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Abstract

Due to the complex structure of the real-world data, non-
linearly separable clustering is one of popular and widely
studied clustering problems. Currently, various types of algo-
rithms, such as kernel k-means, spectral clustering and den-
sity clustering, have been developed to solve this problem.
However, it is difficult for them to balance the efficiency and
effectiveness of clustering, which limits their real applica-
tions. To get rid of the deficiency, we propose a three-level op-
timization model for nonlinearly separable clustering which
divides the clustering problem into three sub-problems: a lin-
early separable clustering on the object set, a nonlinearly sep-
arable clustering on the cluster set and an ensemble cluster-
ing on the partition set. An iterative algorithm is proposed to
solve the optimization problem. The proposed algorithm can
use low computational cost to effectively recognize nonlin-
early separable clusters. The performance of this algorithm
has been studied on synthetical and real data sets. Compar-
isons with other nonlinearly separable clustering algorithms
illustrate the efficiency and effectiveness of the proposed al-
gorithm.

Introduction

Clustering is an important problem in statistical multivari-
ate analysis, data mining and machine learning (Jain 2008).
The goal of clustering is to group a set of objects into clus-
ters so that the objects in the same cluster are highly similar
but remarkably dissimilar with objects in other clusters. To
tackle this problem, various types of clustering algorithms
have been developed in the literature (e.g., (Aggarwal and
Reddy 2014) and references therein). According to the data
distribution of clusters, data clustering problem can be cat-
egorized into two types: linearly separable clustering and
nonlinearly separable clustering (Wang and Lai 2016). The
k-means (MacQueen 1967) algorithm is a representative of
linearly separable clustering algorithms. It is well-known for
its low computational cost. However, it can not recognize
nonlinearly separable clusters. Due to the complex structure
of the real-world data, the data set to be partitioned may con-
tain at least one cluster with concave boundaries or even of
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arbitrary shapes. Therefore, nonlinearly separable clustering
is one of most popular and widely studied clustering prob-
lems.

Currently, several types of nonlinearly separable cluster-
ing approaches have been developed, such as connectivity-
based, density-based, kernel-based, and multi-centers ap-
proaches. Connectivity-based approaches connect some
nearby objects to form clusters based on their distance.
The representative methods include different linkage algo-
rithms (Witten and Frank 2005). Density-based approaches
mainly use the density-connectivity between objects to rec-
ognize different shaped clusters. The representative methods
include DBSCAN (Ester et al. 1996) and DP (Rodriguez
and Laio 2014). Compared to the connectivity-based ap-
proaches, the density-based approaches fully consider noise
and border points. The kernel-based approaches use a kernel
function, which is an appropriate nonlinear mapping from
the original (input) space to a higher dimensional feature
space, to extract non-linearly separable clusters. The repre-
sentative methods include kernel k-means (Scholkopf et al.
1998), spectral clustering (Shi and Malik 2000; Ng, Jordan,
and Weiss 2001) and mean-shift (Cheng 1995). Unlike the
k-means algorithm, the above approaches need use pairwise
similarities of objects to determine the membership of each
object to clusters. Since they do not select a center but use all
the objects to represent a cluster, they can recognize nonlin-
early separable clusters. However, they need expensive time
or space costs, e.g., computing and operating the similar-
ity matrix, which are not suitable for large-scale data sets.
The multi-centers approaches (Liu, Jiang, and Kot 2009;
Liang et al. 2012; Wang et al. 2013) use multiple centers
to represent a nonlinearly separable cluster. They are in be-
tween cluster representations of single center and all the ob-
jects. The advantage of replacing data objects with multiple
centers to describe a cluster is to avoid the over fitting of the
clustering result. The disadvantage is that the performance
of their clustering is very sensitive to the center selection.
However, obtaining high-quality centers usually needs high-
computational cost.

