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Abstract

Knowledge graph embedding, which aims to represent en-
tities and relations as low dimensional vectors (or matrices,
tensors, etc.), has been shown to be a powerful technique
for predicting missing links in knowledge graphs. Existing
knowledge graph embedding models mainly focus on model-
ing relation patterns such as symmetry/antisymmetry, inver-
sion, and composition. However, many existing approaches
fail to model semantic hierarchies, which are common in
real-world applications. To address this challenge, we pro-
pose a novel knowledge graph embedding model—namely,
Hierarchy-Aware Knowledge Graph Embedding (HAKE)—
which maps entities into the polar coordinate system. HAKE
is inspired by the fact that concentric circles in the polar coor-
dinate system can naturally reflect the hierarchy. Specifically,
the radial coordinate aims to model entities at different levels
of the hierarchy, and entities with smaller radii are expected
to be at higher levels; the angular coordinate aims to distin-
guish entities at the same level of the hierarchy, and these en-
tities are expected to have roughly the same radii but differ-
ent angles. Experiments demonstrate that HAKE can effec-
tively model the semantic hierarchies in knowledge graphs,
and significantly outperforms existing state-of-the-art meth-
ods on benchmark datasets for the link prediction task.

1 Introduction

Knowledge graphs are usually collections of factual
triples—(head entity, relation, tail entity), which represent
human knowledge in a structured way. In the past few years,
we have witnessed the great achievement of knowledge
graphs in many areas, such as natural language processing
(Zhang et al. 2019), question answering (Huang et al. 2019),
and recommendation systems (Wang et al. 2018).

Although commonly used knowledge graphs contain bil-
lions of triples, they still suffer from the incompleteness
problem that a lot of valid triples are missing, as it is imprac-
tical to find all valid triples manually. Therefore, knowledge
graph completion, also known as link prediction in knowl-
edge graphs, has attracted much attention recently. Link pre-
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diction aims to automatically predict missing links between
entities based on known links. It is a challenging task as we
not only need to predict whether there is a relation between
two entities, but also need to determine which relation it is.

Inspired by word embeddings (Mikolov et al. 2013) that
can well capture semantic meaning of words, researchers
turn to distributed representations of knowledge graphs (aka,
knowledge graph embeddings) to deal with the link predic-
tion problem. Knowledge graph embeddings regard entities
and relations as low dimensional vectors (or matrices, ten-
sors), which can be stored and computed efficiently. More-
over, like in the case of word embeddings, knowledge graph
embeddings can preserve the semantics and inherent struc-
tures of entities and relations. Therefore, other than the link
prediction task, knowledge graph embeddings can also be
used in various downstream tasks, such as triple classifica-
tion (Lin et al. 2015), relation inference (Guo, Sun, and Hu
2019), and search personalization (Nguyen et al. 2019).

The success of existing knowledge graph embedding
models heavily relies on their ability to model connectivity
patterns of the relations, such as symmetry/antisymmetry,
inversion, and composition (Sun et al. 2019). For example,
TransE (Bordes et al. 2013), which represent relations as
translations, can model the inversion and composition pat-
terns. DistMult (Yang et al. 2015), which models the three-
way interactions between head entities, relations, and tail
entities, can model the symmetry pattern. RotatE (Sun et
al. 2019), which represents entities as points in a complex
space and relations as rotations, can model relation patterns
including symmetry/antisymmetry, inversion, and composi-
tion. However, many existing models fail to model semantic
hierarchies in knowledge graphs.

Semantic hierarchy is a ubiquitous property in knowl-
edge graphs. For instance, WordNet (Miller 1995) con-
tains the triple [arbor/cassia/palm, hypernym, tree], where
“tree” is at a higher level than “arbor/cassia/palm” in
the hierarchy. Freebase (Bollacker et al. 2008) con-
tains the triple [England, /location/location/contains, Ponte-
fract/Lancaster], where “Pontefract/Lancaster” is at a lower
level than “England” in the hierarchy. Although there exists
some work that takes the hierarchy structures into account
(Xie, Liu, and Sun 2016; Zhang et al. 2018), they usually re-
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quire additional data or process to obtain the hierarchy infor-
mation. Therefore, it is still challenging to find an approach
that is capable of modeling the semantic hierarchy automat-
ically and effectively.

