
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Kriging Convolutional Networks

Gabriel Appleby,∗ Linfeng Liu,∗ Li-Ping Liu
Department of Computer Science, Tufts University
{Gabriel.Appleby, Linfeng.Liu, Liping.Liu}@tufts.edu

Abstract

Spatial interpolation is a class of estimation problems where
locations with known values are used to estimate values at
other locations, with an emphasis on harnessing spatial lo-
cality and trends. Traditional kriging methods have strong
Gaussian assumptions, and as a result, often fail to capture
complexities within the data. Inspired by the recent progress
of graph neural networks, we introduce Kriging Convolu-
tional Networks (KCN), a method of combining advantages
of Graph Neural Networks (GNN) and kriging. Compared to
standard GNNs, KCNs make direct use of neighboring ob-
servations when generating predictions. KCNs also contain
the kriging method as a specific configuration. Empirically,
we show that this model outperforms GNNs and kriging in
several applications.

Spatial data is ubiquitous in a wide variety of fields such
as ecology (Fink et al. 2010), economics (Gao and Liu
2014), and meteorology (Xingjian et al. 2015). A common
task within these fields is to estimate values at target loca-
tions from nearby known values. Improving these estima-
tions should provide clear benefits for these applications. Es-
timation techniques tailored to spatial data must leverage the
fact that every data point is associated with a location. Most
importantly, these techniques should be able to capture the
spatial correlation among these locations.

In many fields, the most prevalent method for spatial data
modeling is kriging (Cressie 1991). The fundamental as-
sumption of kriging is that observations at locations are from
an underlying Gaussian process. After estimating the var-
iogram, which is essentially the strength of spatial correla-
tions between data points, kriging uses a linear interpolation
of observed values to predict the value at a new location. The
kriging prediction is the best linear unbiased estimator for
spatial points given its Gaussian assumption. However, this
assumption is quite constrictive, as data in many applications
are not from a Gaussian distribution. For example, we will
show in our experiments that this assumption leads to poor
performance when estimating integer counts that contain a

∗Equal contribution. The first two authors are arranged by the
alphabet order
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

significant fraction of zeros.
Researchers also use flexible machine learning algorithms

(Hengl et al. 2018) for spatial data modeling. Given the huge
success of GNNs and the similarity between spatial data and
graph data, researchers have started to apply Graph Neu-
ral Networks (GNN) (Wu et al. 2019) to spatial data (Li
et al. 2017; Yu, Yin, and Zhu 2017; Zhu and Liu 2018;
Yan et al. 2019). GNNs were first developed for explicit
graph data, but can model any data that can be transformed
into a graph either by their spatial vicinity or their physi-
cal connections (e.g. routes). The main idea is to propagate
information along graph edges, so graph nodes can share in-
formation during the learning process. GNNs are relatively
generic, and can find nonlinear relationships between the in-
puts, hidden layers, and neighborhood information of each
node. By design, GNNs are more flexible than kriging.

However, kriging has an advantage over GNNs: kriging
directly uses observed training labels to predict the label of
a new data point. In comparison, there is no straightforward
way to feed training labels as input to a GNN. It is not fea-
sible to directly feed training labels as part of the input be-
cause the GNN will directly output the given label of a train-
ing data point and learn nothing. Furthermore, spatial data
modeling requires inductive learning – the model needs to
be able to make predictions for new locations that are not
in the graph formed by training data. While kriging is in-
trinsically inductive, only a few GNNs such as GraphSAGE
(Hamilton, Ying, and Leskovec 2017) can work inductively.

Inspired by these two observations, we develop a new
model, the Kriging Convolutional Network (KCN), as an
improvement to GNNs. The KCN is still a type of GNN.
However, it does not form a single large graph over all data
points. Every time a KCN fits the label of a data point (call
it the center), it forms a small graph over the center and its
neighboring training data points. These neighbors are the K
nearest neighbors according to a distance metric. In the input
to the KCN, we hide the label of the center node. The input
consists of feature vectors for all nodes in the graph (K + 1
nodes), as well as the labels of the neighbors. The KCN also
needs the adjacency matrix of the graph, which is defined to
be the spatial kernel matrix or a normalized version of that.
The target value of the KCN is the label of the center node.

3187



We iterate over all of the training data, treating each node as
the center to train the KCN model. The KCN uses the same
structure to predict the label of a new data point.

The KCN combines the best parts of both models. In com-
parison to the GNN, it is able to directly leverage training la-
bels in prediction, and no re-training is necessary when new
data points are introduced. In contrast to kriging, the KCN
is more versatile. On a large dataset where overfiting is not
an issue, the KCN has a clear advantage over kriging. Even
though the KCN’s underlying mechanisms are very different
from kriging, our theoretical analysis reveals a deep connec-
tion between the two models. In fact, with a special config-
uration, the KCN can emulate kriging.

