
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Practical Approach to Forgetting in Description Logics with Nominals

Yizheng Zhao,1 Renate A. Schmidt,2 Yuejie Wang,3 Xuanming Zhang,4 Hao Feng5

1National Key Laboratory for Novel Software Technology, Nanjing University, China
2Department of Computer Science, The University of Manchester, UK

3School of Electronics Engineering and Computer Science, Peking University, China
4School of Computer Science, University of Nottingham Ningbo China, China

5School of Knowledge Engineering, North China University of Science and Technology, China
zhaoyz@nju.edu.cn, renate.schmidt@manchester.ac.uk, {kathywangyuejie, hao.feng0429}@gmail.com

zy21855@nottingham.edu.cn

Abstract

This paper investigates the problem of forgetting in descrip-
tion logics with nominals. In particular, we develop a prac-
tical method for forgetting concept and role names from on-
tologies specified in the description logic ALCO, extending
the basic ALC with nominals. The method always terminates,
and is sound in the sense that the forgetting solution com-
puted by the method has the same logical consequences with
the original ontology. The method is so far the only approach
to deductive forgetting in description logics with nominals.
An evaluation of a prototype implementation shows that the
method achieves a significant speed-up and notably better
success rates than the LETHE tool which performs deductive
forgetting for ALC-ontologies. Compared to FAME, a seman-
tic forgetting tool for ALCOIH-ontologies, better success
rates are attained. From the perspective of ontology engineer-
ing this is very useful, as it provides ontology curators with a
powerful tool to produce views of ontologies.

Introduction

Forgetting is an ontology engineering technique that seeks to
produce views of ontologies. This is achieved by eliminating
from ontologie a subset of their signature, namely the forget-
ting signature, in such a way that all logical consequences up
to the remaining signature are preserved. Forgetting is useful
for many ontology engineering tasks such as reuse (Wang
et al. 2014), alignment and merging (Wang et al. 2005),
versioning (Klein and Fensel 2001), debugging (Ribeiro
and Wassermann 2009), repair (Troquard et al. 2018), log-
ical difference (Konev, Walther, and Wolter 2008; 2009;
Ludwig and Konev 2014; Zhao et al. 2019), and related
tasks (Bicarregui et al. 2001; Lang, Liberatore, and Mar-
quis 2003; Ghilardi, Lutz, and Wolter 2006; Eiter et al. 2006;
Grau and Motik 2012; Ludwig and Konev 2013).

Forgetting is basically a non-standard reasoning problem
which can be defined deductively as the dual of uniform in-
terpolation (Visser 1996; Lutz and Wolter 2011) or model-
theoretically as semantic forgetting (Wang et al. 2014). Uni-
form interpolation preserves logical consequences and se-
mantic forgetting preserves semantic equivalence over a par-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ticular signature. Uniform interpolation is thus a weaker no-
tion of forgetting than semantic forgetting; the results of
uniform interpolation (uniform interpolants), are in general
weaker than those of semantic forgetting (semantic solu-
tions). This means for a specific language semantic solutions
are always uniform interpolants, but not the other way round.

Practical methods for computing uniform interpolants in-
clude the approach of LETHE (Koopmann and Schmidt
2013a; 2013b; 2014; 2015), the one developed by (Ludwig
and Konev 2014), and the one by (Zhao et al. 2019). LETHE
handles ALCH, SIF , SHQ-TBoxes, and ALC-ontologies.
The latter two handle ALC-TBoxes.

FAME (Zhao and Schmidt 2018) is presently the only se-
mantic forgetting tool for ontologies. It is also the only se-
mantic forgetting tool for description logics with nominals;
it handles ALCOIH-ontologies (Zhao and Schmidt 2016).
In this approach, the target language is not the same as the
source language, in particular, it is more expressive in order
to capture semantic solutions. This is however not satisfac-
tory for users like SNOMED CT (Spackman 2000) who do
not have the flexibility to easily switch to a more expres-
sive language, or are bound by the application, the available
support and tooling, to a specific language. Tracking logical
difference between two ontology versions is one application
where the target language should coincide with the source
language (Zhao et al. 2019).

In this paper we consider catering for the situation where
the description logic ALCO serves as both source and tar-
get languages. One option is to attempt to approximate the
semantic solutions for ALCO inputs to ALCO-ontologies.
Actually there is current research concerned with reduction
of expressiveness by approximation (Brandt et al. 2002).
However, rather than going down that route, we develop a
novel practical forgetting approach for ALCO-ontologies.
The approach is deductive but incorporates also techniques
from semantic forgetting, called Ackermann’s Lemma. The
method always terminates, and is sound in the sense that the
forgetting solution computed by the method has the same
logical consequences with the original ontology. It is so far
the only approach to deductive forgetting for description log-
ics with nominals. An evaluation of the method over ALCO-
ontologies shows that it has similar speed as semantic for-

3073

getting with FAME, but with better success rates. An eval-
uation over ALC ontologies shows that the method is both
significantly faster than deductive forgetting of LETHE and
exhibits better success rates. From the perspective of ontol-
ogy engineering this is very useful, as it provides ontology
curators with a powerful tool to produce views of ontologies.