In this paper, we propose a novel knowledge graph
embedding model—namely, Hierarchy-Aware Knowledge
Graph Embedding (HAKE). To model the semantic hierar-
chies, HAKE is expected to distinguish entities in two cate-
gories: (a) at different levels of the hierarchy; (b) at the same
level of the hierarchy. Inspired by the fact that entities that
have the hierarchical properties can be viewed as a tree, we
can use the depth of a node (entity) to model different levels
of the hierarchy. Thus, we use modulus information to model
entities in the category (a), as the size of moduli can reflect
the depth. Under the above settings, entities in the category
(b) will have roughly the same modulus, which is hard to
distinguish. Inspired by the fact that the points on the same
circle can have different phases, we use phase information to
model entities in the category (b). Combining the modulus
and phase information, HAKE maps entities into the polar
coordinate system, where the radial coordinate corresponds
to the modulus information and the angular coordinate cor-
responds to the phase information. Experiments show that
our proposed HAKE model can not only clearly distinguish
the semantic hierarchies of entities, but also significantly and
consistently outperform several state-of-the-art methods on
the benchmark datasets.

Notations Throughout this paper, we use lower-case let-
ters h, r, and t to represent head entities, relations, and tail
entities, respectively. The triplet (h, r, t) denotes a fact in
knowledge graphs. The corresponding boldface lower-case
letters h, r and t denote the embeddings (vectors) of head
entities, relations, and tail entities. The i-th entry of a vector
h is denoted as [h]i. Let k denote the embedding dimension.

Let ◦ : Rn × R
n → R

n denote the Hadamard product
between two vectors, that is,

[a ◦ b]i = [a]i · [b]i,
and ‖ · ‖1, ‖ · ‖2 denote the �1 and �2 norm, respectively.

2 Related Work

In this section, we will describe the related work and the key
differences between them and our work in two aspects—the
model category and the way to model hierarchy structures in
knowledge graphs.

Model Category

Roughly speaking, we can divide knowledge graph embed-
ding models into three categories—translational distance
models, bilinear models, and neural network based models.
Table 1 exhibits several popular models.

Translational distance models describe relations as
translations from source entities to target entities. TransE
(Bordes et al. 2013) supposes that entities and relations sat-
isfy h + r ≈ t, where h, r, t ∈ R

n, and defines the corre-
sponding score function as fr(h, t) = −‖h+r−t‖1/2. How-
ever, TransE does not perform well on 1-N, N-1 and N-N re-
lations (Wang et al. 2014). TransH (Wang et al. 2014) over-

comes the many-to-many relation problem by allowing enti-
ties to have distinct representations given different relations.
The score function is defined as fr(h, t) = −‖h⊥+r−t⊥‖2,
where h⊥ and t⊥ are the projections of entities onto relation-
specific hyperplanes. ManifoldE (Xiao, Huang, and Zhu
2016) deals with many-to-many problems by relaxing the
hypothesis h + r ≈ t to ‖h + r − t‖22 ≈ θ2r for each valid
triple. In this way, the candidate entities can lie on a mani-
fold instead of exact point. The corresponding score function
is defined as fr(h, t) = −(‖h+r−t‖22−θ2r)2. More recently,
to better model symmetric and antisymmetric relations, Ro-
tatE (Sun et al. 2019) defines each relation as a rotation from
source entities to target entities in a complex vector space.
The score function is defined as fr(h, t) = −‖h ◦ r − t‖1,
where h, r, t ∈ C

k and |[r]i| = 1.
Bilinear models product-based score functions to match

latent semantics of entities and relations embodied in their
vector space representations. RESCAL (Nickel, Tresp, and
Kriegel 2011) represents each relation as a full rank matrix,
and defines the score function as fr(h, t) = h�Mrt, which
can also be seen as a bilinear function. As full rank matri-
ces are prone to overfitting, recent works turn to make addi-
tional assumptions on Mr. For example, DistMult (Yang et
al. 2015) assumes Mr to be a diagonal matrix, and ANAL-
OGY (Liu, Wu, and Yang 2017) supposes that Mr is nor-
mal. However, these over-simplified models are usually less
expressive and not powerful enough for general knowledge
graphs. Differently, ComplEx (Trouillon et al. 2016) extends
DistMult by introducing complex-valued embeddings to bet-
ter model asymmetric and inverse relations. HolE (Nickel,
Rosasco, and Poggio 2016) combines the expressive power
of RESCAL with the efficiency and simplicity of DistMult
by using the circular correlation operation.