In summary, this work has three contributions:

• the development of the KCN, which is a GNN that di-
rectly uses training labels for prediction;

• the theoretical result showing that the KCN approxi-
mately recovers local universal kriging; and

• empirical studies indicating the KCN’s advantage over
baseline models.

Related Work

Kriging (Cressie 1991) has been widely used in spatial data
modeling. Using kriging to model non-Gaussian data is of-
ten accomplished through careful transformation of labels
(Saito and Goovaerts 2000). However, it is not always fea-
sible to transform a variable to be Gaussian (Dance 2018).
One direction of exploration is to weaken the Gaussian as-
sumption of kriging models (Wallin and Bolin 2015), but
these methods are often specially designed for their respec-
tive applications.

GNNs are neural networks that work on graph data (Gori,
Monfardini, and Scarselli 2005). Wu et al. (2019) and Zhou
et al. (2018) have done extensive surveys of this topic. A
GNN typically consists of a few layers, each of which has
a non-linear transformation of the hidden vectors and a step
of information propagation between nodes. GNN architec-
tures differ by how they propagate information among graph
nodes (Kipf and Welling 2016; Atwood and Towsley 2016;
Hamilton, Ying, and Leskovec 2017; Veličković et al. 2018).
When a GNN is applied to spatial data (Wu et al. 2019;
Yan et al. 2019), one first builds a graph over data points
in the spatial area and then runs the GNN on the graph. To
the best of our knowledge, all of these methods feed features
as the input and fit labels by the output of the network. In
this work, we develop our KCN model based on the Graph
Convolutional Network (GCN) (Kipf and Welling 2016),
Graph Attention Network (GAT) (Veličković et al. 2018),
and GraphSAGE (Hamilton, Ying, and Leskovec 2017).

Background

Suppose there are N spatial data points, (s,X,y) =
(si,xi, yi)

N
i=1, where si, xi, and yi are respectively the loca-

tion, the feature vector, and the label of data point i. Usually
a location si is a GPS coordinate, si ∈ R

2. There are d
features in a feature vector xi ∈ R

d. The domain of the tar-
get value yi is application-dependent. For example, yi ∈ N

when yi is a count, and yi ∈ R
+ when yi represents the pre-

cipitation level. One important task of spatial data modeling
is to predict or estimate the value y∗ for a new location s∗
with a feature vector x∗. Let ŷ∗ denote the prediction.

Kriging

There are many variants of kriging, of which universal krig-
ing is the most appropriate for the setting above. Universal
kriging has the following model assumption (Eq. 3.4.2 in
(Cressie 1991)).

yi = β�xi + ε(si), i = 1, . . . , n, ∗ (1)

Here β is the coefficient vector. ε(·) is a zero-mean
random process with variogram 2γ(·). The variogram
2γ(·), which specifies the spatial correlation between data
points, is a function of spatial distance: 2γ(‖si − sj‖) =
E
[
(ε(si)− ε(sj))

2
]
. The variogram often takes a special

function form with its parameters estimated from the data.
With this model assumption, kriging minimizes the expected
squared error, Ey∗

[
(ŷ∗ − y∗)2

]
, in closed form. Then the

prediction y∗ of universal kriging is ŷkriging∗ = λ�y with

λ = Γ−1
(
γ −BX�Γ−1γ +Bx∗

)
, (2)

with B = X(X�Γ−1X)−1, Γ = [γ(‖si − sj‖)]ni,j=1, and
γ = [γ(‖si − s∗‖)]ni=1.

Note that kriging uses known training labels as well as
all features as the input to make the prediction. Despite its
complex form, kriging has a subtle relation with the KCN
model proposed later.

Graph Convolutional Networks

Suppose we have a graph G = (V,E), where V =
{1, . . . ,M} is set of data points, and E is the edge set. Each
data point i ∈ V has a feature vector xi and a label yi. All
feature vectors and labels are collectively denoted by X̃ and
ỹ). Let A denote the adjacency matrix of the graph, and Ā
denote the normalized adjacency matrix,

Ā = D− 1
2 (A+ I)D− 1

2 , (3)

with D = diag(A1 + 1) being the degree matrix plus one.
Then a GCN (Kipf and Welling 2016) takes Ā and X̃ as
the input and fits known labels in ỹ as the target. The GCN
consists of L GCN layers. Each GCN layer � takes an input
H�−1 ∈ R

n×d�−1 and outputs a matrix H� ∈ R
n×d� . The

layer is parameterized by a matrix W� with size d�−1 × d�.
Formally, the GCN is defined by

H0 = X̃, (4)

H� = σ
(
ĀH�−1W�

)
, � = 1, . . . , L (5)

ŷ = HL. (6)

Here σ(·) is a non-linear activation function.
Usually only part of the node labels in ỹ are observed,

and the task is to predict unknown labels of other nodes.
A GCN defines its training loss based on known labels and
predicts unknown labels as corresponding entries in ŷ. To

3188



apply a GCN to the previous task, we form a graph over data
points based on their locations (s, s∗), e.g. nearest-neighbor
graph. Then each feature vector and its label are attached to
the corresponding graph node. The prediction for the new
location * is just ŷ∗ taken from ŷ.