Proofs of all theorems and lemmas can be found in a long
version of this paper, which can be downloaded via http://
www.cs.man.ac.uk/∼schmidt/publications/aaai20/.

ALCO-Ontologies and Forgetting

Let NC, NR and NI be pairwise disjoint and countably infi-
nite sets of respectively concept names, role names and in-
dividual names (nominals). Concepts in ALCO have one of
the following forms:

� | ⊥ | {a} | A | ¬C | C �D | C �D | ∃r.C | ∀r.C,
where a ∈ NI, A ∈ NC, r ∈ NR, and both C and D denote
arbitrary concepts in ALCO.

An ALCO-ontology consists of a TBox and an ABox. A
TBox is a finite set of axioms of the form C 	 D (concept
inclusions), where C and D are concepts. An ABox is a fi-
nite set of axioms of the form C(a) (concept assertions) and
the form r(a, b) (role assertions), where a, b ∈ NI, r ∈ NR,
and C is a concept. In description logics with nominals,
ABox assertions are superfluous, as they can be internalized
as concept inclusions via nominals, namely C(a) as a 	 C
and r(a, b) as a 	 ∃r.b. Hence in this paper, we assume that
an ALCO-ontology is a finite set of concept inclusions.

The semantics of ALCO is defined in terms of an inter-
pretation I = 〈ΔI , ·I〉, where ΔI denotes the domain of
the interpretation, which is a non-empty set, and ·I denotes
the interpretation function, which assigns to every nominal
a ∈ NI a singleton aI ⊆ ΔI , to every concept name A ∈ NC
a set AI ⊆ ΔI , and to every role name r ∈ NR a binary re-
lation rI ⊆ ΔI ×ΔI . The interpretation function ·I is in-
ductively extended to concepts as follows:

�I = ΔI ⊥I = ∅ (¬C)I = ΔI\CI

(C �D)I = CI ∩DI (C �D)I = CI ∪DI

(∃r.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
(∀r.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ rI → y ∈ CI}

Let I be an interpretation. A concept inclusion C 	 D is
true in I (or I satisfies C 	 D) iff CI ⊆ DI . I is a model
of an ontology O iff every axiom in O is true in I. In this
case, we write I |= O.

Next, we formalize the notion of deductive forgetting. By
sigC(X) and sigR(X) we denote respectively the sets of the
concept names and the role names occurring in X , where X
ranges over concepts, axioms, clauses, a set of axioms, and
a set of clauses. We define sig(X) = sigC(X) ∪ sigR(X).
Definition 1 (Forgetting for ALCO-Ontologies). Let O be
an ALCO-ontology and let F ⊆ sig(O) be a set of concept
names and role names. We say that an ALCO-ontology V is
a solution of forgetting F from O iff the following conditions
hold: (i) sig(V) ⊆ sig(O)\F , and (ii) for any axiom α with
sig(α) ⊆ sig(O)\F , V |= α iff O |= α.

Definition 1 says that the forgetting solution V has exactly
the same logical consequences with the original ontology O
in the remaining signature sig(O)\F . F is called the forget-
ting signature. V can be seen as a view of O for sig(O)\F .
Forgetting solutions (views) are unique up to logical equiv-
alence, that is, if both V and V ′ are solutions of forgetting
F from O, then they are logically equivalent, though their
representations may not be identical.

Normalization of ALCO-Ontologies

Our method works with ALCO-ontologies in clausal nor-
mal form. Clauses are obtained from corresponding axioms
using the standard transformations based on logical equiv-
alences such as ¬∃r.C ≡ ∀r.¬C, ¬∀r.C ≡ ∃r.¬C, and
¬¬C ≡ C. By incrementally applying the standard trans-
formations, any ALCO-ontology can be transformed into a
set of clauses (Zhao 2018).

Definition 2 (Clausal Normal Form). A literal in ALCO is
a concept of the form a, ¬a, A, ¬A, ∃r.C and ∀r.C, where
a ∈ NI, A ∈ NC, r ∈ NR, and C is an arbitrary concept. A
clause in ALCO is a finite disjunction of literals. A clause is
called an S-clause if it contains an S ∈ NC ∪ NR.

In the following we introduce two specialized normal
form notions (based on clausal normal form), namely A-
reduced form and r-reduced form. These two notions are
important because they are used in the calculi of our method
for concept name and role name elimination, respectively,
described in detail in the next section.

Definition 3 (A-Reduced Form). Let N be a set of clauses,
and let A ∈ sigC(N). A clause is in A-reduced form if it has
the form C�A, C�¬A, C�∃r.A, C�∃r.¬A, C�∀r.(A�D),
or C �∀r.(¬A�D), where r ∈ NR is any role name, and C
(D) is a clause (concept) that does not contain A. N is in A-
reduced form if all A-clauses in N are in A-reduced form.

The A-reduced form generalizes all basic forms of an A-
clause in which a concept name could occur; a concept name
could occur (either positively or negatively) at the top level
of a clause, or under an ∃- or ∀-restriction.

