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Abstract

In synthesis, assumptions are constraints on the environment
that rule out certain environment behaviors. A key obser-
vation here is that even if we consider systems with LTLf

goals on finite traces, environment assumptions need to be
expressed over infinite traces, since accomplishing the agent
goals may require an unbounded number of environment
action. To solve synthesis with respect to finite-trace LTLf

goals under infinite-trace assumptions, we could reduce the
problem to LTL synthesis. Unfortunately, while synthesis in
LTLf and in LTL have the same worst-case complexity (both
2EXPTIME-complete), the algorithms available for LTL syn-
thesis are much more difficult in practice than those for LTLf

synthesis. In this work we show that in interesting cases we
can avoid such a detour to LTL synthesis and keep the simplic-
ity of LTLf synthesis. Specifically, we develop a BDD-based
fixpoint-based technique for handling basic forms of fairness
and of stability assumptions. We show, empirically, that this
technique performs much better than standard LTL synthesis.

Introduction

In many situations we are interested in expressing properties
over an unbounded but finite sequence of successive states.
Linear-time Temporal Logic over finite traces (LTLf ) and
its variants have been thoroughly investigated for doing so.
There has been broad research for logical reasoning (De Gi-
acomo and Vardi 2013; Li et al. 2019), synthesis (De Gi-
acomo and Vardi 2015; Camacho et al. 2018), and plan-
ning (Camacho et al. 2017; De Giacomo and Rubin 2018).

Recently synthesis under assumptions in LTLf has at-
tracted specific interest (De Giacomo and Rubin 2018;
Camacho, Bienvenu, and McIlraith 2018). First, planning
for LTLf goals can be considered as a form of LTLf syn-
thesis under assumptions, where the assumptions are the
dynamics of the environment encoded in the planning do-
main (Green 1969; Camacho, Bienvenu, and McIlraith 2018;
Aminof et al. 2018; 2019). However, more generally, as-
sumptions can be arbitrary constraints on the environment
that can be exploited by the agent in devising a strategy to
fulfill its goal.
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Synthesis under assumptions has been extensively stud-
ied in LTL, where environment assumptions are expressed
as LTL formulas (Chatterjee and Henzinger 2007; Chatter-
jee, Henzinger, and Jobstmann 2008; D’Ippolito et al. 2013;
Bloem, Ehlers, and Könighofer 2015; Brenguier, Raskin,
and Sankur 2017). In fact, LTL formulas can be used as as-
sumptions as long as it is guaranteed that the environment is
able to behave so as to keep the assumptions true, i.e., as-
sumptions are environment realizable. Under these circum-
stances, it is possible to reduce synthesis for LTL goal ψG

under assumptions ψA to standard synthesis for ψA → ψG.
Note that because of the guarantee of ψA being environment
realizable, no agent strategy can win ψA→ψG by falsifying
ψA. See (Aminof et al. 2019) for a discussion.

When we turn to LTLf , a key observation is that even if
we consider (finite-trace) LTLf goals for the agent, assump-
tions need to be expressed considering infinite traces, since
accomplishing the agent goals may require an unbounded
number of environment action. So we have an assumption
ψA expressed in LTL and a goal φG expressed in LTLf . To
solve synthesis under assumptions in LTLf , we could trans-
late φG into LTL getting ψG, by applying the translation of
LTLf into LTL in (De Giacomo and Vardi 2013), and then do
LTL synthesis for ψA → ψG, see e.g. (Camacho, Bienvenu,
and McIlraith 2018).

Unfortunately, while synthesis in LTLf and in LTL have
the same worst-case complexity, being both 2EXPTIME-
complete (Pnueli and Rosner 1989; De Giacomo and Vardi
2015), the algorithms available for LTL synthesis are much
harder in practice than those for LTLf synthesis. In partic-
ular, the lack of efficient algorithms for the crucial step of
automata determinization is prohibitive for finding scalable
implementations (Fogarty et al. 2013; Finkbeiner 2016).
In spite of recent advancement in synthesis such as re-
ducing to parity games (Meyer, Sickert, and Luttenberger
2018), bounded synthesis based on solving iterated safety
games (Kupferman and Vardi 2005; Finkbeiner and Schewe
2013; Gerstacker, Klein, and Finkbeiner 2018), or recent
techniques based on iterated FOND planning (Camacho et
al. 2018), LTL synthesis remains very challenging. In con-
trast, LTLf synthesis is based on a translation to Determin-
istic Finite Automaton (DFA) (Rabin and Scott 1959), which
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can be seen as a game arena where environment and agent
make their own moves. On this arena, the agent wins if a
simple fixpoint condition (reachability of the DFA accepting
states) is satisfied.

Hence, when we introduce assumptions, an important
question arises: can we retain the simplicity of LTLf syn-
thesis? In particular, we are thinking about algorithms based
on devising some sort of arena and then extracting win-
ning strategies by relying on computing a small number of
nested fixpoints (note that the reduction of LTL synthesis to
parity games may generate exponentially many nested fix-
points (Grädel, Thomas, and Wilke 2002)).