Kriging Convolution Network

In this section, we develop a new learning model that di-
rectly use training labels as the input for predictions. We call
this model a Kriging Convolution Network (KCN).

We will first demonstrate how a KCN will be used for pre-
diction. Let’s treat a KCN model as a function KCN(·; θ)
parameterized by θ. When predicting the label of a new
data point (s∗, x∗), the model ideally should use all in-
formation available to make the prediction, that is, ŷ∗ =
KCN(s,X,y, s∗,x∗). However, it is not feasible to con-
sider all of the training points for just one prediction. It is
not necessary either, because data points far from s∗ of-
ten have little influence over y∗ in many spatial problems.
Therefore, we use the K nearest neighbors of the new data
point as the input. Denote the index set of these neighbors as
α∗ ⊂ {1, . . . , N}, then the predictive function becomes

ŷ∗ = KCN(sα∗ ,Xα∗ ,yα∗ , s∗,x∗). (7)

To train the model, we treat every training point i as a test
point and fit its training label yi. The model’s output, ŷi, is
compared against the true label. The difference of the two
is measured by some loss function loss(yi, ŷi). The learning
objective of the model is to minimize the summation of all
training losses

min
θ

N∑
i=1

loss(yi, ŷi),

ŷi = KCN(sαi
,Xαi

,yαi
, si,xi). (8)

Here αi is the set of neighbors of i in the training set.
Now we construct the network architecture of the KCN,

i.e. the function KCN(sαi
,Xαi

,yαi
, si,xi). Instead of us-

ing locations, si and sαi
, as features, we define a complete

graph over the data points i and its neighbors and then use a
GCN to construct the predictive model. Denote βi = {i}∪αi

as the set containing the data point i and its neighbors. We
first define a graph over βi by constructing its adjacency ma-
trix A from a Gaussian kernel,

Ajk = exp

(
− 1

2φ2
‖sj − sk‖22

)
, ∀j, k ∈ βi. (9)

Here φ is the kernel length, which is a hyperparameter. In
this graph, the edge (j, k) has a large weight when j and k
are near each other and vice versa.

Next we define the feature input to the GCN. The input
should include features, xi and Xαi

, and neighboring labels
yαi

. Incorporating this information into a matrix will require
a bit of care. We place yαi

and a zero in place of yi into a
vector with length (K+1), so the model has no access to yi.
We also use an indicator vector e to indicate that the instance
i is the one to be predicted. Then the GCN input is expressed

Input: (s,X,y), K
Output: θ = (W1, . . . ,WL,wden)
for i← 0 to N do

βi = the K nearest neighbors of si and i ;
Compute A from sαi

by (9) ;
Prepare H0 from (xi,Xαi

, yαi
) by (10) ;

end
for iter ← 0 to num training iter do

i = iter%N ;
HL = GCN(A,H0;W1, . . . ,WL) ;
ŷi = σ(e�HL)wden ;
Compute loss(yi, ŷi) and its derivative ;
Update weights θ = W1, . . . ,WL,wden

end

Algorithm 1: The training algorithm of KCN

by a matrix H0 with size (K + 1)× (2 + d).

H0 =

[
0 1 x�

i
yαi

0 Xαi

]
. (10)

The locations sβi
can be included in the feature matrix X as

features if there is reason to suspect spatial trends.
Then the KCN model is defined to be a GCN followed by

a dense layer. The KCN is formally defined as

HL = GCN(A,H0), (11)

ŷi = σ
(
e�HLwden

)
. (12)

Here A and H0 are the adjacency matrix and the input fea-
ture matrix constructed from the neighborhood of i. Note
that every data point i gets its own A and H0, whose in-
dex i is omitted for notational simplicity. The vector e is the
indicator vector for i: it takes the first vector of HL, cor-
responding to i, as the input to the dense layer. The dense
layer allows for a final transformation of the data without
interference from neighbors.

The KCN parameters are all weight matrices, θ =
{W1, . . . ,WL,wden}. We train the KCN model by min-
imizing the loss in (8). Then we can predict the label of a
new data point using its features and neighbors in the train-
ing set. Algorithm 1 summarizes the training procedure of
the KCN.