Definition 4 (r-Reduced Form). Let N be a set of clauses,
and let r ∈ sigR(N). A clause is in r-reduced form if it has
the form C � ∃r.D or C � ∀r.D, where C (D) is a clause
(concept) that does not contain r. N is in r-reduced form iff
all r-clause in N are in r-reduced form.

The r-reduced form generalizes all basic forms of an r-
clause in which a role name could occur; a role name could
occur immediately under an ∃- or ∀-restriction.

Given a set N of clauses, not every clause in N is initially
in appropriate reduced form. A/r-clauses not in A/r-reduced
form can be transformed into the form by introducing definer
names (or definers for short). Definers are auxiliary concept
names externally introduced to facilitate the ontology nor-
malization (Koopmann and Schmidt 2013b): let ND ⊂ NC
be a set of definers disjoint from sigC(N). Definers are in-
troduced as substitutes, incrementally replacing ‘C’ and ‘D’

3074

until neither of them contains A/r. In addition, for each con-
cept replacement, a new clause ¬D � C (D) is added to the
set N , where D ∈ ND is a fresh definer.
Theorem 1. With definer introduction, any ALCO-ontology
can be transformed into A/r-reduced form. The transforma-
tion can be done in polynomial time, and preserves semantic
equivalence up to the names in the original ontology.
Example 1. Consider the following clause set N :

1. ¬A � ¬B � C

2. ∀r.¬B �A

3. ¬a � ∃s.B
4. ∃r.¬C � ∀r.∃s.A
5. ∃r.¬A � ∃s.A � ∀t.A

Let F = {A}. Observe that A-clauses 4 and 5 are not in
A-reduced form. In this case, the first step is to introduce a
definer to replace the concept ∃s.A in Clause 4. This yields
the following clauses:

4′. ∃r.¬C � ∀r.D1

4′′. ¬D1 � ∃s.A
The second step is to introduce a new definer to replace the
concept ∃r.¬A in Clause 5, yielding the following clauses:

5′. D2 � ∃s.A � ∀t.A
5′′. ¬D2 � ∃r.¬A

At this stage, observe that Clause 5′ is still not in A-reduced
form yet. The next step is then to introduce a definer to re-
place the concept ∃s.A in Clause 5′. This case is somewhat
special however, in that one can either introduce a fresh de-
finer, or use the introduced definer D1 to replace the concept
∃s.A, because ∃s.A has been previously defined in Clause
4′′ by D1. Our method follows the latter manner; it imple-
ments a mechanism of definer reuse. In this way, N is trans-
formed into the following clause set in A-reduced form:

1. ¬A � ¬B � C

2. ∀r.¬B �A

3. ¬a � ∃s.B
4′. ∃r.¬C � ∀r.D1

4′′. ¬D1 � ∃s.A
5′. D2 � D1 � ∀t.A
5′′. ¬D2 � ∃r.¬A

Definer reuse is an important feature of our method, i.e.,
definers are supposed not to be present in the forgetting so-
lutions, and they must be eliminated from the solutions once
the names in F have been eliminated, so introducing as few
definers as possible is good for the efficiency of our method.

The Forgetting Method

Our method is basically a non-standard reasoning procedure
consisting of two independent calculi: (i) a calculus for con-
cept name elimination in ALCO-ontologies and (ii) a calcu-
lus for role name elimination in ALCO-ontologies. They are

non-trivially extended from the calculi develop in the work
of (Zhao et al. 2019) for respectively concept name and role
name elimination in ALC-TBoxes. The extended calculi can
handle additionally nominals and ABox axioms.

The calculi are based on inference rules which replace the
clauses above the line (the premises) by those under the line
(the conclusion). These rules are sound in the sense that the
premises and the conclusion of each rule have the same logi-
cal consequences in the remaining signature. The calculi are
sound in the sense that the output and input of each calculus
have the same logical consequences in the remaining signa-
ture (Conditions (i) and (ii) of Definition 1 hold).

Let N denote a set of ALCO-clauses. Let F ⊆ sig(N)
denote the forgetting signature. The name in F under current
consideration for forgetting is called the pivot.

The Calculus for Concept Name Elimination

The calculus for eliminating a concept name from a set N of
clauses includes three rules: (i) two purify rules, and (ii) one
combination rule. Each rule is applicable to specific cases.

The purify rules are applicable to cases where the pivot
occurs only positively or only negatively in N , i.e., the pivot
is pure in N . For the positive (negative) cases, the pivot is
eliminated from N by substitution with � (⊥). This is re-
ferred to as purification. The purify rules preserve semantic
equivalence up to the remaining names (Ackermann 1935;
Zhao 2018), and thus the clause set obtained from purifica-
tion is a solution of forgetting the pivot from N .