We consider here two different basic, but quite significant,
forms of assumptions: a basic form of fairnessGFα (always
eventually α), and a basic form of stability FGα (eventu-
ally always α), where in both cases the truth value of α
is under the control of the environment, and hence the as-
sumptions are trivially realizable by the environment. Note
that due to the existence of LTLf goals, synthesis under both
kinds of assumptions does not fall under known easy forms
of synthesis, such as GR(1) formulas (Bloem et al. 2012).
For these kinds of assumptions, we devise a specific algo-
rithm based on using the DFA for the LTLf goal as the arena
and then computing 2-nested fixpoint properties over such
arena. It should be noted that the kind of nested fixpoint that
we compute for fairness GFα is similar to the one in (De
Giacomo and Rubin 2018), but it is clear that the “fairness”
stated there is different from what we claim in this paper.
The “fairness” in (De Giacomo and Rubin 2018) is inter-
preted as all effects happening fairly, therefore the assump-
tion is hardcoded in the arena itself. Here, instead, we only
require that a selected condition α happens fairly, and our
technique extends to deal with stability assumptions as well.
We compare the new algorithm with standard LTL synthe-
sis (Meyer, Sickert, and Luttenberger 2018) and show em-
pirically that this algorithm performs significantly better, in
the sense that solving more cases with less time cost. Some
proofs have been removed due to the lack of space.1

Preliminaries

Linear-time Temporal Logic over finite traces (LTLf ) has the
same syntax as LTL over infinite traces introduced in (Pnueli
1977). Given a set of propositions P , the syntax of LTLf for-
mulas is defined as φ ::= a | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2.
Every a ∈ P is an atom. A literal l is an atom or the negation
of an atom. X for “Next”, and U for “Until”, are temporal
operators. We make use of the standard Boolean abbrevia-
tions, such as ∨ (or) and→ (implies), true and false. Addi-
tionally, we define the following abbreviations “Weak Next”
Xwφ ≡ ¬X¬φ, “Eventually” Fφ ≡ trueUφ and “Always”
Gφ ≡ falseRφ, where R is for “Release”.

A trace ρ = ρ[0], ρ[1], . . . is a sequence of propositional
interpretations (sets), where ρ[m] ∈ 2P (m ≥ 0) is the m-th
interpretation of ρ, and |ρ| represents the length of ρ. Intu-
itively, ρ[m] is interpreted as the set of propositions which
are true at instant m. Trace ρ is an infinite trace if |ρ| =∞,

1A full version is available on arXiv. Geguang Pu is the corre-
sponding author.

which is formally denoted as ρ ∈ (2P)ω; otherwise ρ is a
finite trace, denoted as ρ ∈ (2P)∗. LTLf formulas are inter-
preted over finite, nonempty traces. Given a finite trace ρ and
an LTLf formula φ, we inductively define when φ is true on
ρ at step i (0 ≤ i < |ρ|), written ρ, i |= φ, as follows:
• ρ, i |= a iff a ∈ ρ[i];
• ρ, i |= ¬φ iff ρ, i 
|= φ;
• ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 and ρ, i |= φ2;
• ρ, i |= Xφ iff i+ 1 < |ρ| and ρ, i+ 1 |= φ;
• ρ, i |= φ1Uφ2 iff there exists j such that i ≤ j < |ρ| and
ρ, j |= φ2, and for all k, i ≤ k < j, we have ρ, k |= φ1.

An LTLf formula φ is true on ρ, denoted by ρ |= φ, if
and only if ρ, 0 |= φ.

LTLf synthesis can be viewed as a game of two players,
the environment and the agent, contrasting each other. The
aim is to synthesize a strategy for the agent such that no
matter how the environment behaves, the combined behav-
ior trace of both players satisfy the logical specification ex-
pressed in LTLf (De Giacomo and Vardi 2015).

Fair and Stable LTLf Synthesis

In this paper, we focus on LTLf synthesis under assumptions
in two different basic forms: fairness and stability, which we
call in the following fair LTLf synthesis and stable LTLf syn-
thesis, respectively. In such synthesis problems, both play-
ers (environment and agent) have Boolean variables under
their respective control. Here, we use X to denote the set of
environment variables that are uncontrollable for the agent,
and Y the set of agent variables that are controllable for the
agent. Therefore, X and Y are disjoint.

In general, assumptions are specific forms of constraints.

Definition 1 (Environment Constraint). An environment
constraint α is a Boolean formula over X .

In particular, we define here two different basic, but com-
mon forms of assumptions.

Definition 2 (Fairness and Stability Assumptions). An LTL
formula ψ is considered as a fairness assumption if it is of
the form GFα, and a stability assumption if of the form
FGα, where in both cases α is an environment constraint.

A fair or stable trace can then be defined in terms of the
corresponding assumption (fairness or stability).

Definition 3 (Fair and Stable Traces). A trace ρ ∈ (2X∪Y)ω
is α-fair if ρ |= GFα and it is α-stable if ρ |= FGα.

Intuitively, α holds infinitely often on an α-fair trace,
while eventually holds forever on an α-stable trace. Note
that, if trace ρ is not α-fair, i.e., ρ � GFα, then ρ |=
FG(¬α) such that ρ is ¬α-stable. Similarly, if trace ρ is
not α-stable, i.e., ρ � FGα, then ρ |= GF (¬α) such that ρ
is ¬α-fair. Although there is a duality between fairness and
stability, such duality breaks when applying these environ-
ment assumptions to the problem of LTLf synthesis. This is
because in addition to the assumptions, the synthesis prob-
lems also require the LTLf specification to be satisfied.