Neural network based models have received greater at-
tention in recent years. For example, MLP (Dong et al. 2014)
and NTN (Socher et al. 2013) use a fully connected neu-
ral network to determine the scores of given triples. ConvE
(Dettmers et al. 2018) and ConvKB (Nguyen et al. 2018)
employ convolutional neural networks to define score func-
tions. Recently, graph convolutional networks are also intro-
duced, as knowledge graphs obviously have graph structures
(Schlichtkrull et al. 2018).

Our proposed model HAKE belongs to the translational
distance models. More specifically, HAKE shares similari-
ties with RotatE (Sun et al. 2019), in which the authors claim
that they use both modulus and phase information. How-
ever, there exist two major differences between RotatE and
HAKE. Detailed differences are as follows.

(a) The aims are different. RotatE aims to model the rela-
tion patterns including symmetry/antisymmetry, inver-
sion, and composition. HAKE aims to model the seman-
tic hierarchy, while it can also model all the relation pat-
terns mentioned above.

(b) The ways to use modulus information are different. Ro-
tatE models relations as rotations in the complex space,
which encourages two linked entities to have the same
modulus, no matter what the relation is. The different
moduli in RotatE come from the inaccuracy in training.
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Table 1: Details of several knowledge graph embedding models, where ◦ denotes the Hadamard product, f denotes a activation
function, ∗ denotes 2D convolution, and ω denotes a filter in convolutional layers. ·̄ denotes conjugate for complex vectors in
ComplEx model and 2D reshaping for real vectors in ConvE model.

Model Score Function fr(h, t) Parameters

TransE (Bordes et al. 2013) −‖h + r− t‖1/2 h, r, t ∈ R
k

TransR (Lin et al. 2015) −‖Mrh + r−Mrt‖2 h, t ∈ R
d, r ∈ R

k, Mr ∈ R
k×d

ManifoldE (Xiao, Huang, and Zhu 2016) −(‖h + r− t‖22 − θ2r)
2 h, r, t ∈ R

k

RotatE (Sun et al. 2019) −‖h ◦ r− t‖2 h, r, t ∈ C
k, |ri| = 1

RESCAL (Nickel, Tresp, and Kriegel 2011) h�Mrt h, t ∈ R
k, Mr ∈ R

k×k

DistMult (Yang et al. 2015) h�diag(r)t h, r, t ∈ R
k

ComplEx (Trouillon et al. 2016) Re(h�diag(r)̄t) h, r, t ∈ C
k

ConvE (Dettmers et al. 2018) f(vec(f([r̄, h̄] ∗ ω))W)t h, r, t ∈ R
k

HAKE −‖hm ◦ rm − tm‖2 − λ‖ sin((hp + rp − tp)/2)‖1 hm, tm ∈ R
k,rm ∈ R

k
+,

hp, rp, tp ∈ [0, 2π)k, , λ ∈ R

Instead, HAKE explicitly models the modulus informa-
tion, which significantly outperforms RotatE in distin-
guishing entities at different levels of the hierarchy.

The Ways to Model Hierarchy Structures

Another related problem is how to model hierarchy struc-
tures in knowledge graphs. Some recent work considers the
problem in different ways. Li et al. (2016) embed entities
and categories jointly into a semantic space and designs
models for the concept categorization and dataless hierar-
chical classification tasks. Zhang et al. (2018) use clustering
algorithms to model the hierarchical relation structures. Xie,
Liu, and Sun (2016) proposed TKRL, which embeds the
type information into knowledge graph embeddings. That
is, TKRL requires additional hierarchical type information
for entities.

Different from the previous work, our work

(a) considers the link prediction task, which is a more com-
mon task for knowledge graph embeddings;

(b) can automatically learn the semantic hierarchy in
knowledge graphs without using clustering algorithms;

(c) does not require any additional information other than
the triples in knowledge graphs.