For other cases, i.e., cases where the pivot occurs both
positively and negatively in N , one can apply the combina-
tion rule, shown in Figure 2. Compared to the combination
rule for concept name elimination in ALC-TBoxes (Zhao et
al. 2019), this rule (for ALCO-ontologies) accommodates
nominals together with regular concepts; this means that the
concepts Ci, Dj , Ek, Fi′ , Gj′ and Hk′ in the rule can be any
regular concepts and nominals. The combination rule is ap-
plicable to N to eliminate A iff N is in A-reduced form; see
Definition 3. Clauses in A-reduced form have six distinct
forms, classified into two types, namely positive premises
and negative premises, denoted respectively by P+(A) and
P−(A); see Table 1. Positive premises are premises where
the pivot occurs only positively, and negative premises are
premises where the pivot occurs only negatively.

Positive Premise Notation Negative Premise Notation
C �A P+

�
(A) C � ¬A P−

�
(A)

C � ∃r.A P+
∃ (A) C � ∃r.¬A P−

∃ (A)
C � ∀r.(A �D) P+

∀ (A) C � ∀r.(¬A �D) P−
∀ (A)

Figure 1: Different forms of clauses in A-reduced form

The fundamental idea of the combination rule, in a nut-
shell, is to combine all positive premises with every negative
one, or to combine all negative premises with every positive
one; this is how the name ‘combination’ comes from. The re-
sult of each combination is a finite set of clauses, denoted by
Block(P+(A), α) when α ∈ P−(A), or Block(P−(A), α)
when α ∈ P+(A). The conclusion of the rule, which is the

3075

N−A,

P+
�

(A)︷ ︸︸ ︷
C1 � A, . . . , Cl � A,

P+
∃ (A)︷ ︸︸ ︷

D1 � ∃r1.A, . . . , Dm � ∃rm.A,

P+
∀ (A)︷ ︸︸ ︷

E1 � ∀s1.(A � U1), . . . , En � ∀sn.(A � Un)

P−
�

(A)︷ ︸︸ ︷
F1 � ¬A, . . . , Fl′ � ¬A,

P−
∃ (A)︷ ︸︸ ︷

G1 � ∃t1.¬A, . . . , Gm′ � ∃tm′ .¬A,

P−
∀ (A)︷ ︸︸ ︷

H1 � ∀q1.(¬A �W1), . . . , Hn′ � ∀qn′ .(¬A �Wn′)

N−A,Block(P+
�
(A),P−

�
(A)),Block(P+

�
(A), G1 � ∃t1.¬A), ...,Block(P+

�
(A), Gm′ � ∃tm′ .¬A),

Block(P+
�
(A), H1 � ∀q1.(¬A �W1)), ...,Block(P+

�
(A), Hn′ � ∀qn′ .(¬A �Wn′)),Block(P−(A), D1 � ∃r1.A), . . . ,

Block(P−(A), Dm � ∃rm.A),Block(P−(A), E1 � ∀s1.(A � U1)), ...,Block(P−(A), En � ∀sn.(A � Un))

Notation in the combination rule (1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n, 1 ≤ i′ ≤ l′, 1 ≤ j′ ≤ m′, 1 ≤ k′ ≤ n′):
Ci, Dj , Ek, Fi′ , Gj′ and Hk′ denote arbitrary concepts; rj , sk, tj′ and qk′ denote arbitrary role names.

Block(P−(A), α) = Block(P−
�
(A), α) ∪ Block(P−

∃ (A), α) ∪ Block(P−
∀ (A), α), where α ∈ P+

∃ (A) ∪ P+
∀ (A)

CASE 1: Block(P+
�
(A),P−

�
(A)) denotes the set {C1 � (F1 � . . . � Fl′), . . . , Cl � (F1 � . . . � Fl′)}.

CASE 2: Block(P+
�
(A), Gj′ � ∃tj′ .¬A) denotes the set {Gj′ � ∃tj′ .(C1 � . . . � Cl)}.

CASE 3: Block(P+
�
(A), Hk′ � ∀qk′ .(¬A �Wk′)} denotes the set {Hk′ � ∀qk′ .((C1 � . . . � Cl) �Wn′)}.

CASE 4: Block(P−
�
(A), Dj � ∃rj .A) denotes the set {Dj � ∃rj .(F1 � . . . � Fl′)}.

CASE 5: Block(P−
�
(A), Ek � ∀sk.(A � Uk)) denotes the set {Ek � ∀sk.((F1 � . . . � Fl′) � Uk)}.

CASE 6: Block(P−
∃ (A), Dj � ∃rj .A) denotes the sets {Dj � ∃rj .	} and {G1 � ∃t1.	, . . . , Gm′ � ∃tm′ .	}.

CASE 7: Block(P−
∃ (A), Ek � ∀sk.(A � Uk)) denotes the sets

⋃

1≤j′≤m′
{Gj′ � ∃tj′ .	} and

CASE 7: Block(P−
∃ (A), Ek � ∀sk.(A � Uk)) denotes the sets

⋃

1≤j′≤m′
{Gj′ � Ek � ∃sk.Uk} for any tj′ = sk.

CASE 8: Block(P−
∀ (A), Dj � ∃rj .A) denotes the sets {Dj � ∃rj .	} and

⋃

1≤k′≤n′
{Dj �Hk′} for any qk′ = rj .