Compared to local kriging, which only uses nearest neigh-
bors for kriging, the KCN uses the same input. However, the
KCN is much more flexible. When the training set is large
enough such that the overfitting issue is less of a concern,
the KCN model has clear advantages.

Compared to the direct application of a GCN on spatial
data, a KCN is able to use labels from neighbors directly.
Furthermore, a KCN does not need to use the test data points
to form the graph. Therefore, it does not need to re-train the
model when there is a new batch of test data points.

The KCN is also similar to the KNN classifier but is much
more powerful: while the KNN simply averages the labels of
neighbors, the KCN uses a neural network as the predictive
function.

3189



KCN with Graph Attention

The recent success of attention mechanism on GNNs
inspires us to try the Graph Attention network (GAT)
(Veličković et al. 2018) as the predicting model. The orig-
inal GAT model computes attention weights with a neural
network; it also requres that the attention weights of a node’s
neighbors sum up to 1. Here we use the dot-product self-
attention (Vaswani et al. 2017) so that the model has a choice
to fall back on the GCN model.

Suppose the input feature at the �-th layer of the GCN is
H�−1, then we compute an attention matrix U by

P = H�−1Watt, M = σ(PP�),

Λ = diag(M), U = Λ− 1
2MΛ− 1

2 . (13)
Here Watt is the weight matrix for the attention mechanism.
It projects input features into a new space. Then the attention
weights are decided by inner products between features in
this new space. We normalize the attention matrix so that
the diagonal elements of U are always one.

In each layer �, we get an attention matrix U� as above.
Then we use Aatt

� = A 	U� as the new adjacency matrix
used in layer �. The actual computation is

H� = σ
(
Aatt

� H�−1W�
)
, � = 1, . . . , L (14)

We call this new model the KCN-att. When the matrix
Watt has small weights, then U approaches a matrix with
all entries being one. In this case, the KCN-att becomes sim-
ilar to the KCN. When the matrix Watt has large weights,
then U tends to approach the identity matrix, and then the
KCN-att tends to reduce neighbors’ influence.

KCN based GraphSAGE

We also use GraphSAGE (Hamilton, Ying, and Leskovec
2017) as the predictive model of the KCN given that Graph-
SAGE performs well on several node classification tasks.
GraphSAGE cannot use a weighted graph, so we treat the
graph over the neighborhood of i as a complete graph. Let
H�−1 = {h�−1

k : k ∈ βi} be the input to the GraphSAGE
layer �, then the layer computes its output H� as follows.

g�
j = AGG

({h�−1
k , k ∈ βi, k 
= j}) , ∀j ∈ βi (15)

h�
j = σ

(
W�

1h
�−1
j +W�

2g
�
j

)
, ∀j ∈ βi (16)

H� =
{
h�
j/‖h�

j‖2 : ∀j ∈ βi

}
(17)

The function AGG(·) aggregates a list of vectors into one.
We use the max-pooling aggregator, one the three aggre-
gators proposed in the original work (Hamilton, Ying, and
Leskovec 2017).
AGG(H�−1

βi\j) = max(σ(Wpoolh
�−1
k + b), k ∈ βi, k 
= j)

Here max takes the element-wise max values over a list of
vectors. We refer to this model as the KCN-sage.

Analysis

Computation Complexity

The time complexity of the KCN and the two variants in-
cludes nearest-neighbor search and network training. In or-
der to find the K nearest neighbors we utilize a KD tree,

which takes O(N log(N)) time to build. Here we treat the
dimensionality of spatial coordinates as a constant because
it is usually a small number (2 or 3). Querying a single data
point in the tree takes time O(K log(N)), and searching
neighbors for all data points takes a total of O(NK log(N))
time.

When we train the model on a single instance, the com-
putation of the adjacency matrix takes time O(K2). The
computation within each layer takes time O(K2dmax), with
dmax being the largest dimensionality of hidden layers. The
forward computation and backpropagation for one instance
takes time O(K2Ldmax), and one training epoch takes time
O(NK2Ldmax).

Relation to Kriging

The KCN is a flexible model and approximately includes
local kriging as a special case. This fact is shown by the
following theorem.
Theorem 1: Assume the variogram of a kriging model sat-
isfies 2γ(0) > 0 1. Also assume X̃ = [x∗,X�

α∗ ]
� has full

column rank. Then there exists a set of special parameters
and activations with which a KCN makes the same predic-
tion as the kriging prediction, i.e. ŷKCN

∗ = ŷkriging∗ .
Proof sketch: Let Γ̃ be the covaraince matrix corresponding
to the new data point and training data point.