3 The Proposed HAKE

In this section, we introduce our proposed model HAKE. We
first introduce two categories of entities that reflect the se-
mantic hierarchies in knowledge graphs. Afterwards, we in-
troduce our proposed HAKE that can model entities in both
of the categories.

Two Categories of Entities

To model the semantic hierarchies of knowledge graphs, a
knowledge graph embedding model must be capable of dis-
tinguishing entities in the following two categories.

(a) Entities at different levels of the hierarchy. For example,
“mammal” and “dog”, “run” and ”move”.

(b) Entities at the same level of the hierarchy. For example,
“rose” and “peony”, “truck” and ”lorry”.

Hierarchy-Aware Knowledge Graph Embedding

To model both of the above categories, we propose
a hierarchy-aware knowledge graph embedding model—
HAKE. HAKE consists of two parts—the modulus part and
the phase part—which aim to model entities in the two dif-
ferent categories, respectively. Figure 1 gives an illustration
of the proposed model.

To distinguish embeddings in the different parts, we use
em (e can be h or t) and rm to denote the entity embedding
and relation embedding in the modulus part, and use ep (e
can be h or t) and rp to denote the entity embedding and
relation embedding in the phase part.

The modulus part aims to model the entities at differ-
ent levels of the hierarchy. Inspired by the fact that entities
that have hierarchical property can be viewed as a tree, we
can use the depth of a node (entity) to model different levels
of the hierarchy. Therefore, we use modulus information to
model entities in the category (a), as moduli can reflect the
depth in a tree. Specifically, we regard each entry of hm and
tm, that is, [hm]i and [tm]i, as a modulus, and regard each
entry of rm, that is, [r]i, as a scaling transformation between
two moduli. We can formulate the modulus part as follows:

hm ◦ rm = tm, where hm, tm ∈ R
k, and rm ∈ R

k
+.

The corresponding distance function is:

dr,m(hm, tm) = ‖hm ◦ rm − tm‖2.
Note that we allow the entries of entity embeddings to be

negative but restrict the entries of relation embeddings to be
positive. This is because that the signs of entity embeddings
can help us to predict whether there exists a relation between
two entities. For example, if there exists a relation r between
h and t1, and no relation between h and t2, then (h, r, t1) is a
positive sample and (h, r, t2) is a negative sample. Our goal
is to minimize dr(hm, t1,m) and maximize dr(hm, t2,m), so
as to make a clear distinction between positive and nega-
tive samples. For the positive sample, [h]i and [t1]i tend to
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Figure 1: Simple illustration of HAKE. In a polar coordinate
system, the radial coordinate aims to model entities at differ-
ent levels of the hierarchy, and the angular coordinate aims
to distinguish entities at the same level of the hierarchy.

share the same sign, as [rm]i > 0. For the negative sample,
the signs of [hm]i and [t2,m]i can be different if we initial-
ize their signs randomly. In this way, dr(hm, t2,m) is more
likely to be larger than dr(hm, t1,m), which is exactly what
we desire.

Further, we can expect the entities at higher levels of the
hierarchy to have smaller modulus, as these entities are more
close to the root of the tree.

If we use only the modulus part to embed knowledge
graphs, then the entities in the category (b) will have the
same modulus. Moreover, suppose that r is a relation that
reflects the same semantic hierarchy, then [r]i will tend to be
one, as h ◦ r ◦ r = h holds for all h. Hence, embeddings
of the entities in the category (b) tend to be the same, which
makes it hard to distinguish these entities. Therefore, a new
module is required to model the entities in the category (b).

The phase part aims to model the entities at the same
level of the semantic hierarchy. Inspired by the fact that
points on the same circle (that is, have the same modulus)
can have different phases, we use phase information to dis-
tinguish entities in the category (b). Specifically, we regard
each entry of hp and tp, that is, [hp]i and [tp]i as a phase, and
regard each entry of rp, that is, [rp]i, as a phase transforma-
tion. We can formulate the phase part as follows:

(hp + rp)mod 2π = tp,where hp, rp, tp ∈ [0, 2π)k.