Currently, various types of accelerating approaches have
been proposed to enhance the scalability of nonlinearly-
separable clustering algorithms, such as index-based clus-
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tering, hybrid clustering, sampling-based clustering and par-
allel clustering. Index-based clustering uses one of spa-
tial index structure, such as KD-tree (Bentley 1975), R*-
tree (Beckmann et al. 1990), or X-tree (Berchtold, Keim,
and Kriegel 1996), to reduce the cost of computing the
pairwise distance matrix in the clustering process. How-
ever, these indices are only suitable for data sets with very
lower dimensions, since the computational complexity of
this solution increases exponentially with the data dimen-
sions. Hybrid clustering integrates the k-means algorithm
and nonlinearly separable clustering algorithms to enhance
the clustering efficiency. The representative methods in-
clude DBSCAN with k-means (Dash, Liu, and Xu 2001;
Viswanath and Pinkesh 2006; Nanda and Panda 2015), link-
age with k-means (Liu, Jiang, and Kot 2009), the spectral
clustering with k-means (Yan, Huang, and Jordan 2009),
and the multilevel clustering algorithm (Dhillon, Guan, and
Kulis 2007) which uses the iterative optimization method
of kernel k-means to solve the spectral clustering problem.
Sampling-based clustering reduces the scale of the data set
by sample techniques and implements a nonlinearly separa-
ble clustering algorithm on the set of samples, instead of the
data set. For example, Williams et al. (Williams and Seeger
2001) used the Nystroem method to speed up the kernel
approximation. Rahimi et al. (Rahimi and Recht 2007) ap-
proximated the feature map of the kernel by random projec-
tion. Chen et al. (Chen and Cai 2011) used a relation matrix
between samples and objects, instead of the pairwise ma-
trix, and the eigenvalue decomposition, instead of the singu-
lar value decomposition in spectral clustering. Mohan et al.
(Mohan and Monteleoni 2017) integrate uniform sampling
and weighted kernel k-means to speed the solution of the
spectral clustering. Huang et al. (Huang et al. ) proposed a
representative selection method to enhance the performance
of sampling-based clustering. Parallel clustering uses paral-
lel techniques to enhance the clustering speed of the original
algorithms. For example, some scholars have proposed par-
allel density-based clustering algorithms using the MapRe-
duce technique (Dean and Ghemawat 2008), such as MR-
DBSCAN (He, Tan, and et al. 2011), DBCURE-MR (Kim et
al. 2014), and parallel spectral clustering (Chen et al. 2011).
This type of algorithms needs additional platform for high
performance computing to deal with large-scale data sets.

Despite the theoretical and practical advantages of the
above-mentioned techniques, it is very difficult for them to
balance the efficiency and effectiveness of nonlinearly sep-
arable clustering. While these approaches are lowering the
computational cost, the robustness and quality of clustering
results are often sacrificed. In order to solve this problem,
we propose a three-level optimization model for nonlinearly
separable clustering. In the new model, a nonlinearly sepa-
rable clustering problem is divided into three sub-problems:
the linearly separable clustering on the object set, the nonlin-
early separable clustering on the cluster set and the ensem-
ble clustering on the partition set. Cluster ensemble is one
of important techniques for cluster analysis, which is used
to solve the robustness problem of clustering results (Zhou
2012). Currently, lots of cluster ensemble algorithms have
been developed, seen in (Yu et al. 2017). It is noted that

the new model is different from traditional cluster ensem-
ble algorithms whose objective is to get the most consen-
sus of base clusterings. However, our objective is to solve
the nonlinearly separable clustering problem. Therefore, our
objective function includes three validity functions for lin-
early separable clustering, nonlinearly separable clustering
and ensemble clustering. These validity functions are de-
fined based on the k-means objective function. We propose
an k-means-like iterative method to minimize the objective
function. The k-means (MacQueen 1967), kernel k-means
(Scholkopf et al. 1998) and k-means-based cluster ensem-
ble (Wu et al. 2015) algorithms can be seen as the special
case of the proposed algorithm. Compared to existing clus-
tering algorithms, the proposed algorithm can well balance
the computation cost and quality of nonlinearly separable
clustering.