Γ̃ =

[
0 γ�
γ Γ

]
. (18)

Here γ and Γ are semivariograms defined in the same way
as kriging. To approximate kriging, we set the KCN to have
one convolutional layer and a dense layer. We set

Ā = Γ̃−1 − Γ̃−1X̃(X̃�Γ̃−1X̃)−1X̃�Γ̃−1 (19)

as the “normalized adjacency matrix” and directly use it to
multiply the hidden input. We consider a 1-layer GCN with a
special activation function σdiv(·). The first row of the GCN
output is e�HL = σdiv

(
eĀH0W1

)
. In the Appendix we

show eĀ =
[
z−1,−z−1λ�

]
, then

eĀH0 =
[
−z−1λ�yα∗ , z

−1, z−1(x∗ − λ�Xα∗)
]
.

Here z is a scalar, and λ is the kriging coefficient defined
in (2). Take the first two elements of eĀH0 and denote it
as u = [−z−1λ�yα∗ , z

−1]. We can see that −u1/u2 =

λ�yα∗ = ŷkring∗ . If the rest of the network is able to emu-
late f(u) = −u1/u2, then ŷKCN

∗ is the same as ŷkring∗ .
Now consider the network computation on u. It is a com-

bination of the first two rows of W1, the GCN activation,
and then the dense layer, so it can be viewed as a two-layer
feedforward network applied to u. If special activations are
allowed, such as step functions and the logarithm, then the
two-layer neural network can realize the function −u1/u2.
With normal network settings, the network can also approx-
imate the function due to the universal approximation theo-
rem. �

1The value 2γ(0) is called as the nugget of the variogram,
which is usually greater than zero.

3190



This theorem and its proof have strong implications for
our model development. First, if the KCN uses Ā defined
above as the normalized adjacency matrix, then the KCN has
a straightforward way to discover kriging solutions. Since Ā
has a small size, (K + 1)× (K + 1), the computation of Ā
is affordable. Second, the matrix Ā indicates that we should
introduce the feature matrix into the computation of the nor-
malized adjacency matrix. Otherwise, the KCN may need
complicated computations to recover kriging results. This is
one main motivation behind our usage of graph attention in
KCN-att.

Experiment

We evaluate our methods on three tasks: bird count mod-
eling, restaurant rating regression, and precipitation regres-
sion. We use kriging, Random Forest, GCN, and Graph-
SAGE as baselines.

Experiment setup

Kriging: we use the implementation of kriging within Au-
tomap (Hiemstra et al. 2008). Automap essentially auto-
mates the process of Kriging by automatically fitting var-
iograms and testing a number of different models. In all
of our experiments, Automap tests spherical, exponential,
gaussian, matern, and stein variograms and picks the best
one based on the smallest residual sum of squares. Since all
of the datasets have a large number of data points, we use
local kriging and only consider the closest 100 points.
Random Forest: Hengl et al. (2018) use Random Forest to
make predictions for spatial data. For each data point, the
algorithm calculates the distances between that point and all
training points. These distances are then used as the feature
vector of that data point. This algorithm does not scale to
very large datasets, so we downsample the training set to a
size of 1000. We use the implementation of Random Forest
(Wright and Ziegler 2017), and method of tuning (Probst,
Wright, and Boulesteix 2018) used by the authors of Hengl
et al. (2018). The implementation tunes four hyperparame-
ters of Random Forest: the number of trees to use, the num-
ber of variables to consider at a node split, the minimal node
size, and the sample fraction when training each tree.
GCN: we modify Kipf’s implementation of (Kipf and
Welling 2016) for regression problems. Before we run the
GCN on spatial data, we first build an undirected graph over
data points: we connect two data points if one is among
the other’s K nearest neighbors. We only consider a GCN
with two hidden layers. We tune the hyper-parameters of the
GCN in the same way as we tune the KCN and the KCN-att
below.
GraphSAGE: we implement GraphSAGE with the Spektral
graph deep learning library. For each experiment, we build
an undirected graph in the same way as GCN. Then we train
a two hidden layer GraphSAGE whose hyperparameters are
tuned as below.
KCN & KCN-att & KCN-sage: the three models use two
hidden layers respectively. We tune the following hyperpa-
rameters: hidden sizes ∈ ((20, 10), (10, 5), (5, 3)), dropout
rate ∈ (0, 0.25, 0.5), and kernel length ∈ (1, .5, .1, .05).

(a) (b)

Figure 1: Wood thrush (a) and observed counts over eastern
US, June 2014 (b).

Figure 2: Mean Squared Error of GCN, GraphSAGE, KCN,
KCN-att, and KCN-sage using different numbers of neigh-
bors.

Note that GraphSAGE and KCN-sage do not consider edge
weights of the adjacency matrix, so we do not tune kernel
length for them. We also employed early stopping to decide
the number epochs.