The corresponding distance function is:

dr,p(hp, tp) = ‖ sin((hp + rp − tp)/2)‖1,
where sin(·) is an operation that applies the sine function
to each element of the input. Note that we use a sine func-
tion to measure the distance between phases instead of using
‖hp+ rp− tp‖1, as phases have periodic characteristic. This
distance function shares the same formulation with that of
pRotatE (Sun et al. 2019).

Combining the modulus part and the phase part, HAKE
maps entities into the polar coordinate system, where the
radial coordinate and the angular coordinates correspond to
the modulus part and the phase part, respectively. That is,
HAKE maps an entity h to [hm; hp], where hm and hp are
generated by the modulus part and the phase part, respec-
tively, and [ · ; · ] denotes the concatenation of two vectors.

Obviously, ([hm]i, [hp]i) is a 2D point in the polar coordi-
nate system. Specifically, we formulate HAKE as follows:{

hm ◦ rm = tm, where hm, tm ∈ R
k, rm ∈ R

k
+,

(hp + rp)mod 2π = tp, where hp, tp, rp ∈ [0, 2π)k.

The distance function of HAKE is:

dr(h, t) = dr,m(hm, tm) + λdr,p(hp, tp),

where λ ∈ R is a parameter that learned by the model. The
corresponding score function is

fr(h, t) = dr(h, t) = −dr,m(h, t)− λdr,p(h, t).

When two entities have the same moduli, then the mod-
ulus part dr,m(hm, tm) = 0. However, the phase part
dr,p(hp, tp) can be very different. By combining the modu-
lus part and the phase part, HAKE can model the entities in
both the category (a) and the category (b). Therefore, HAKE
can model semantic hierarchies of knowledge graphs.

When evaluating the models, we find that adding a mix-
ture bias to dr,m(h, t) can help to improve the performance
of HAKE. The modified dr,m(h, t) is given by:

d′r,m(h, t) = ‖hm ◦ rm + (hm + tm) ◦ r′m − tm‖2,
where 0 < r′m < 1 is a vector that have the same dimension
with rm. Indeed, the above distance function is equivalent to

d′r,m(h, t) = ‖hm ◦ ((1− r′m)/(rm + r′m))− tm‖2,
where / denotes the element-wise division operation. If we
let rm ← (1 − r′m)/(rm + r′m), then the modified distance
function is exactly the same as the original one when com-
pare the distances of different entity pairs. For notation con-
venience, we still use dr,m(h, t) = ‖hm ◦ rm − tm‖2 to
represent the modulus part. We will conduct ablation studies
on the bias in the experiment section.

Loss Function

To train the model, we use the negative sampling loss func-
tions with self-adversarial training (Sun et al. 2019):

L =− log σ(γ − dr(h, t))

−
n∑

i=1

p(h′
i, r, t

′
i) log σ(dr(h

′
i, t′i)− γ),

where γ is a fixed margin, σ is the sigmoid function, and
(h′

i, r, t
′
i) is the ith negative triple. Moreover,

p(h′
j , r, t

′
j |{(hi, ri, ti)}) =

expαfr(h
′
j , t′j)∑

i expαfr(h
′
i, t′i)

is the probability distribution of sampling negative triples,
where α is the temperature of sampling.

4 Experiments and Analysis

This section is organized as follows. First, we introduce
the experimental settings in detail. Then, we show the ef-
fectiveness of our proposed model on three benchmark
datasets. Finally, we analyze the embeddings generated by
HAKE, and show the results of ablation studies. The code
of HAKE is available on GitHub at https://github.com/
MIRALab-USTC/KGE-HAKE.
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Experimental Settings

We evaluate our proposed models on three commonly used
knowledge graph datasets—WN18RR (Toutanova and Chen
2015), FB15k-237 (Dettmers et al. 2018), and YAGO3-10
(Mahdisoltani, Biega, and Suchanek 2013). Details of these
datasets are summarized in Table 2.

