranking-based semantics whereas other proper-
ties, such as Increase of attack branch, are considered op-
tional.

In the next proposition, we show that there always exists a
regular Dung’s abstract argumentation framework such that
the score on arguments with the h-categoriser are the same
as the scores on arguments in the hypergraph argumentation
framework with the nh-categoriser.

Definition 10 (Abstract argumentation framework). An ab-
stract argumentation framework is a pair AS� = (A�,R�),
where A� is a finite and non-empty set of arguments and
R� ⊆ A×A is a set of binary attacks.

Notation. Let AS� = (A�,R�) be an abstract argumenta-
tion framework and a ∈ A�, Att(a) = {b ∈ A� | (b, a) ∈
R�}.

Definition 11 (h-categoriser). Let AS� = (A�,R�) be an
abstract argumentation framework. The h-categoriser is the
function C ′ : A� → [0, 1] defined as, for all a ∈ A� :

C ′(a) =

{
1 if Att(a) = ∅

1
1+

∑

b∈Att(a)

C′(b) otherwise

Proposition 3 (Dung Equivalent Existence). Let AS =
(A,R) be a hypergraph argumentation frameworks. Then,
there exists at least one abstract argumentation framework
AS� = (A�,R�), a subset {a1, . . . , am} ⊆ A� and a bi-
jection γ : A → {a1, . . . , am} such that for every a ∈ A,
C(a) = C ′(γ(a)).

Proof. This proof is an original work and is split in two
parts: First, we exhibit how to build an abstract argumenta-
tion framework AS� from an arbitrary hypergraph argumen-
tation framework AS . Second, we show that aforementioned
AS� is such that Proposition 3 is satisfied.

• 1- Let AS = (A,R) be an arbitrary hypergraph argu-
mentation framework. We build the abstract argumenta-
tion AS� = (A�,R�) such that:
– A� = {a1, . . . , am} ∪ {am+1, . . . , an}
– There is a bijection γ1 from A to {a1, . . . , am} and a

bijection γ2 from R to {am+1, . . . , an}.
– For every (S, t) ∈ R, we create the attack
(γ2((S, t)), γ1(t)) in R�.

– For every (S, t) ∈ R, we consider the set XS = {s ∈
S | for every s′ ∈ S, s′ �nhAS s} and we chose xS ∈
XS . Then, for every S′ ∈ R−

1 (xS), we create the attack
(γ2((S

′, xS)), γ2((S, t))) in R�.
• 2- We now show that the constructed argumentation

framework AS� is such that Proposition 3 is satisfied. Let
X ′ = {am+1, . . . , an} and AS ′ = (A′,R′) be the re-
striction of AS� to X ′, i.e. A′ = X ′ and R′ = {(a, b) ∈
R�|a ∈ X ′ and b ∈ X ′}.
We now define the function f : X ′ → R that returns
for every element a in X ′, the minimum score of the
attackers associated with the attack corresponding to a.
Namely, for every a ∈ X ′, f(a) = min

a′∈W
C(a′) where

(W, t) = γ−1
2 (a) and γ−1

2 is the inverse function of γ2.
We now prove that for every a ∈ A′, it holds that
f(a) = 1

1+
∑

(b,a)∈R′
f(b) . Let a be an arbitrary argu-

ment in A′, {b1, . . . , bp} the set of attackers of a in
AS ′ and (W, t) = γ−1

2 (a). By construction, we know
that there exists xW ∈ W such that {b1, . . . , bp} =
{γ2((S′, xW ))|S′ ∈ R−

1 (xW )}. Thus,

f(a) = min
a′∈W

C(a′)

f(a) = C(xW )

f(a) =
1

1 +
∑

S′∈R−
1 (xW )

min
s′∈S′

C(s′)

f(a) =
1

1 +
∑

(b,a)∈R′
f(b)
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Since f satisfies the same formula as h-categoriser then f
is identical to h-categoriser on AS ′ (Pu et al. 2014).
Let us now consider the whole argumentation graph
AS�. Since there are no attacks from arguments in
{a1, . . . , am} to arguments in {am+1, . . . , an}, the h-
categoriser gives the same scores to {am+1, . . . , an}
in AS� and in AS ′. Since for every argument a in
{a1, . . . , am}, the set of attackers of a in AS� is {b ∈
{am+1, . . . , an} | γ−1