The outline of the rest of this paper is as follows. Section
2 presents a new optimization model for nonlinearly sepa-
rable clustering. Section 3 demonstrates the performance of
the proposed algorithm. Section 4 concludes the paper with
some remarks.

The three-level optimization model

In this section, we propose a three-level clustering model
for nonlinearly separable clustering. Fig.1 shows the clus-
tering procedure of the proposed model. Generally speak-
ing, different clusters on a complex data set are nonlinearly
separable in the global geometric space but linearly sepa-
rable in the local geometric space. Thus, we assume that a
nonlinearly separable cluster is made up of several small lin-
early separable clusters. Based on this assumption, we divide
a nonlinear clustering problem into three subproblems, i.e.,
linearly separable clustering, nonlinearly separable cluster-
ing and ensemble clustering. Let X be a n×m data matrix
with n objects and m features. We implement the linear clus-
tering on X , which can produce a n× p partition matrix W
of objects, where p is the number of clusters in W which
is required to be more than the number of real clusters k.
The task of the linear clustering is to make objects similar
with each other in the local geometric space into the same
clusters. Furthermore, we see each cluster in W as a linear
cluster and implement the nonlinear clustering to partition
linear clusters into k nonlinear clusters, which can produce
a p × k partition matrix H of linear clusters. Let U be a
n × k desired partition matrix of objects. We hope to inte-
grate W and H to approximate the partition matrix U , i.e.,
WH ≈ U . However, the performance of the approximated
result depends on the quality of W and H . Therefore, we
try to produce T approximated results and integrate them to
estimate U , where T is no less than 1.

The objective function and optimization problem

On the basis of the above motivation, we propose a three-
level optimization model, where its objective function is
made up of three validity functions: linearly separable clus-
tering on the data set, nonlinearly separable clustering on
the cluster set and ensemble clustering on the partition set.
Based on the objective function of the k-means algorithm,
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Figure 1: Three-level clustering procedure

we define them as follows.

fL(t) = ||X −WtVt||2F (1)

is a validity function of the tth linear clustering on the data
set X , for 1 ≤ t ≤ T . It is the objective function of classi-
cal k-means algorithm. Wt = [wt(ij)] is the n × p partition
matrix of the tth linear clustering, where wt(ij) is the mem-
bership of the ith object to the jth linear cluster, and Vt is the
p×m center matrix of the tth linear clustering, where vt(j)

is the jth row of Vt representing the cluster center of the the
jth linear cluster. If the value of fL(t) is low, the objects in
the same linear clusters are very close to each other in the
original feature space of X .

fG(t) = ||φ(Vt)−HtZt||2F = Tr(Kt)− Tr(ĤT
t KtĤt)

(2)
is a validity function of the tth nonlinear clustering on Vt

which are used to represent the linear clusters obtained by
the tth linear clustering, for 1 ≤ t ≤ T . It is the objec-
tive function of the kernel k-means algorithm (Scholkopf et
al. 1998). φ(Vt) and Zt are the representations of Vt and its
cluster centers in the nonlinearly embedded space by a ker-
nel function, respectively. Kt is the p × p kernel matrix of
Vt. Ht is the p×k partition matrix of Vt and Ĥt = HD

−1/2
t

is the normalized matrix of Ht, where Dt = [dt(j)] is a
k × k diagonal matrix with dt(j) =

∑p
i=1 ht(ij). The goal

of fG(t) is to minimize the difference of the linear clusters
in the same nonlinear clusters. In (Dhillon, Guan, and Kulis
2007), it has been proved that the kernel k-means algorithm
is equivalent to the spectral clustering algorithm. Thus, min-
imizing fG(t) can be solved by the eigenvalue decomposi-
tion.