WN18RR, FB15k-237, and YAGO3-10 are subsets of
WN18 (Bordes et al. 2013), FB15k (Bordes et al. 2013), and
YAGO3 (Mahdisoltani, Biega, and Suchanek 2013), respec-
tively. As pointed out by Toutanova and Chen (2015) and
Dettmers et al. (2018), WN18 and FB15k suffer from the
test set leakage problem. One can attain the state-of-the-art
results even using a simple rule based model. Therefore, we
use WN18RR and FB15k-237 as the benchmark datasets.
Evaluation Protocol Following Bordes et al. (2013), for
each triple (h, r, t) in the test dataset, we replace either the
head entity h or the tail entity t with each candidate entity to
create a set of candidate triples. We then rank the candidate
triples in descending order by their scores. It is worth noting
that we use the “Filtered” setting as in Bordes et al. (2013),
which does not take any existing valid triples into accounts
at ranking. We choose Mean Reciprocal Rank (MRR) and
Hits at N (H@N) as the evaluation metrics. Higher MRR or
H@N indicate better performance.
Training Protocol We use Adam (Kingma and Ba 2015)
as the optimizer, and use grid search to find the best hy-
perparameters based on the performance on the validation
datasets. To make the model easier to train, we add an ad-
ditional coefficient to the distance function, i.e., dr(h, t) =
λ1dr,m(hm, tm) + λ2dr,p(hp, tp), where λ1, λ2 ∈ R.
Baseline Model One may argue that the phase part is unnec-
essary, as we can distinguish entities in the category (b) by
allowing [r]i to be negative. We propose a model—ModE—
that uses only the modulus part but allow [r]i < 0. Specifi-
cally, the distance function of ModE is

dr(h, t) = ‖h ◦ r− t‖2,where h, r, t ∈ R
k.

Main Results

In this part, we show the performance of our proposed
models—HAKE and ModE—against existing state-of-the-
art methods, including TransE (Bordes et al. 2013), DistMult
(Yang et al. 2015), ComplEx (Trouillon et al. 2016), ConvE
(Dettmers et al. 2018), and RotatE (Sun et al. 2019).

Table 3 shows the performance of HAKE, ModE, and sev-
eral previous models. Our baseline model ModE shares sim-
ilar simplicity with TransE, but significantly outperforms it
on all datasets. Surprisingly, ModE even outperforms more
complex models such as DistMult, ConvE and Complex on
all datasets, and beats the state-of-the-art model—RotatE—
on FB15k-237 and YAGO3-10 datasets, which demonstrates
the great power of modulus information. Table 3 also shows
that our HAKE significantly outperforms existing state-of-
the-art methods on all datasets.

WN18RR dataset consists of two kinds of relations: the
symmetric relations such as similar to, which link entities
in the category (b); other relations such as hypernym and
member meronym, which link entities in the category (a).

Actually, RotatE can model entities in the category (b) very

Table 2: Statistics of datasets. The symbols #E and #R de-
note the number of entities and relations, respectively. #TR,
#VA, and #TE denote the size of train set, validation set, and
test set, respectively.

Dataset #E #R #TR #VA #TE

WN18RR 40,493 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

well (Sun et al. 2019). However, HAKE gains a 0.021 higher
MRR, a 2.4% higher H@1, and a 2.4% higher H@3 against
RotatE, respectively. The superior performance of HAKE
compared with RotatE implies that our proposed model can
better model different levels in the hierarchy.

FB15k-237 dataset has more complex relation types
and fewer entities, compared with WN18RR and YAGO3-
10. Although there are relations that reflect hierarchy in
FB15k-237, there are also lots of relations, such as “/loca-
tion/location/time zones” and “/film/film/prequel”, that do
not lead to hierarchy. The characteristic of this dataset ac-
counts for why our proposed models doesn’t outperform the
previous state-of-the-art as much as that of WN18RR and
YAGO3-10 datasets. However, the results also show that our
models can gain better performance so long as there ex-
ists semantic hierarchies in knowledge graphs. As almost all
knowledge graphs have such hierarchy structures, our model
is widely applicable.

YAGO3-10 datasets contains entities with high relation-
specific indegree (Dettmers et al. 2018). For example, the
link prediction task (?, hasGender,male) has over 1000
true answers, which makes the task challenging. Fortunately,
we can regard “male” as an entity at higher level of the hi-
erarchy and the predicted head entities as entities at lower
level. In this way, YAGO3-10 is a dataset that clearly has se-
mantic hierarchy property, and we can expect that our pro-
posed models is capable of working well on this dataset. Ta-
ble 3 validates our expectation. Both ModE and HAKE sig-
nificantly outperform the previous state-of-the-art. Notably,
HAKE gains a 0.050 higher MRR, 6.0% higher H@1 and
4.6% higher H@3 than RotatE, respectively.