2 (b) = (S, γ−1
1 (a)) with S ∈

R−
1 (γ

−1
1 (a))}, we have for every a ∈ {a1, . . . , am}:

C ′(a) =
1

1 +
∑

b∈Att(a)
C ′(b)

C ′(a) =
1

1 +
∑

b∈Att(a)
f(b)

C ′(a) =
1

1 +
∑

b∈Att(a)
min
a′∈W

C(a′)
where (W, t) = γ−1

2 (b)

C ′(a) =
1

1 +
∑

S∈R−
1 (γ−1

1 (a))

min
s∈S

C(s)

C ′(a) = C(γ−1
1 (a))

Proposition 3 is important as it indicates the compu-
tational relation between the nh-categoriser and the h-
categoriser. Moreover, this proposition shows how one is
able to move from an argumentation hypergraph to a regular
argumentation directed graph without loss of generality.
Example 4 (Example 3 Cont’d). Let us consider the abstract
argumentation framework AS� = (A�,R�) with A� =
{a′, b′, c′, d′, e′} ∪ {da, ba, ace, bc, bed, dce} and R� =
{(da, a), (da, ace), (ba, a), (ba, ace), (bc, c), (bc, dce), (bed,
d), (bed, da), (dce, e), (dce, bed), (ace, e), (ace, bed)}. If
γ is the bijection from A to A� with γ(a) = a′, γ(b) =
b′, γ(c) = c′, γ(d) = d′ and γ(e) = e′ then it holds that for
every a ∈ A, C(a) = C ′(γ(a)).

a′ da

ba ace bed d′

e′ dce bc c′b′

Figure 2: An abstract argumentation framework

We would like to point out that for a hypergraph argumen-
tation framework, there might be several abstract argumen-
tation frameworks that satisfy Proposition 3.

Please note that although it seems intuitive that restrict-
ing the sets of attacking arguments to a binary attack from
the weaker argument of the set would result in the same
score with the h-categoriser than with the nh-categoriser,
this idea does not work. For illustration purposes, we present
one simple counter-example against this intuition. Consider
the argumentation framework AS = (A,R) with such that
A = {a, b, c, d} and R = {({d}, b), ({b, a}, c), ({d, b}, c)}.
The score of the argument c in AS using the nh-categoriser
is C(c) = 0.5. Now, if we use the aforementioned approach,
we obtain the binary argumentation framework AS� =
(A,R�) such that R� = {(b, c), (d, b)}. In AS�, the score
of c with the h-categoriser is C ′(c) = 0.66, which is not
equal to the score of c given by the nh-categoriser. The ap-
proach described in the proof of Proposition 3 enables us to
obtain a strength of 0.5, which is the strength of c using the
nh-categoriser.

5 Discussion and Related Work

We introduced the notion of ranking-based semantics for ar-
gumentation frameworks with sets of attacking arguments
(also called hypergraph argumentation frameworks). We
motivated our work rooted in the need to account for ex-
tensions of classical Dung graphs encoding arguments over
a logical language not necessarily closed under the “and”
logical connective. In that context, our work aligns with
existing works in the literature that extend ranking-based
semantics to weighted argumentation framework (Amgoud
et al. 2017), support argumentation frameworks (Amgoud
and Ben-Naim 2016) or bipolar argumentation frameworks
(Amgoud et al. 2008). Our contributions consist in (1) pro-
viding a set of 18 translated properties for ranking-based
semantics that are directly applicable in the context of hy-
pergraph argumentation framework, (2) introducing the nh-
categoriser as the first ranking-based semantics for hyper-
graph argumentation framework, (3) giving the complete
proof of the existence of a unique solution for the nh-
categoriser and (4) bridging the link between ranking argu-
ments in hypergraph argumentation frameworks and ranking
arguments in the usual Dung’s framework.

The focus of the argumentation community have recently
been shifted to argumentation frameworks with sets of at-
tacking arguments (Flouris and Bikakis 2019) and we be-
lieve that this paper will be of interest for the community.

Although the work of (Flouris and Bikakis 2019) com-
pletes the characterisation of such argumentation frame-
works with the treatment of various interesting semantics
not considered in the original publication (Nielsen and Par-
sons 2007) and functions allowing the transition between ex-
tensions and labellings along with their properties, it does
not consider ranking-based semantics. To the extend of our
knowledge, this paper is the only work that has been inter-
ested in the topic of applying ranking-based semantics to
this setting.
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