fE(t) = ||WtĤt − UGt||2F (3)

is a validity function of the tth ensemble clustering, for
1 ≤ t ≤ T . U is a n × k partition matrix representing the
final clustering of the data set. For ease of calculation, WtĤt

is used to reflect the tth partition matrix, instead of WtHt.
Gt is a k× k relation matrix between WtĤt and U . fE(t) is
used to evaluate the difference between each WtĤt and U .
In this case,

∑T
t=1 fE(t) is seen as a consensus function for

cluster ensemble. We hope to minimize it to obtain the fi-
nal clustering U which is the most consensus with all WtĤt

(1 ≤ t ≤ T ). If WtĤt is fixed,
∑T

t=1 fE(t) is the objective
function of the classical k-means algorithm. In (Wu et al.

2015), Wu and Liu et al. have proved that it can be used in
cluster ensemble.

Thus, the new optimization model is formally defined as
follows.

min
U

F =

T∑
t=1

αfL(t) + βfG(t) + γfE(t), (4)

subject to

⎧⎪⎨
⎪⎩

wt(ij) ∈ {0, 1},∑p
j=1 wt(ij) = 1, 1 <

∑n
i=1 wt(ij) < n,

ht(ij) ∈ {0, 1},∑k
j=1 ht(ij) = 1, 1 <

∑p
i=1 ht(ij) < p,

uij ∈ {0, 1},∑k
j=1 uij = 1, 1 <

∑n
i=1 uij < n,

(5)
where α, β and γ are the weights which are used to balance
the importance of each term.

Solution algorithm for the optimization problem

Let W = {Wt}Tt=1, V = {Vt}Tt=1, H = {Ht}Tt=1,
Q = {Qt}Tt=1 and G = {Gt}Tt=1. In order to solve
the optimization problem (4), we divide it into three mini-
mization subproblems, i.e., Problem P1: Fix H , U and G,
solve minW,V F ; Problem P2: Fix W , V , U and G, solve
minH F ; Problem P3: Fix W , V and H , solve minU,G F .
We use a k-means-like paradigm to approximately obtain its
optimal solution.

Solution for Problem P1: Given H , U and G, αfL(t) +
βfG(t) + γfE(t) is independent to each other and fG(t) is
constant, for 1 ≤ t ≤ T . In this case, the minimization
problem P1 becomes

min
Wt,Vt

αfL(t) + γfE(t), 1 ≤ t ≤ T. (6)

In order to solve the problem, we have

αfL(t) + γfE(t) = ||X ′
t −WtV

′
t ||2F , (7)

where X ′
t = [α1/2X, γ1/2UGt] is a concatenated matrix

with X and UGt, and V ′
t = [α1/2Vt, γ

1/2Ĥt] is a concate-
nated matrix with Vt and Ht. While UGt is seen as the new
features of the original data X , X ′

t is a new representation
of the original data X . V ′

t is seen as the cluster center matrix
of X ′

t.
According to Eq.(7), we transform the optimization

problem into a k-means clustering problem of X ′
t, i.e.,

minWt,V ′
t
||X ′

t − WtV
′
t ||2F . Thus, we solve the problem by

the update formula Wt and V ′
t which are described as fol-

lows. Given V ′
t , the minimizer Wt is given by

wt(ij) =

{
1, j = argminpl=1 ||x′

i − v′
t(l)||2,

0, otherwise.
(8)

for 1 ≤ i ≤ N , 1 ≤ j ≤ P , 1 ≤ t ≤ T , where x′
i is the

ith row of X ′
t and v′

t(l) is the lth row of V ′
t . Given Wt, the

minimizer V ′
t is given by

v′t(j) =
N∑
i=1

wt(ij)x
′
i

/
N∑
i=1

wt(ij) , (9)
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for 1 ≤ j ≤ P , 1 ≤ t ≤ T . Therefore, the computa-
tional complexity of solving Problem P1 is O(n(m+k)poT )
where o is the number of iterations for a linear clustering.