We now define fair and stable LTLf synthesis by making
use of fair and stable traces.
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Definition 4 (Fair (Stable) LTLf Synthesis). LTLf formula
φ, defined over X ∪ Y , is α-fair (resp., α-stable) realizable
if there exists a strategy g : (2X )+ → 2Y , such that for an
arbitrary environment trace λ = X0, X1, . . . ∈ (2X )ω , if
λ is α-fair (resp., α-stable), then we can find k ≥ 0 such
that φ is true in the finite trace ρk = (X0 ∪ g(X0)), (X1 ∪
g(X0, X1)), . . . , (Xk ∪ g(X0, X1, . . . , Xk)).

A fair (resp., stable) LTLf synthesis problem, described as
a tuple 〈X ,Y, α, φ〉, consist in checking whether φ, defined
over X ∪ Y , is α-fair (resp., α-stable) realizable. The syn-
thesis procedure aims to computing a strategy if realizable.

Intuitively speaking, φ describes the desired goal when
the environment behaviors satisfy the assumption. An agent
strategy g : (2X )+ → 2Y for fair (resp., stable) synthesis
problem 〈X ,Y, α, φ〉 is winning if it guarantees the satisfac-
tion of the objective φ under the condition that the environ-
ment behaves in a way that α holds infinitely often (resp.,
α eventually holds forever). The realizability procedure of
〈X ,Y, α, φ〉 aims to answer the existence of a winning strat-
egy g and the synthesis procedure amounts for computing g
if it exists. In fact one can consider two variants of the syn-
thesis problem, depending on the player who moves first, in
the sense of assigning values to variables under its control
first. Here we consider the environment as the first-player
(as in planning), but a version where the agent moves first
can be obtained by a small modification.

Since every LTLf formula φ can be translated to a Deter-
ministic Finite Automaton (DFA) Gφ that accepts exactly the
same language as φ (De Giacomo and Vardi 2013), we are
able to reduce the problems of fair LTLf synthesis and stable
LTLf synthesis to specific two-player DFA games, in partic-
ular, fair DFA game and stable DFA game, respectively. We
start with introducing DFA games.

Games over DFA
Two-player games on DFA are games consisting of two play-
ers, the environment and the agent. X and Y are disjoint sets
of environment Boolean variables and agent Boolean vari-
ables, respectively. The specification of the game arena is
given by a DFA G = (2X∪Y , S, s0, δ, Acc), where 2X∪Y is
the alphabet, S is a set of states, s0 ∈ S is an initial state,
δ : S × 2X∪Y → S is a transition function and Acc ⊆ S is
a set of accepting states.

A round of the game consists of both players setting
the values of variables under their respective control. A
play ρ over G records how two players set the values at
each round and how the DFA proceed according to the val-
ues. Formally, a play ρ from state si0 is an infinite trace
(si0 , X0 ∪ Y0), (si1 , X1 ∪ Y1) . . . ∈ (S × 2X∪Y)ω such that
sij+1 = δ(sij , Xj ∪ Yj). Moreover, we also assign the envi-
ronment as the first-player, which sets values first.

A play ρ is considered as a winning play if it follows a
certain winning condition. Different winning conditions lead
to different games. In this paper, we consider two specific
two-player games, fair DFA game and stable DFA game, both
of which are described as 〈G, α〉, where G is the game arena
and α is the environment constraint.
Fair DFA Game. Although the ultimate goal for solving a
fair DFA game is to perform winning plays for the agent,

since it is more straightforward to formulate the game con-
sidering the environment as the protagonist, we first define
the winning condition of the environment over a play. A play
ρ = (si0 , X0 ∪ Y0), (si1 , X1 ∪ Y1) . . . over G is winning for
the environment with respect to a fair DFA game 〈G, α〉 if the
following two conditions hold:
• Recurrence: ρ is α-fair (that is, ρ |= GFα),
• Safety: sij 
∈ Acc for all j ≥ 0 (Acc is avoided).

Consequently, a play ρ is winning for the agent if one of
the following conditions holds:
• Stability: ρ is not α-fair (that is, ρ |= FG(¬α)),
• Reachability: sij ∈ Acc for some j ≥ 0 (Acc is reached).
Stable DFA Game. As for a stable DFA game 〈G, α〉, a play
ρ = (si0 , X0 ∪ Y0), (si1 , X1 ∪ Y1) . . . over G is winning for
the environment if the following two conditions hold:
• Stability: ρ is α-stable (that is, ρ |= FGα),
• Safety: sij 
∈ Acc for all j ≥ 0 (Acc is avoided).

Consequently, a play ρ is winning for the agent if one of
the following conditions holds:
• Recurrence: ρ is not α-stable (that is, ρ |= GF (¬α)),
• Reachability: sij ∈ Acc for some j ≥ 0 (Acc is reached).

Since we consider here the environment as the first-player,
a strategy for the agent is a function g : (2X )+ → 2Y , decid-
ing the values of the controllable variables for every possible
history of the uncontrollable variables. Respectively, an en-
vironment strategy is a function h : (2Y)∗ → 2X . A play
ρ = (si0 , X0 ∪ Y0), (si1 , X1 ∪ Y1) . . . ∈ (S × 2X∪Y)ω fol-
lows a strategy g (resp., a strategy h), if Yj = g(X0, . . . , Xj)
for all j ≥ 0 (resp., Xj = h(Y0, . . . , Yj−1) for all j > 0).