Bird count modeling

One application of KCNs is modeling bird count data from
the eBird project (Fink et al. 2010), which contains over
one billion records of bird observation events. Modeling
bird data from the eBird project provides an opportunity to
deepen our understanding of birds as part of the ecosystem.
In this experiment, we model the distribution of wood thrush
in June, which is of great interest to ornithologists (Johnston
et al. 2019). Figure 1 shows a picture of a wood thrush and
the distribution of observed counts over the eastern US.

We restrict our data to a subset of records of wood thrush
in June 2014. Each record has a GPS location, a count
of wood thrushes observed, and a list of features such as
observation time, count type (stationary count, traveling
count, etc.), effort hours, and effort area. After removing
583 records with uncertain counts or counts over 10, we
get 107,246 records to form our dataset. Bird counts in this
dataset are highly sparse: only 11,468 records (fraction of
0.11) have positive counts. We split the dataset into a train-
ing set and a test set by 1:1.

When we test our models and baselines, we consider
two evaluation metrics. The first one is mean squared error
(MSE), so we have a fair comparison with Kriging, the min-
imization objective of which is the mean squared error. The
second one is negative log-likelihood. We use a zero-inflated
Poisson distribution (Lambert 1992) as the predictive distri-

3191



methods Kriging RF GCN GraphSAGE KCN KCN-att KCN-sage
MSE 1.56 ± .85 0.68 ± .03 0.70 ± .02 0.53 ± .01 0.50 ± .01 0.49 ± .01 0.44 ± .01

NLL n.a. n.a. 1.82 ± .00 1.73 ± .00 1.60 ± .00 1.58 ± .00 1.51 ± .00

Table 1: Experiment results on the bird count dataset. Performances are measured by the mean squared error and the negative
log likelihood of preditions. Smaller values are better.

bution for each count. The model needs to output a logit u
for the Bernoulli probability and the mean λ of the Poisson
component. The probability of a count y given u and λ is

p(y) =

{
(1− expit(u)) + ppoisson(y = 0) if y = 0,
ppoisson(y = 0) if y > 0.

(20)

Table 1 shows the performance of the KCN, KCN-att,
KCN-sage, and baseline models. From this table, we can see
that the three KCN models significantly outperform baseline
methods. We also observed that GraphSAGE based methods
have better performance than the GCN based methods, we
speculate it is because of the concatenation operation (plays
a role similar to a skip link) used in the GraphSAGE. Given
that bird counts are highly non-Gaussian, we do not expect
kriging to perform very well. Random Forest gets much bet-
ter performance than kriging, but it overly smooths the train-
ing data given the small number of training points it can use.
The KCN and KCN-att achieve similar performances.

We also study the performances of the GCN, Graph-
SAGE, KCN, KCN-att, and KCN-sage when different num-
bers of neighbors are used to form the graph. Figure 2 shows
performance values of the five models using different num-
bers. The GCN perform poorly when the number of neigh-
bors is small in the construction of the graph. In this case,
a test point might only connect to another test data point,
then the message propagation between two test points is not
helpful. GraphSAGE is robust to the number of neighbors.
In KCN models, a data point has K training points as di-
rect neighbors, so KCN models can make better use of the
training data in this sense. When a KCN model uses zero
neighbors, it is equivalent to a fully connected neural net-
work. In this case, its performance deteriorates significantly,
which indicates that spatial correlation exists in the data.
KCN, KCN-att, and KCN-sage only need a small number
of neighbors to perform well. We speculate that a bird or its
nest can be observed only in a small spatial range, so the cor-
relation between near sites is strong but diminishes quickly
as the distance increases. The KCN-att performs slightly bet-
ter than the KCN because it is able to use observatory fea-
tures to decide whether a neighboring count is from a similar
situation or not.

Restaurant rating regression

Yelp is a popular website, which allows users to rate and pro-
vide information about businesses. They have hosted an ex-
tensive collection of these business ratings and attributes for
download. In this experiment, we only consider the restau-
rants within that dataset. Each restaurant has a GPS loca-
tion and an average rating rounded to the nearest .5, from 0
to 5. Additionally, we choose 13 related attributes from the

Figure 3: Distribution of Precipitation values.

dataset, all but one of which is categorical. We turn these
categorical covariates into 30 indicator variables. These in-
dicators give information about restaurant attributes such as
whether it serves alcohol, and whether it takes credit card.
After we drop any rows where the ratings, coordinates, or
number of reviews is NA, we obtain 188,586 restaurants.
We then split the data 1:1 to form a training and test set.