CASE 9: Block(P−
∀ (A), Ek � ∀sk.(A � Uk)) denotes the sets

⋃

1≤k′≤n′
{Ek �Hk′ � ∀sk.Uk} for any qk′ = sk.

Figure 2: The combination rule for eliminating a concept name A ∈ sigC(N) from a set N of clauses in A-reduced form

solution of the forgetting {A} from N , is the union of the
results obtained from each combination.
Lemma 1. The combination rule in Figure 2 is sound.
Proof (sketch). The idea of the combination in Cases 1, 2,
3, 4 and 5 is basically that of Ackermann’s Lemma which
preserves semantic equivalence. The conclusion of Case 6
follows directly from the premises. We prove Case 7. As-
sume a domain element d has a t-successor not satisfying
A and a domain element d′ has all its s-successors satisfy-
ing A or U , if t = s and d = d′, then d (d′) must have
a s-successor satisfying U . Case 8 can be proved similarly.
We prove Case 9. Assume a domain element d has all its s-
successors satisfying A or U , and has all its q-successors not
satisfying A, if s = q, then all its s-successors satisfy U .
Theorem 2. The calculus for concept elimination is sound.

Proof. The calculus is sound in the sense that the output
clause set N−A returned by the calculus has the same logi-
cal consequences with the input clause set N in the remain-
ing signature sig(N)\{A} This follows from Theorem 1,
Lemma 1, and soundness of the purify rules.

Example 2. Let N = {1.C � ∃r.A, 2.¬a � ∃s.∀r.¬A}.
We consider the case of forgetting {A} from N . Since N

is not pure, we apply the combination rule. The first step is
to transform N into A-reduced form: {1.C � ∃r.A, 2.¬a �
∃s.D, 3.¬D�∀r.¬A}, where D is a fresh definer. The second
step is to apply the combination rule (Case 8) to Clauses 1
and 3 to eliminate A, yielding {1.C�∃r.�, 2.C�¬D, 3.¬a�
∃s.D}. The third step is to apply the combination rule (Case
4) to Clauses 2 and 3 to eliminate the introduced definer D,
yielding the forgetting solution {1.C �∃r.�, 2.¬a�∃s.C}.

Compared to the calculus of (Zhao et al. 2019) for ALC-
TBoxes, this calculus can handle additionally nominals and
ABoxes; it handles ALCO-ontologies. However, we have
found that even for ALC-TBoxes only, there are cases that,
at present, can only be solved by our calculus, but not by the
calculus of (Zhao et al. 2019); see the following example.

Example 3. Let N = {1.C1 �∃r.A, 2.C2 �∀r.(¬A�B)}.
We consider the case of forgetting {A} from N . Follow-
ing the calculus of (Zhao et al. 2019), the first step is to
transform N into A-reduced form, wherein a fresh definer
D ∈ ND is introduced to replace the concept ¬A �B, and a
new clause ¬D�¬A�B is added to N . Then we apply the
combination rule in the calculus of (Zhao et al. 2019) (Case
4) to N = {1.C1 � ∃r.A, 2.C2 � ∀r.D, 3.¬D � ¬A �B} to
eliminate A, yielding an intermediate result N ′ = {1.C1 �

3076

∃r.D, 2.C2 � ∀r.(¬D �B)}. Observe that the clauses in N ′
have the same syntactic patterns as those in the original N .
This means eliminating the introduced definer D from N ′
would introduce a fresher definer, and would similarly yield
a set of clauses that have the same syntactic patterns as those
in N ′; definers would thus be infinitely introduced and the
forgetting process would never terminate. With the present
calculus however, the problem can be solved by directly ap-
plying the combination rule (Case 7) to N , yielding a for-
getting solution N−A = {1.C1 � ∃r.�, 2.C1 �C2 � ∃r.B}.

Usage of the Forgetting Method
The input to our method are an ALCO-ontology O and a set
F ∈ sig(O) of concept and role names to be forgotten (the
forgetting signature). O must be specified as an OWL/XML
file, or a URL pointing to an OWL/XML file. If O is not ex-
pressible in ALCO, only the ALCO-fragment is taken. This
can be done by removing from O axioms not expressible
in ALCO. Which names are to be forgotten is determined
by the user and their application demands. Our method can
eliminate names in any specified order. If a name has been
successfully eliminated, it is immediately removed from F ,
otherwise it remains in F .

The forgetting process of the method consists of five main
phases: (i) transformation of O into a set N of clauses, (ii)
role name elimination, (iii) concept name elimination, (iv)
definer name elimination, and (v) transformation of the re-
sulting set N ′ into an ontology V .

(i) and (v) can be done using the standard transforma-
tions. (ii) is an iteration of several rounds in which the role
names in F are eliminated using the calculus for role name
elimination. (iii) includes two iterations that are executed
in sequence. The first iteration consists of several rounds in
which the concept names in F are eliminated using only the
purify rules. This means in this iteration, only those ‘pure’
concept names are eliminated. This allows concept names to
be eliminated cheaply (because definers are not introduced
during purification). The second iteration consists of several
rounds in which the remaining concept names in F are elim-
inated using not only the purify rules, but also the combina-
tion rule. In this iteration, all remaining concept names in F
are eliminated, but definers may be introduced.