We can now define winning states and winning strategies.

Definition 5 (Winning State and Winning Strategy). In the
game 〈G, α〉 described above, s ∈ S is a winning state for
the agent (resp., environment) if there exists strategy g (resp.,
h) s.t. every play ρ from s that follows g (resp., h) is an
agent (resp., environment) winning play. Then g (resp., h) is
a winning strategy for the agent (resp., environment) from s.

As shown in (Martin 1975), both of the fair DFA game and
stable DFA game described above are determined, that is, a
state s ∈ S is a winning state for the agent if and only if s
is not a winning state for the environment. The realizability
procedure of the game consists of checking whether there
exists a winning strategy for the agent from initial state s0.
The synthesis procedure aims to computing such a strategy.

We then show how to reduce the problems of fair LTLf

synthesis and stable LTLf synthesis to fair DFA game and
stable DFA game, respectively. Hence we can solve the DFA
game, thus settling the corresponding synthesis problem.

Solution to Fair LTLf Synthesis

In order to perform fair synthesis on LTLf , given problem
〈X ,Y, α, φ〉, we first translate the LTLf specification φ into
a DFA Gφ. We then view 〈Gφ, α〉 as a fair DFA game, and con-
sider exactly the separation between environment and agent
variables as in the original synthesis problem. Specifically,
we assignX as the environment variables and Y as the agent
variables. Finally, we solve the fair DFA game, thus settling
the fair LTLf synthesis problem. The following theorem as-
sesses the correctness of this technique.
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Theorem 1. Fair LTLf synthesis problem 〈X ,Y, α, φ〉 is re-
alizable iff fair DFA game 〈Gφ, α〉 is realizable.

Proof. We prove the theorem in both directions.
←: Since 〈Gφ, α〉 is realizable for the agent, the initial
state s0 is an agent winning state with winning strategy
g : (2X )+ → 2Y . Therefore, a play ρ = (s0, X0 ∪
g(X0)), (s1, X1∪g(X0, X1)), . . . over Gφ from s0 following
g is a winning play for the agent. Moreover, for every such
play ρ from s0, either of the following conditions holds:
• ρ � GFα such that ρ is not α-fair.
• ρ |= GFα such that ρ is α-fair. Since ρ is winning for the
agent, there exists j ≥ 0 such that sj ∈ Acc. This implies
that ρj |= φ holds, where ρj = (s0, X0 ∪ g(X0)), (s1, X1 ∪
g(X0, X1)), . . . , (sj , Xj ∪ g(X0, X1, . . . , Xj)).

Consequently, the strategy g assures that for an arbitrary
environment trace λ = X0, X1, . . . ∈ (2X )ω , if λ is α-fair,
then there is j ≥ 0 such that φ is true in the finite trace ρj .
We conclude that 〈X ,Y, α, φ〉 is realizable.
→: For this direction, we assume that 〈X ,Y, α, φ〉 is re-
alizable, then there exists a strategy g : (2X )+ → 2Y
that realizes φ. Thus consider an arbitrary environment trace
λ ∈ (2X )ω , either of the following conditions holds:
• λ is not α-fair, then the induced play ρ = (s0, X0 ∪
g(X0)), (s1, X1 ∪ g(X0, X1)), . . . over Gφ from s0 that fol-
lows g is winning for the agent by default.
• λ is α-fair, then on the induced play ρ = (s0, X0 ∪
g(X0)), (s1, X1 ∪ g(X0, X1)), . . . over Gφ from s0, there
exists j ≥ 0 such that φ is true in the finite trace
ρj = (s0, X0∪g(X0)), (s1, X1∪g(X0, X1)), . . . , (sj , Xj∪
g(X0, X1, . . . , Xj)), in which case sj ∈ Acc. Therefore, ρ
is winning for the agent.

Consequently, we conclude that fair DFA game 〈Gφ, α〉 is
realizable for the agent.

Fair DFA Game Solving

Winning fair DFA games means that the agent can eventually
reach an “agent wins” region from which if the constraint α
holds, then it is possible to reach an accepting state. Given a
fair DFA game 〈G, α〉, we proceed as follows: (1) Compute
“agent wins” region in fair DFA game 〈G, α〉; (2) Check real-
izability; (3) Return an agent winning strategy if realizable.

Since the environment winning condition is more intu-
itive, in order to show the solution to fair DFA game, we
start by solving the Recurrence-Safety game, which consid-
ers the environment as the protagonist. The idea for win-
ning such game is that the environment should remain in
an “environment wins” region from which the constraint α
holds infinitely often referring to Recurrence game, mean-
while the accepting states are forever avoidable referring to
Safety game. Therefore, in order to have both of Recurrence
such that having GFα holds and Safety such that avoiding
accepting states s ∈ Acc, the “environment wins” region
computation is defined as:
Envf = νZ.μẐ.(∃X.∀Y.((X |= α ∧ δ(s,X ∪ Y ) ∈
Z\Acc) ∨ δ(s,X ∪ Y ) ∈ Ẑ\Acc)),

where X ranges over 2X and Y over 2Y .
The fixpoint stages for Z (note Zi+1 ⊆ Zi, for i ≥ 0, by

monotonicity) are:

• Z0 = S,
• Zi+1 = μẐ.(∃X.∀Y.((X |= α∧δ(s,X∪Y ) ∈ Zi\Acc)∨
δ(s,X ∪ Y ) ∈ Ẑ\Acc)).