Analysis on Relation Embeddings

In this part, we first show that HAKE can effectively model
the hierarchy structures by analyzing the moduli of relation
embeddings. Then, we show that the phase part of HAKE
can help us to distinguish entities at the same level of the
hierarchy by analyzing the phases of relation embeddings.

In Figure 2, we plot the distribution histograms of moduli
of six relations. These relations are drawn from WN18RR,
FB15k-237, and YAGO3-10. Specifically, the relations in
Figures 2a, 2c, 2e and 2f are drawn from WN18RR. The
relation in Figure 2d is drawn from FB15k-237. The rela-
tion in Figure 2b is drawn from YAGO3-10. We divide the
relations in Figure 2 into three groups.

(A) Relations in Figures 2c and 2d connect the entities at
the same level of the semantic hierarchy;
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Table 3: Evaluation results on WN18RR, FB15k-237 and YAGO3-10 datasets. Results of TransE and RotatE are taken from
Nguyen et al. (2018) and Sun et al. (2019), respectively. Other results are taken from Dettmers et al. (2018).

WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE .226 - - .501 .294 - - .465 - - - -
DistMult .43 .39 .44 .49 .241 .155 .263 .419 .34 .24 .38 .54
ConvE .43 .40 .44 .52 .325 .237 .356 .501 .44 .35 .49 .62
ComplEx .44 .41 .46 .51 .247 .158 .275 .428 .36 .26 .40 .55
RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670

ModE .472 .427 .486 .564 .341 .244 .380 .534 .510 .421 .562 .660
HAKE .497 .452 .516 .582 .346 .250 .381 .542 .545 .462 .596 .694

(a) hypernym (b) isLocatedIn

(c) similar to (d) friend

(e) member meronym (f) has part

Figure 2: Distribution histograms of moduli of some rela-
tions. The relations are drawn from WN18RR, FB15k-237
and YAGO3-10 dataset. The relation in (d) is /celebri-
ties/celebrity/celebrity friends/celebrities/friendship/friend.
Let friend denote the relation for simplicity.

(B) Relations in Figures 2a and 2b represent that tail entities
are at higher levels than head entities of the hierarchy;

(C) Relations in Figures 2e and 2f represent that tail entities
are at lower levels than head entities of the hierarchy.

As described in the model description section, we ex-
pect entities at higher levels of the hierarchy to have small
moduli. The experiments validate our expectation. For both
ModE and HAKE, most entries of the relations in the group

(a) similar to (b) friend

Figure 3: Distribution histograms of phases of two relations
that reflect the same hierarchy. The relations in Figure (a)
and (b) are drawn from WN18RR and FB15k-237, respec-
tively.

(A) take values around one, which leads to that the head en-
tities and tail entities have approximately the same moduli.
In the group (B), most entries of the relations take values less
than one, which results in that the head entities have smaller
moduli than the tail entities. The cases in the group (C) are
contrary to that in the group (B). These results show that
our model can capture the semantic hierarchies in knowl-
edge graphs. Moreover, compared with ModE, the relation
embeddings’ moduli of HAKE have lower variances, which
shows that HAKE can model hierarchies more clearly.

As mentioned above, relations in the group (A) reflect the
same semantic hierarchy, and are expected to have the mod-
uli of about one. Obviously, it is hard to distinguish entities
linked by these relations only using the modulus part. In Fig-
ure 3, we plot the phases of the relations in the group (A).
The results show that the entities at the same level of the hi-
erarchy can be distinguished by their phases, as many phases
have the values of π.

Analysis on Entity Embeddings

In this part, to further show that HAKE can capture the se-
mantic hierarchies between entities, we visualize the embed-
dings of several entity pairs.