The forgetting solutions should not contain definers, since
these are not part of the desired signature. Our method elimi-
nates definers (if they were introduced) basically in the same
manner as regular concept names. The differences are that:
(i) when eliminating the introduced definers, the method
may need to introduce new definers (if we used the combi-
nation rule to eliminate existing ones), this is however done
in a restricted manner: the method only introduces fewer de-
finers than the existing ones; otherwise, the method will only
use the purify rules to eliminate existing definers. (ii) Defin-
ers are not guaranteed to be all eliminated; the elimination
may fail when the original ontology contains cyclic depen-
dencies over the names in F .

For example, the solution of forgetting {A} from the on-
tology {¬A � ∃r.A} (cyclic w.r.t. A) is {¬D1 � ∃r.D1},
where D1 ∈ ND is a fresh definer. It is easy to see that
eliminating D1 from the intermediary solution would yield a

new clause with the same form, i.e., {¬D2 � ∃r.D2}, where
D2 ∈ ND is a fresher definer. Definers would thus be in-
finitely introduced, and the forgetting process would never
terminate. Our method guarantees termination of forgetting
by imposing the restriction mentioned above. Hence, for this
example, the method does not use the combination rule to
eliminate D1, because this would bring in a new definer
D2. Since the purify rules are not applicable to this case,
our method leaves the definer in the resulting ontology. This
means that the forgetting does not succeed and the method
is incomplete. Cyclic cases can be solved with fixpoints, but
since fixpoints are not supported by the OWL API, for prac-
ticality of the method, we do not include them in the target
language — we do not trade practicality for completeness.

A number of standard simplification rules are applied dur-
ing the forgetting process; they are applied as eagerly as pos-
sible. This ensures that (i) the clauses in N are always sim-
pler representations, and (ii) the applicability of the purify
and the combination rules can be detected quickly.
Theorem 3. Given any ALCO-ontology O and a forgetting
signature F ⊆ sig(O), our method always terminates and
returns an ontology V . If V does not contain any introduced
definer names, then our method is successful and V is a so-
lution of forgetting F from O.

This follows from the soundness of the calculi for concept
and role elimination and that of the simplification rules.

Evaluation of the Forgetting Method

We evaluated the applicability of the method on a large cor-
pus of real-world ontologies. To this end, we implemented
a prototype of the method in Java using the OWL API. The
corpus for the evaluation was based on a snapshot of the
NCBO BioPortal repository taken in March 2017 (Matent-
zoglu and Parsia 2017), containing 396 ontologies. In 83 of
these ontologies, nominals were present in their TBoxes.

Max. Min. Mean Median 90th PCTL
#(O) 1.8M 100 4.6K 1.1K 12.6K
#sigC(O) 847.8K 36 2.1K 502 5.6K
#sigR(O) 1.4K 0 54 12 144
#sigI(O) 87.9K 0 216 0 206

Table 1: Statistical information about the test ontologies

Table 1 summarizes statistical information about the test
ontologies. By #(O), #sigC(O), #sigR(O) and #sigI(O),
we denote respectively the average numbers of the axioms,
concept names, role names and nominals in the ontologies.

The prototype was evaluated for three settings: forgetting
10%, 40% and 70% of the concept and role names from the
signature of each ontology. The experimental results provide
insights into the applicability of the method for various real-
world applications where the expected tasks were to forget
a small, a moderate or a large number of concept and role
names (in line with the three settings).

We compared the results computed by our prototype with
those by LETHE and FAME, respectively. As LETHE cannot
handle nominals, only the ALC-fragments of the test on-
tologies were used for the comparison with LETHE. For the

3077

Tool F% Time Timeouts Success Extra
10% 1.2s 1.8% 95.7% 2.5%PROTOTYPE 40% 3.3s 3.5% 91.4% 5.1%ALC 70% 6.4s 6.8% 84.4% 8.8%
10% 26.1s 9.1% 79.5% 11.4%LETHE 40% 83.3s 17.2% 63.1% 16.4%ALC 70% 136.9s 25.3% 53.2% 21.5%
10% 1.5s 2.3% 94.7% 3.0%PROTOTYPE 40% 3.9s 4.3% 89.9% 5.8%ALCO 70% 7.9s 7.6% 82.7% 9.7%
10% 1.3s 2.0% 86.6% 11.4%FAME 40% 3.4s 4.0% 74.6% 21.4%ALCO 70% 7.1s 7.1% 67.4% 25.5%

Table 2: Results computed by prototype, LETHE and FAME

comparison with FAME, the ALCO-fragments were used,
since FAME can handle ALCOIH-ontologies.

The names to be forgotten were randomly chosen. The
experiments were run on a desktop computer with an In-
tel Core i7-4790 processor, four cores running at up to 3.60
GHz, and 8 GB of DDR3-1600 MHz RAM. A timeout of 15
minutes was used on each run.