Eventually,Envf = Zk for some k such thatZk+1 = Zk.
The fixpoint stages for Ẑ with respect to Zi (note Ẑj ⊆

Ẑj+1, for j ≥ 0, by monotonicity) are:
• Ẑi,0 = ∅,
• Ẑi,j+1 = ∃X.∀Y.((X |= α ∧ δ(s,X ∪ Y ) ∈ Zi\Acc) ∨
δ(s,X ∪ Y ) ∈ Ẑi,j\Acc).

Finally, Ẑi = Ẑi,k for some k such that Ẑi,k+1 = Ẑi,k.
The following theorem assures that the nested fixpoint

computation of Envf collects exactly all environment win-
ning states in fair DFA game.
Theorem 2. For a fair DFA game 〈G, α〉 and a state s ∈ S,
we have s ∈ Envf iff s is an environment winning state.

Proof. We prove the two directions separately.
←: We prove by showing the contrapositive. If a state s /∈
Envf , then s must be removed from Envf at stage i + 1,
therefore, s ∈ Zi\Zi+1. Then s /∈ μẐ.(∃X.∀Y.((X |= α ∧
δ(s,X ∪ Y ) ∈ Z\Acc) ∨ δ(s,X ∪ Y ) ∈ Ẑ\Acc)). That is,
no matter what the (environment) strategy h is, traces from
s satisfy neither of the following conditions:
• α holds and the trace gets trapped in Z without visiting
accepting states such that X |= α ∧ δ(s,X ∪ Y ) ∈ Z\Acc
holds, in which case s is a new environment winning state;
• α eventually gets hold and from there we can have α as
true infinitely often without visiting accepting states such
that δ(s,X ∪ Y ) ∈ Ẑ\Acc holds, in which case s is a new
environment winning state.

Therefore, s is not an environment winning state. So if s
is an environment winning state then s ∈ Envf holds.
→: If a state s ∈ Envf , then s ∈ μẐ.(∃X.∀Y.((X |= α ∧
δ(s,X ∪ Y ) ∈ Z\Acc) ∨ δ(s,X ∪ Y ) ∈ Ẑ\Acc)). That is,
no matter what the (agent) strategy g is, traces from s satisfy
either of the following conditions:
• α holds and the trace gets trapped in Z without visiting
accepting states such that X |= α ∧ δ(s,X ∪ Y ) ∈ Z\Acc
holds, in which case s is a new environment winning state;
• α eventually gets hold and from there we can have α as
true infinitely often without visiting accepting states such
that δ(s,X ∪ Y ) ∈ Ẑ\Acc holds, in which case s is a new
environment winning state.

Thus s is a winning state for the environment.

Due to the determinacy of fair DFA game, the set of agent
winning states Sysf can be computed by negating Envf :
Sysf = μZ.νẐ.(∀X.∃Y.((X |= ¬α ∨ δ(s,X ∪ Y ) ∈ Z ∪
Acc) ∧ δ(s,X ∪ Y ) ∈ Ẑ ∪Acc)).
Theorem 3. A fair DFA game 〈G, α〉 has an agent winning
strategy if and only if s0 ∈ Sysf .

Strategy Extraction

Having completed the realizability checking procedure, this
section deals with the agent winning strategy generation if
〈G, α〉 is realizable. It is known that if some strategy that
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realizes φ exists, then there also exists a finite-state strategy
generated by a finite-state transducer that realizes φ (Buchi
and Landweber 1990). Formally, the agent winning strategy
g : (2X )+ → 2Y can be represented as a deterministic finite
transducer based on the set Sysf , described as below.
Definition 6 (Deterministic Finite Transducer). Given a fair
DFA game 〈G, α〉, where G = (2X∪Y , S, s0, δ, Acc), a deter-
ministic finite transducer T = (2X , 2Y , Q, s0, 	, ωf ) of such
game is defined as follows:
• Q ⊆ S is the set of agent winning states s.t. Q = Sysf ;
• 	 : Q × 2X → Q is the transition function such that
	(q,X) = δ(q,X ∪ Y ) and Y = ωf (q,X);
• ωf : Q × 2X → 2Y is the output function such that at an
agent winning state q with assignment X , ωf (q,X) returns
an assignment Y leading to an agent winning play.

The transducer T generates g in the sense that for every
λ ∈ (2X )ω , we have g(λ) = ωf (	(λ)), with the usual exten-
sion of δ to words over 2X from s0. Note that there are many
possible choices for the output function ωf . The transducer
T defines a winning strategy by restricting ωf to return only
one possible setting of Y .

We extract the output function ωf : Q × 2X → 2Y for
the game from the approximates for Z assuming Ẑ to be
Sysf , from where no matter what the environment strategy
is, traces have to always get ¬α hold. Thus, we consider:
μZ.(∀X.∃Y.((X |= ¬α∨δ(s,X∪Y ) ∈ Z∪Acc)∧δ(s,X∪
Y ) ∈ Sysf ∪Acc)) with approximates defined as:
• Z0 = ∅,
• Zi+1 = ∀X.∃Y.((X |= ¬α ∨ δ(s,X ∪ Y ) ∈ Zi ∪Acc) ∧
δ(s,X ∪ Y ) ∈ Sysf ∪Acc).