Solution for Problem P2: Given W , V , U and G,
αfL(t) + βfG(t) + γfE(t) is also independent to each other
and fL(t) is constant, for 1 ≤ t ≤ T . In this case, the mini-
mization problem P2 becomes

min
Ht

βfG(t) + γfE(t), 1 ≤ t ≤ T. (10)

We have

fE(t) = Tr(ĤT
t W

T
t WtĤt)− Tr(ĤT

t W
T
t Û ÛTWtĤt).

(11)
In this case,

βfG(t) + γfE(t) = βTr(Kt)− Tr(ĤT
t LtĤt) (12)

where Lt = βKt + γWT
t (In − Û ÛT )Wt. Minimizing

βfG(t) + γfE(t) is equivalent to solving the problem as fol-
lows.

max
Ĥt

Tr(ĤT
t LtĤt), subject to ĤT

t Ĥt = Ik. (13)

Hence, we can solve Problem P2 by the spectral method.
The computational complexity of solving Problem P2 is
O((k +m)p2T ).

Solution for Problem P3: Given V , W and H , each
αfL(t) + βfG(t) is constant, for 1 ≤ t ≤ T . Therefore,
the minimization problem P3 becomes

min
T∑

t=1

||WtĤt − UGt||2F .

We use the k-means-like paradigm to solve the problem. We
provide the update formulas for G and U as follows. Given
W , V , H and U , the minimizer G is given by

gt(l) =

n∑
i=1

uilqt(i)

/
n∑

i=1

uil , (14)

where qt(i) is the ith row of WtĤt, for 1 ≤ l ≤ k, 1 ≤ t ≤
T . Given W , V , H and G, the minimizer U is given by

uil =

{
1, l = argminkh=1

∑T
t=1 ||qt(i) − gt(h)||2,

0, otherwise,
(15)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k. Therefore, the computational
complexity of solving Problem P3 is O(nk2oT ).

Based on the above update formulas, we approximately
minimize the objective function F by iteratively solving the
subproblems. Before the first iteration, we need to initialize
the variables V , W , H , U and G. We first randomly select
p objects from X to initialize Vt, for 1 ≤ t ≤ T . Given
Vt, we can compute Wt by the k-means algorithm. Further-
more, based on Vt, we can obtain Kt and Ht by the spectral
clustering algorithm. Given V , W , and H , we use

θt =

(
fL(t) −

T
min
t=1

fL(t)

/
T

max
t=1

fL(t) −
T

min
t=1

fL(t)

)
(
fG(t) −

T
min
t=1

fG(t)

/
T

max
t=1

fG(t) −
T

min
t=1

fG(t)

)

to evaluate the quality of Qt. We select the partition matrix
Qr which satisfies r = argminTt=1 θt, to initialize U = Qr.
Given U , we can compute G by Eq.(14).

The overall clustering procedure is summarized in Algo-
rithm 1. For the proposed algorithm, the parameters α, β, γ,
p, T and τ can be used to control its efficiency and effec-
tiveness. By default, we set α = β = γ = 1 which assumes
the three terms of the objective function F are equally im-
portant. By adjusting α, β and γ, we can conclude that the
classical k-means, kernel k-means and k-means-based clus-
ter ensemble algorithms can be seen as the special case of the
proposed algorithm. If T > 1, β = 0, β �= 0 and γ �= 0, the
clustering result can be seen as an integrated result of T lin-
ear (k-means) clusterings. If p = n, Vt = X . In this case, the
clustering result can be seen as an integrated result of T non-
linear (kernel k-means) clusterings. If T > 1, α = β = 0
and γ �= 0, the proposed algorithm becomes a cluster en-
semble algorithm. For the parameter τ , if it is equal to 1, the
ensemble result can not be used to improve the generation of
each Wt and Ht. The time complexity of the proposed algo-
rithm is O((n(m+k)po+(k+m)p2+nk2o)Tτ), where τ
is the maximum or desired number of iterations. According
to the time complexity, we can see that the clustering effi-
ciency depends on the parameters p, T and τ . We assume
the number of linear clusters p is no more than