Table 2 shows the experimental results on this dataset.
The KCN, KCN-att, and KCN-sage improve the perfor-
mance of their corresponding baseline models. This task is
hard: the features do not seem to be very useful, and the spa-
tial correlations are weak. It is actually hard to overfit the
labels with a standard feedforward neural network. Ratings
are correlated in a strange way since it is normal that good
and bad restaurants are often mixed in the same area. The
bad performance of the kriging method can be explained by
the fact that the correlations between ratings are highly non-
Gaussian.

Precipitation regression

The National Oceanic and Atmospheric Administration
keeps detailed records of precipitation levels across the
United States. One such dataset provides monthly average
precipitation in inches from 1981 to 2010 across the US.
We average the precipitation level in May for 8,832 stations.
We then take the log of these average precipitation values
as target values for the regression task. Essentially, we as-
sumes a log-normal distribution of precipitation levels. Fi-
nally we have a target value, coordinates of each station, and
one feature (the elevation) of each station. Data are split 1:1
as a training and testing. Figure 3 shows the data distribution
over the US.

Table 3 summarizes the experimental results using the
mean squared error. The target values in the log-scale are
more likely to be from a Gaussian distribution than the pre-
vious two datasets, so the kriging method performs rela-
tively well compared to other methods. The Random For-
est method only uses 1000 data points as training data, so it

3192



Method Kriging Random Forest GCN GraphSAGE KCN KCN-att KCN-sage
MSE 1.49 ± .008 1.04 ± .005 1.37 ± .006 0.969 ± .004 0.990 ± .004 0.977 ± .004 0.959 ± .004

Table 2: The results on the dataset of restaurant ratings. Performances are measured by MSE. Smaller values are better.

Method Kriging Random Forest GCN GraphSAGE KCN KCN-att KCN-sage
MSE .155 ± .013 .046 ± .003 .640 ± .023 .056 ± .003 .029 ± .002 .029 ± .002 .030 ± .002

Table 3: Experiment results on the precipitation dataset. Performances are measured by MSE. Smaller values are better.

omits a lot of detailed variations. The GCN models perform
poorly on this dataset. One reason is that there are not many
features for the GCN to learn. The GCN model becomes
more like a “generative” model that “generates” correlated
labels from hidden values. Compared to GNN baselines, the
KCN models benefit in particular from using neighbroring
labels because the KCN models work more like a discrimi-
native model. Note that discriminative models often outper-
form generative models in supervised learning tasks.

Conclusion

In this work, we have introduced the Kriging Convolutional
Network, a novel approach to modeling spatial data. Like
kriging, the KCN model directly uses training labels in the
prediction. However, by employing GNNs as backbone pre-
dictive models, the KCN is far more flexible than kriging.
We have tried the GCN, GAT, and GraphSAGE as the pre-
dictive model of the KCN. The empirical study shows that
KCN has significant performance improvement over krig-
ing. Compared with baseline GNNs, the KCN directly uses
known labels, which has a clear benefit as indicated by the
experimental results. Our analysis also reveals that the KCN
has the ability to emulate kriging models. This connection
further indicates the flexibility of the proposed KCN model.

Appendix: Detailed Proof of Theorem 1

We need to derive eĀ, where e = [1,0�]�, Ā is “normal-
ized adjacency matrix” defined in (19), and X̃ = [x∗,X�]�
are feature vectors. We create the following shorthand nota-
tions to facilitate our derivation.

t = −γ�Γ−1γ, a = −Γ−1γ, c = x∗ +X�a,

T = X�Γ−1X, B = XT−1, r = c�T−1c

We will show that the first row of Ā is

e�Ā =
[
z−1,−z−1λ�

]

with z being a scalar.
By checking (19), we first compute the inverse Γ̃−1 is

Γ̃−1 =

[
t−1 t−1a�

t−1a Γ−1 + t−1aa�

]

= t−1

[
1
a

]
[1,a�] +

[
0 0�
0 Γ−1

]
.

Denote v1 = eΓ̃−1 = t−1[1,a�].

We then consider the second term in (19). We have

X̃�Γ̃−1 = t−1c[1,a�] + [0,X�Γ−1]

= [t−1c, t−1ca� +X�Γ−1].

Denote S = (X̃�Γ̃−1X̃)−1,

S = (t−1cc� +T)−1

= T−1 −T−1c(t+ c�T−1c)−1c�T−1.

The first line is from the equation [1,a�]X̃ = c�.
Denote v2 = e�Γ̃−1X̃SX̃�Γ̃−1. Insert the expansion of

X̃�Γ̃−1, we have

v2 = t−1c�S[t−1c, t−1ca� +X�Γ−1].

By c�S = t(t+r)−1cT−1 and w = c�Sc = rt(t+r)−1,
we have

v2 = (t+ r)−1[rt−1, rt−1a� + c�T−1X�Γ−1].