Define an output function ωf : Sysf × 2X → 2Y as
follows: for s ∈ Zi+1\Zi, for all possible values X ∈ 2X ,
set Y to be such that (X |= ¬α∨δ(s,X∪Y ) ∈ Zi∪Acc)∧
δ(s,X ∪ Y ) ∈ Sysf ∪ Acc holds for s /∈ Acc. Consider
a deterministic finite transducer T defined in the sense that
constructing ωf as described above, the following theorem
guarantees that T generates an agent winning strategy g.
Theorem 4. Strategy g with g(λ) = ωf (	(λ)) is a winning
strategy for the agent.

Solution to Stable LTLf Synthesis

Solving stable LTLf synthesis problem 〈X ,Y, α, φ〉 relies
on solving the stable DFA game 〈Gφ, α〉, where Gφ is the
corresponding DFA of φ. The following theorem guarantees
the correctness of such reduction.
Theorem 5. Stable LTLf synthesis problem 〈X ,Y, α, φ〉 is
realizable iff stable DFA game 〈Gφ, α〉 is realizable.

Proof. We prove the theorem in both directions.
←: Since 〈Gφ, α〉 is realizable for the agent, the initial
state s0 is an agent winning state with winning strategy
g : (2X )+ → 2Y . Therefore, a play ρ = (s0, X0 ∪
g(X0)), (s1, X1 ∪ g(X0, X1)), . . . over Gφ from s0 follow-
ing g is a winning play for the agent. Moreover, for every
such play ρ from s, either of the following conditions holds:
• ρ � FGα such that ρ is not α-stable.
• ρ |= FGα such that ρ is α-stable. Since ρ is winning for

the agent, there exists j ≥ 0 such that sj ∈ Acc. Therefore,
ρj |= φ holds, where ρj = (s0, X0 ∪ g(X0)), (s1, X1 ∪
g(X0, X1)), . . . , (sj , Xj ∪ g(X0, X1, . . . , Xj)).

Consequently, the strategy g assures that for an arbitrary
environment trace λ = X0, X1, . . . ∈ (2X )ω , if λ is α-
stable, then there exists j ≥ 0 such that φ is true in finite
trace ρj . Thus 〈X ,Y, α, φ〉 is realizable.
→: For this direction, we assume that 〈X ,Y, α, φ〉 is re-
alizable, then there exists a strategy g : (2X )+ → 2Y
that realizes φ. Thus consider an arbitrary environment trace
λ ∈ (2X )ω , either of the following conditions holds:
• λ is not α-stable, then the induced play ρ = (s0, X0 ∪
g(X0)), (s1, X1 ∪ g(X0, X1)), . . . over Gφ from s0 that fol-
lows g is winning for the agent by default.
• λ is α-stable, then on the induced play ρ = (s0, X0 ∪
g(X0)), (s1, X1 ∪ g(X0, X1)), . . . over Gφ from s0, there
exists j ≥ 0 such that φ is true in the finite trace
ρj = (s0, X0∪g(X0)), (s1, X1∪g(X0, X1)), . . . , (sj , Xj∪
g(X0, X1, . . . , Xj)), in which case sj ∈ Acc. Therefore, ρ
is winning for the agent.

Consequently, we conclude that stable DFA game 〈Gφ, α〉
is realizable for the agent.

Stable DFA Game Solving

Despite the duality between fairness and stability, solving
the stable DFA game here cannot directly dualize the solu-
tion to fair DFA game. This is because the computation here
involves a Stability-Safety game, which is not dual to the
Recurrence-Safety game in fair DFA game solving. In order
to deal with stable DFA game, we again first consider the
environment as the protagonist. We compute the set of envi-
ronment winning states as follows:
Envst = μZ.νẐ.(∃X.∀Y.((X |= α ∧ δ(s,X ∪ Y ) ∈
Ẑ\Acc) ∨ δ(s,X ∪ Y ) ∈ Z\Acc)),

where X ranges over 2X and Y over 2Y .
The following theorem assures that the nested fixpoint

computation of Envst collects exactly all environment win-
ning states in stable DFA game.
Theorem 6. For a stable DFA game 〈G, α〉 and a state s ∈
S, we have s ∈ Envst iff s is an environment winning state.

Correspondingly, since stable DFA game is determined,
the set of agent winning states can be computed as follows:
Sysst = νZ.μẐ.(∀X.∃Y.((X |= ¬α ∨ δ(s,X ∪ Y ) ∈ Ẑ ∪
Acc) ∧ δ(s,X ∪ Y ) ∈ Z ∪Acc)).
Theorem 7. A stable DFA game 〈G, α〉 has an agent winning
strategy if and only if s0 ∈ Sysst.

Strategy Extraction

Here, the agent winning strategy g : (2X )+ → 2Y can
also be represented as a deterministic finite transducer T =
(2X , 2Y , Q, s0, 	, ωst) in terms of the set of agent winning
states such that Q = Sysst.