The results are shown in Table 2. The most striking results
are: (i) the prototype was successful in more than 87% of the
test cases, and (ii) in more than 90% of the successful cases,
the forgetting solutions were computed within seconds. Part
of the failures were due to the timeout while others due to
definers being unable to be completely eliminated and there-
fore some remaining in the returned ontologies.

The results show our prototype was on average faster than
LETHE on the ALC-fragments. An important reason is that
our method introduces definers in a conservative manner
(it introduces definers only when really necessary), while
LETHE introduces them in a systematic and exhaustive man-
ner. This can be illustrated with the following example.

Example 4. Let N = {C � ∃r.A,E � ∀r.¬A} and
F = {A}. Our method applies directly the combination
rule (Case 8) to N to eliminate A, yielding the solution
{C � ∃r.�, C � E}. LETHE computes the same solution
as our method does, but the derivation is more complicated,
involving these steps:
Step 1: Normalization (D1,D2 ∈ ND):
{1.C � ∃r.D1, 2.¬D1 �A, 3.E � ∀r.D2, 4.¬D2 � ¬A}.
Step 2: Role propagation (D3 ∈ ND):
{5.C � E � ∃r.D3 (from 1, 3), 6.¬D3 � D1, 7.¬D3 � D2}.
Step 3: Classical resolution:
{8.¬D3 �A (2, 6), 9.¬D3 � ¬A (4, 7), 10.¬D3 (8, 9)}
Step 4: Existential role elimination: {11.C � E (5, 10)}.
Step 5: At this point, N is saturated w.r.t. A, and no further
inferences can be performed. LETHE removes all clauses
that contain A; Clauses 2, 4, 8 and 9 are thus removed.
Step 6: Clause 5 is redundant because of 11. Clauses 6 and 7
are redundant because of 10. Hence, 5, 6 and 7 are removed.
Step 7: Only Clauses 1, 3, 10, 11 remain. LETHE eliminates
the definers in Clauses 1, 3 and 10 by purification, yielding:
{12.C�∃r.�, 13.E�∀r.�, 14.E�F}. As 13 is a tautology,
the forgetting solution computed by LETHE is {12, 14}. In
contract, in two inference steps, FAME computes the seman-

tic solution {C � ∃r.∀r−.E}, which is stronger than the so-
lution computed by LETHE and our prototype, but involves
the inverse role r− not expressible in ALCO.

Compared to FAME, similar speed was observed for our
prototype, but it fared considerably better w.r.t. success rates
(89% as opposed to 65.3%). This is because FAME computes
semantic solutions which are often expressed in a more ex-
pressive target language.1 The column headed ‘Extra’ shows
the percentage of the test cases with extra expressivity in the
solutions, namely, our prototype used definers, and LETHE
and FAME used fixpoints to capture cyclic dependencies, and
LETHE used additionally disjunctive ABox assertions to rep-
resent solutions of role forgetting, FAME used additionally
inverse roles, the universal role, and role conjunction to rep-
resent semantic solutions.

An executable version of the prototype, together with the
test datasets, can be downloaded for review and use via http:
//www.cs.man.ac.uk/∼schmidt/publications/aaai20/.

Conclusion and Future Work

We developed a practical method for forgetting concept and
role names from ALCO-ontologies. The method is terminat-
ing and sound, and is so far the only approach to deductive
forgetting in description logics with nominals. An evalua-
tion of a prototype implementation shows that the method
achieves a significant speed-up and notably better success
rates than the LETHE tool which performs deductive for-
getting for ALC-ontologies. Compared to FAME, a seman-
tic forgetting tool for ALCOIH-ontologies, better success
rates are attained. From the perspective of ontology engi-
neering this is very useful, as it provides ontology curators
with a powerful tool to produce views of ontologies.

Previous work has been largely focused on forgetting con-
cept and role names, while there has been little attention paid
to the problem of nominal elimination. This considerably re-
stricts the applicability of forgetting for many real-world ap-
plications such as information hiding and privacy protection,
where nominals are extensively present. Our immediate step
for future work is to develop a forgetting method able to
eliminate not only concept names and role names, but also
nominals in expressive description logics.

References

Ackermann, W. 1935. Untersuchungen über das Elimi-
nationsproblem der mathematischen Logik. Mathematische
Annalen 110(1):390–413.
Bicarregui, J.; Dimitrakos, T.; Gabbay, D. M.; and Maibaum,
T. S. E. 2001. Interpolation in practical formal development.
Logic Journal of the IGPL 9(2):231–244.
Brandt, S.; Küsters, R.; Turhan, A.; and sss. 2002. Ap-
proximation and Difference in Description Logics. In Proc.
KR’02, 203–214. Morgan Kaufmann.

1It was defined in (Zhao and Schmidt 2018) that FAME is suc-
cessful if it has eliminated all names in F . We slightly adjust this
in this paper: FAME is successful if it has eliminated all names in
F , while not introducing extra expressivity.