We plot the entity embeddings of two models: the previ-
ous state-of-the-art RotatE and our proposed HAKE. RotatE
regards each entity as a group of complex numbers. As a
complex number can be seen as a point on a 2D plane, we
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Table 4: Ablation results on WN18RR, FB15k-237 and YAGO3-10 datasets. The symbols m, p, and b represent the modulus
part, the phase part, and the mixture bias term, respectively.

WN18RR FB15k-237 YAGO3-10

m p b MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

� .240 .047 .404 .527 .258 .121 .333 .508 .476 .374 .541 .658
� .465 .423 .480 .550 .324 .226 .361 .519 .480 .383 .532 .664

� � .496 .449 .517 .584 .336 .239 .373 .533 .522 .429 .581 .693

� � � .497 .452 .516 .582 .346 .250 .381 .542 .545 .462 .596 .694

Table 5: Comparison results with TKRL models (Xie, Liu,
and Sun 2016) on FB15k dataset. RHE, WHE, RHE+STC,
and WHE+STC are four versions of TKRL model , of which
the results are taken from the original paper.

HAKE RHE WHE RHE+STC WHE+STC

H@10 .884 .694 .696 .731 .734

can plot the entity embeddings on a 2D plane. As for HAKE,
we have mentioned that it maps entities into the polar coor-
dinate system. Therefore, we can also plot the entity embed-
dings generated by HAKE on a 2D plane based on their po-
lar coordinates. For a fair comparison, we set k = 500. That
is, each plot contains 500 points, and the actual dimension
of entity embeddings is 1000. Note that we use the loga-
rithmic scale to better display the differences between entity
embeddings. As all the moduli have values less than one, af-
ter applying the logarithm operation, the larger radii in the
figures will actually represent smaller modulus.

Figure 4 shows the visualization results of three triples
from the WN18RR dataset. Compared with the tail entities,
the head entities in Figures 4a, 4b, and 4c are at lower lev-
els, similar levels, higher levels in the semantic hierarchy,
respectively. We can see that there exist clear concentric cir-
cles in the visualization results of HAKE, which demon-
strates that HAKE can effectively model the semantic hi-
erarchies. However, in RotatE, the entity embeddings in all
three subfigures are mixed, making it hard to distinguish en-
tities at different levels in the hierarchy.

Ablation Studies

In this part, we conduct ablation studies on the modulus part
and the phase part of HAKE, as well as the mixture bias
item. Table 4 shows the results on three benchmark datasets.

We can see that the bias can improve the performance of
HAKE on nearly all metrics. Specifically, the bias improves
the H@1 score of 4.7% on YAGO3-10 dataset, which illus-
trates the effectiveness of the bias.

We also observe that the modulus part of HAKE does not
perform well on all datasets, due to its inability to distin-
guish the entities at the same level of the hierarchy. When
only using the phase part, HAKE degenerates to the pRotatE
model (Sun et al. 2019). It performs better than the modulus
part, because it can well model entities at the same level of

(a) (sensitization, hypernym, irritation)

(b) (ask, verb group, inquire)

(c) (Irenidae, member meronym, Oscines)

Figure 4: Visualization of the embeddings of several entity
pairs from WN18RR dataset.

the hierarchy. However, our HAKE model significantly out-
performs the modulus part and the phase part on all datasets,
which demonstrates the importance to combine the two parts
for modeling semantic hierarchies in knowledge graphs.

Comparison with Other Related Work

We compare our models with TKRL models (Xie, Liu, and
Sun 2016), which also aim to model the hierarchy structures.
For the difference between HAKE and TKRL, please refer to
the Related Work section. Table 5 shows the H@10 scores of
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HAKE and TKRLs on FB15k dataset. The best performance
of TKRL is .734 obtained by the WHE+STC version, while
the H@10 score of our HAKE model is .884. The results
show that HAKE significantly outperforms TKRL, though it
does not require additional information.

5 Conclusion

To model the semantic hierarchies in knowledge graphs,
we propose a novel hierarchy-aware knowledge graph em-
bedding model—HAKE—which maps entities into the po-
lar coordinate system. Experiments show that our proposed
HAKE significantly outperforms several existing state-of-
the-art methods on benchmark datasets for the link predic-
tion task. A further investigation shows that HAKE is capa-
ble of modeling entities at both different levels and the same
levels in the semantic hierarchies.
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