We extract the output function ωst : Q × 2X → 2Y for
the game from the approximates for Z assuming Ẑ to be
Sysst, from where no matter what the environment strategy
is, traces cannot always get α hold. Thus, we consider the
fixpoint computation as follows:
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νZ.(∀X.∃Y.((X |= ¬α ∨ δ(s,X ∪ Y ) ∈ Sysst ∪ Acc) ∧
δ(s,X ∪ Y ) ∈ Z ∪Acc)).

Define an output function ωst : Sysst × 2X → 2Y s.t. for
s ∈ Zi+1 ∩ Zi, for all possible values X ∈ 2X , set Y to be
s.t. (X |= ¬α ∨ δ(s,X ∪ Y ) ∈ Sysst ∪ Acc) ∧ δ(s,X ∪
Y ) ∈ Zi ∪ Acc holds for s /∈ Acc. The following theorem
guarantees that T generates an agent winning strategy g.

Theorem 8. Strategy g with g(λ) = ωst(	(λ)) is a winning
strategy for the agent.

Evaluation

We observe that a straightforward approach to LTLf synthe-
sis under assumptions can be obtained by a reduction to stan-
dard LTL synthesis, which allows us to utilize tools for LTL
synthesis to solve the fair (or stable) LTLf synthesis prob-
lem. In this section, we first revisit the reduction to standard
LTL synthesis, and then show an experimental comparison
with the approach proposed earlier in this paper.
Reduction to LTL Synthesis. The insight of reducing LTLf

synthesis under assumptions to LTL synthesis comes from
the reduction in (Zhu et al. 2017b) for general LTLf syn-
thesis, and in (Camacho, Bienvenu, and McIlraith 2018) for
constraint LTLf synthesis, where the constraint describes the
desired environment behaviors, under which the goal is to
satisfy the given LTLf specification. Both reductions adopt
the translation rules in (De Giacomo and Vardi 2013) to
polynomially transform an LTLf formula φ over X ∪ Y into
an LTL formulaψ overX∪Y∪{alive}, retaining the satisfia-
bility equivalence, where proposition alive indicates the last
instance of the finite trace. Such translation bridges the gap
between LTLf over finite traces and LTL over infinite traces.
Based on the translation from LTLf to LTL, we then reduce
fair (resp., stable) LTLf synthesis problem 〈X ,Y, α, φ〉 to
LTL synthesis problem 〈X ,Y ∪ {alive}, GFα→ ψ〉 (resp.,
〈X ,Y ∪ {alive}, FGα→ ψ〉).
Implementation. Based on the LTLf synthesis tool Syft 2,
we implemented our fixpoint-based techniques for solving
fair LTLf synthesis and stable LTLf synthesis in two tools
called FSyft and StSyft, respectively (name after Syft). Both
frameworks consist of two steps: the symbolic DFA construc-
tion and the respective DFA game solving. In the first step,
we based on the code of Syft, to construct the symbolic DFA
represented in Binary Decision Diagrams (BDDs). The im-
plementation of the nested fixpoint computation for solv-
ing DFA games over such symbolic DFA, borrows tech-
niques from (Zhu et al. 2017a) for greatest fixpoint com-
putation and from Syft for least fixpoint computation. The
construction of the transducer for generating the winning
strategy utilizes the boolean-synthesis procedure introduced
in (Fried, Tabajara, and Vardi 2016) for realizable formulas.
The implementation makes use of the BDD library CUDD-
3.0.0 (Somenzi 2016). In order to evaluate the performance
of FSyft and StSyft, we compared it against the solution
of reducing to standard LTL synthesis shown above. For
such comparison, we employed the LTLf -to-LTL translator
implemented in SPOT (Duret-Lutz et al. 2016) and chose

2https://github.com/saffiepig/Syft

Strix (Meyer, Sickert, and Luttenberger 2018), the winner
of the synthesis competition SYNTCOMP 2019 3 over LTL
synthesis track, as the baseline.

Experimental Methodology

Benchmarks. We collected 1200 formulas consisting of
two classes of benchmarks: 1000 randomly conjuncted LTLf

formulas over 100 basic cases, generated in the style de-
scribed in (Zhu et al. 2017b), the length of which, indicat-
ing the number of conjuncts, ranges form 1 to 5. The as-
sumption (either fairness or stability) is assigned by ran-
domly selecting one variable from all environment variables;
200 LTLf synthesis benchmarks with assumptions generated
from a scalable counter game, described as follows:
• There is an n-bit binary counter. At each round, the en-
vironment chooses whether to increment the counter or not.
The agent can choose to grant the request or ignore it.
• The goal is to get the counter having all bits set to 1, so the
counter reaches the maximal value.
• The fairness assumption is to have the environment in-
finitely request the counter to be incremented.
• The stability assumption is to have the environment even-
tually keep requesting the counter to be incremented.