3078

Eiter, T.; Ianni, G.; Schindlauer, R.; Tompits, H.; and Wang,
K. 2006. Forgetting in managing rules and ontologies. In
Web Intelligence, 411–419. IEEE Computer Society.
Ghilardi, S.; Lutz, C.; and Wolter, F. 2006. Did I Damage
My Ontology? A Case for Conservative Extensions in De-
scription Logics. In Proc. KR’06, 187–197. AAAI Press.
Grau, B. C., and Motik, B. 2012. Reasoning over ontologies
with hidden content: The import-by-query approach. J. Artif.
Intell. Res. 45:197–255.
Klein, M. C. A., and Fensel, D. 2001. Ontology versioning
on the Semantic Web. In Proc. SWWS’01, 75–91.
Konev, B.; Walther, D.; and Wolter, F. 2008. The Logical
Difference Problem for Description Logic Terminologies. In
IJCAR, volume 5195 of Lecture Notes in Computer Science,
259–274. Springer.
Konev, B.; Walther, D.; and Wolter, F. 2009. Forgetting
and Uniform Interpolation in Large-Scale Description Logic
Terminologies. In Proc. IJCAI’09, 830–835. IJCAI/AAAI
Press.
Koopmann, P., and Schmidt, R. A. 2013a. Forgetting Con-
cept and Role Symbols in ALCH-Ontologies. In Proc.
LPAR’13, volume 8312 of LNCS, 552–567. Springer.
Koopmann, P., and Schmidt, R. A. 2013b. Uniform Inter-
polation of ALC-Ontologies Using Fixpoints. In Proc. Fro-
Cos’13, volume 8152 of Lecture Notes in Computer Science,
87–102. Springer.
Koopmann, P., and Schmidt, R. A. 2014. Count and For-
get: Uniform Interpolation of SHQ-Ontologies. In Proc.
IJCAR’14, volume 8562 of Lecture Notes in Computer Sci-
ence, 434–448. Springer.
Koopmann, P., and Schmidt, R. A. 2015. Uniform Interpo-
lation and Forgetting for ALC-Ontologies with ABoxes. In
Proc. AAAI’15, 175–181. AAAI Press.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. J. Artif. Intell. Res. 18:391–443.
Ludwig, M., and Konev, B. 2013. Towards Practical Uni-
form Interpolation and Forgetting for ALC Tboxes. In Proc.
DL’13, volume 1014 of CEUR Workshop Proceedings, 377–
389. CEUR-WS.org.
Ludwig, M., and Konev, B. 2014. Practical Uniform Inter-
polation and Forgetting for ALC TBoxes with Applications
to Logical Difference. In Proc. KR’14. AAAI Press.
Lutz, C., and Wolter, F. 2011. Foundations for Uniform In-
terpolation and Forgetting in Expressive Description Logics.
In Proc. IJCAI’11, 989–995. IJCAI/AAAI Press.
Matentzoglu, N., and Parsia, B. 2017. BioPortal Snapshot
30.03.2017.
Ribeiro, M. M., and Wassermann, R. 2009. Base revision
for ontology debugging. J. Log. Comput. 19(5):721–743.
Spackman, K. A. 2000. SNOMED RT and SNOMED CT.
promise of an international clinical ontology. M.D. Comput-
ing 17.
Troquard, N.; Confalonieri, R.; Galliani, P.; Peñaloza, R.;
Porello, D.; and Kutz, O. 2018. Repairing Ontologies via

Axiom Weakening. In Proc. AAAI’18, 1981–1988. AAAI
Press.
Visser, A. 1996. Bisimulations, Model Descriptions and
Propositional Quantifiers. Logic Group Preprint Series.
Utrecht University.
Wang, K.; Antoniou, G.; Topor, R. W.; and Sattar, A.
2005. Merging and aligning ontologies in DL-programs. In
RuleML, volume 3791 of LNCS, 160–171. Springer.
Wang, K.; Wang, Z.; Topor, R. W.; Pan, J. Z.; and Anto-
niou, G. 2014. Eliminating Concepts and Roles from On-
tologies in Expressive Descriptive Logics. Computational
Intelligence 30(2):205–232.
Zhao, Y., and Schmidt, R. A. 2016. Forgetting Concept and
Role Symbols in ALCOIHμ+(�,�)-Ontologies. In Proc.
IJCAI’16, 1345–1352. IJCAI/AAAI Press.
Zhao, Y., and Schmidt, R. A. 2018. FAME: An Automated
Tool for Semantic Forgetting in Expressive Description Log-
ics. In Proc. IJCAR’18, volume 10900 of Lecture Notes in
Computer Science, 19–27. Springer.
Zhao, Y.; Alghamdi, G.; Schmidt, R. A.; Feng, H.; Stoilos,
G.; Juric, D.; and Khodadadi, M. 2019. Tracking Logical
Difference in Large-Scale Ontologies: A Forgetting-Based
Approach. In Proc. AAAI’19, 3116–3124. AAAI Press.
Zhao, Y. 2018. Automated Semantic Forgetting for Expres-
sive Description Logics. Ph.D. Dissertation, The University
of Manchester, UK.

3079