Since t−1 − (t+ r)−1rt−1 = (t+ r)−1, we have

e�Ā = v1 − v2

= (t+ r)−1[1, (a� − c�T−1X�Γ−1)].

Then we expand a and c to get

e�Ā = (t+ r)−1[1, − (γ +Bx∗ −BXΓ−1γ)�Γ−1)]

= z−1[1, − λ�]

Here z = t+ r.
Since Ā are computed from normal matrix operations, its

entries are bounded. Therefore, z 
= 0.

Acknowledgments

This work has been supported in part by Gordon & Betty
Moore Foundation, NSF CISE-1908617, and and NSF CRII-
1850358. We thank all reviewers of this work for their in-
sightful comments.

References

Atwood, J., and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Advances in Neural Information Pro-
cessing Systems, 1993–2001.
Cressie, N. A. C. 1991. Statistics for spatial data. Wi-
ley series in probability and mathematical statistics. Applied
probability and statistics. New York: J. Wiley.

3193



Dance, T. 2018. A comparison of linear and non-linear krig-
ing techniques for predicting the probability of exceeding a
threshold value. Ph.D. Dissertation.
Fink, D.; Hochachka, W. M.; Zuckerberg, B.; Winkler,
D. W.; Shaby, B.; Munson, M. A.; Hooker, G.; Riedewald,
M.; Sheldon, D.; and Kelling, S. 2010. Spatiotemporal ex-
ploratory models for broad-scale survey data. Ecological
Applications 20(8):2131–2147.
Gao, H., and Liu, H. 2014. Data analysis on location-based
social networks. In Mobile social networking. Springer.
165–194.
Gori, M.; Monfardini, G.; and Scarselli, F. 2005. A new
model for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, 729–734. IEEE.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in Neu-
ral Information Processing Systems, 1024–1034.
Hengl, T.; Nussbaum, M.; Wright, M. N.; Heuvelink, G. B.;
and Gräler, B. 2018. Random forest as a generic frame-
work for predictive modeling of spatial and spatio-temporal
variables. PeerJ 6:e5518.
Hiemstra, P.; Pebesma, E.; Twenh”ofel, C.; and Heuvelink,
G. 2008. Real-time automatic interpolation of ambi-
ent gamma dose rates from the dutch radioactivity mon-
itoring network. Computers & Geosciences. DOI:
http://dx.doi.org/10.1016/j.cageo.2008.10.011.
Johnston, A.; Hochachka, W.; Strimas-Mackey, M.; Gutier-
rez, V. R.; Robinson, O.; Miller, E.; Auer, T.; Kelling, S.; and
Fink, D. 2019. Best practices for making reliable inferences
from citizen science data: case study using ebird to estimate
species distributions. bioRxiv 574392.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Lambert, D. 1992. Zero-inflated poisson regression, with
an application to defects in manufacturing. Technometrics
34(1):1–14.
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2017. Diffusion
convolutional recurrent neural network: Data-driven traffic
forecasting. arXiv preprint arXiv:1707.01926.
Probst, P.; Wright, M.; and Boulesteix, A.-L. 2018. Hy-
perparameters and tuning strategies for random forest. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery.
Saito, H., and Goovaerts, P. 2000. Geostatistical interpo-
lation of positively skewed and censored data in a dioxin-
contaminated site. Environmental Science & Technology
34(19):4228–4235.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is all you need. In Guyon, I.; Luxburg, U. V.; Ben-
gio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems 30. 5998–6008.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph attention networks. In In-
ternational Conference on Learning Representations.
Wallin, J., and Bolin, D. 2015. Geostatistical modelling
using non-gaussian matérn fields. Scandinavian Journal of
Statistics 42(3):872–890.
Wright, M. N., and Ziegler, A. 2017. ranger: A fast im-
plementation of random forests for high dimensional data in
C++ and R. Journal of Statistical Software 77(1):1–17.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596.
Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-
K.; and Woo, W.-c. 2015. Convolutional lstm network: A
machine learning approach for precipitation nowcasting. In
Advances in neural information processing systems, 802–
810.
Yan, X.; Ai, T.; Yang, M.; and Yin, H. 2019. A graph convo-
lutional neural network for classification of building patterns
using spatial vector data. ISPRS journal of photogrammetry
and remote sensing 150:259–273.
Yu, B.; Yin, H.; and Zhu, Z. 2017. Spatio-temporal graph
convolutional networks: A deep learning framework for traf-
fic forecasting. arXiv preprint arXiv:1709.04875.
Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; and Sun,
M. 2018. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434.
Zhu, D., and Liu, Y. 2018. Modelling spatial patterns us-
ing graph convolutional networks (short paper). In 10th In-
ternational Conference on Geographic Information Science
(GIScience 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

3194