We reduce solving the counter game above to solv-
ing LTLf synthesis with assumptions. First, we have n
agent variables {bn−1, bn−2, . . . , b0} denoting the value of
n counter bits. We also introduce another n + 1 agent vari-
ables {cn, cn−1, . . . , c0} representing the carry bits. In addi-
tion, we have an environment variable add representing the
environment making an increment request or not, and c0 as
true is considered as the agent granting the request. We then
formulate the counter game into LTLf formula as follows:
Init = ((¬c0) ∧ . . . ∧ (¬cn−1) ∧ (¬b0) ∧ . . . (¬bn−1))),
Goal = F (b0 ∧ . . . ∧ bn−1),
B = G((¬add)→ Xw(¬c0)),

Bi =

⎧⎪⎪⎨
⎪⎪⎩

(((¬ci) ∧ (¬bi))→ Xw((¬bi) ∧ (¬ci+1)))

(((¬ci) ∧ bi)→ Xw(bi ∧ (¬ci+1)))

(((ci ∧ ¬bi)→ Xw(bi ∧ (¬ci+1)))

(((ci ∧ bi)→ Xw((¬bi) ∧ ci+1))).

The LTLf formula φ is then (Init∧B∧
∧

0≤i≤nG(Bi))∧
Goal, and the constraint α is add. Obviously, such counter
game only returns realizable cases, since a winning strategy
for the agent is to grant all increment requests.

In order to get unrealizable cases, we can make some
modifications on the counter game above. One possibility
is to have the counter increment by 2 if the agent chooses
to grant the request sent by the environment. Such modifi-
cation leads to no winning strategy for the agent, since the
maximal counter value of having each bit as 1 is odd. How-
ever, incrementing by 2 at each time will never reach an odd
value. Therefore, for bit Bi such that i > 0, we keep the
same formulation. While for bit B0, we change as follows:

3http://www.syntcomp.org/syntcomp-2019-results/
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Figure 1: Fair LTLf synthesis. Comparison of the number of
solved cases with limited time between FSyft and Strix over
random conjunction benchmarks.
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Figure 2: Stable LTLf synthesis. Comparison of the number
of solved cases with limited time between StSyft and Strix
over random conjunction benchmarks.

B0 =

⎧⎪⎪⎨
⎪⎪⎩

(((¬c0) ∧ (¬b0))→ Xw((¬b0) ∧ (¬c1)))
(((¬c0) ∧ b0)→ Xw(b0 ∧ (¬c1)))
(((c0 ∧ ¬b0)→ Xw(¬b0 ∧ (c1)))

(((c0 ∧ b0)→ Xw((b0) ∧ c1))).
Therefore, we have 200 counter game benchmarks in to-

tal, with the number of counter bits n ranging from 1 to 100,
and both realizable and unrealizable cases for each n.
Experiment Setup. All tests were ran on a computer cluster.
Each test took an exclusive access to a node with Intel(R)
Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz.
Time out was set to 1000 seconds.
Correctness. Our implementation was verified by compar-
ing the results returned by FSyft and StSyft with those from
Strix. No inconsistency encountered for the solved cases.

Experimental Results.

We evaluated the efficiency of FSyft and StSyft in terms of
the number of solved cases and total time cost. We com-
pared these two tools against Strix by performing an end-
to-end comparison experiment. Therefore, both of the DFA
construction time and the fixpoint computation time were
counted for FSyft and StSyft. For Strix, we counted the run-
ning time from feeding the corresponding LTL formula to
Strix to receiving the result. Both comparison on two classes
of benchmarks show the advantage of the fixpoint-based
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Figure 3: Fair LTLf synthesis. Comparison of running time
between FSyft and Strix, in log scale. Bars of the maximum
height indicate cases timed out.

technique proposed in this paper as an effective method for
both of fair LTLf synthesis and stable LTLf synthesis 4.
Randomly Conjuncted Benchmarks. Figure 1 and Fig-
ure 2 show the number of solved cases as the given time in-
creases on fair LTLf synthesis and stable LTLf synthesis, re-
spectively. As shown in the figures, both of FSyft and StSyft
are able to handle almost all cases (1000 in total for each),
while Strix only solves a small fraction of the cases that
FSyft and StSyft can solve. Moreover, as presented there, half
of the cases that can be solved by FSyft and StSyft, around
400, are finished in less than 0.1 second, while Strix is un-
able to solve any cases given such time limit.
Counter Game. Figure 3 and Figure 4 show the running
time of all tools on the counter game benchmarks. Since all
of them got failed on cases with counter bits n > 10, here
we only show realizable/unrealizale cases with counter bits
n ≤ 10, so we have 20 cases for each synthesis problem.
The x-labels c-rea/unrea-n indicate the realizability and the
number of counter bits of each case. Both of FSyft and StSyft
are able to deal with cases with n ≤ 10, while Strix only
solves cases with n up to 7, either stable LTLf synthesis or
fair LTLf synthesis. For those common solved cases, both of
FSyft and StSyft take much less time than Strix.

Conclusions

In this paper we presented a fixpoint-based technique for
LTLf synthesis with assumptions for basic forms of fair-
ness and stability, which is quite effective, as our experiment
shows. Our technique can be summarized as follows: use the
DFA for the LTLf formula as the arena to play a game for the
environment whose winning condition is to avoid reaching
the accepting states while making the assumption true. Note
that for a general LTL assumption (see (Aminof et al. 2019)),
we can transform such an assumption into a parity automa-
ton, take the Cartesian product with the DFA and play the
parity/reachability game over the resulting arena. Compar-
ing this possible approach to the reduction to LTL synthesis
is a subject for future work.
Acknowledgments. Work supported in part by European

4We recommend viewing the figures online for a better vision.
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