√
n which

is the maximum possible number of clusters on a data set
(Yu and Cheng 2004). Therefore, the time complexity is no
more than O(kn3/2Tτ). For a traditional nonlinear cluster-
ing algorithm, its time complexity is generally no less than
O(kn2). If we set Tτ to less than n1/2, the proposed al-
gorithm can reduce the computational cost of nonlinearly
separable clustering. Besides, the algorithm has good par-
allelizability. Since each αfL(t) + βfG(t) is independent to
each other, for 1 ≤ t ≤ T , we can minimize them in parallel.

Algorithm 1: The NKM-NSC algorithm
Input: X , k
Output: U
Initialize V , W , H , U and G;
Repeat
Fixed H , U and G, solve Problem P1 to obtain V and
W ;

Fixed V , W , U and G, solve Problem P2 to obtain H;
Fixed V , W and H , solve Problem P3 to obtain U and
G;

Until The objective function is not changed or the
desired number of iterations τ is reached.

Experimental analysis

In order to properly examine the performance of the NKM-
NSC algorithm, we compare it with other nine nonlin-
early separable clustering algorithms which include: DB-
SCAN (Ester et al. 1996) with KD-Tree (DBSCAN+KD),
density peaks clustering (Rodriguez and Laio 2014) with
KD-Tree (DP+KD), multi-exemplar affinity propagation
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(a) Ring (b) Jain (c) Flame (d) Agg

(e) T4.8k (f) T7.1k (g) Chain (h) Atom

Figure 2: Data distribution of synthetic data

(MEAP) (Wang et al. 2013), multi-prototypes clustering
(MP) (Liu, Jiang, and Kot 2009), kernel k-means (KKM)
(Scholkopf et al. 1998), spectral clustering (SC) (Ng, Jordan,
and Weiss 2001), spectral clustering with Nystroem (SC+N)
(Williams and Seeger 2001), spectral clustering with random
feature (SC+RF) (Rahimi and Recht 2007), spectral cluster-
ing with k-means (SC+KM) (Yan, Huang, and Jordan 2009).

The comparisons are carried out on 8 synthetic and 7
real data sets (Benchmarks ). The synthetic data sets include
Ring (1,500 objects and 3 clusters), Jain (373 objects and 2
clusters), Flame (240 objects and 2 clusters), Agg (788 ob-
jects and 7 clusters), T4.8k (7,235 objects and 6 clusters),
T7.1k (3,031 objects and 9 clusters), Chain (1,000 objects
and 2 clusters) and Atom (800 objects and 2 clusters). The
data distributions of the synthetic data sets are shown in Fig.
2. The real data sets include Wine (178 objects, 13 features
and 3 clusters), Breast Cancer (569 objects, 30 features and
2 clusters), Handwritten Digits (5,620 objects, 63 features
and 10 clusters), Landsat Satellite (6,435 objects, 36 fea-
tures and 7 clusters), MNIST (10,000 objects, 784 features
and 10 clusters) and KDD-CUP’99 (1,048,576 objects, 39
features and 2 clusters).

The experiments are conducted on an Intel i7-4710MQ
personal computer with 16G RAM. We employ the widely-
used external indices (Aggarwal and Reddy 2014): the nor-
malized mutual information (NMI) and the adjusted rand in-
dex (ARI), to measure the similarity between a clustering
result and the true partition on a data set. If the clustering
result is close to the true partition, then its NMI and ARI
values are high.

Before the comparisons, we need to set the parameters
of these algorithms as follows. For each algorithm, we first
set the number of clusters k is equal to its true number of
classes on each of the given data sets. Furthermore, we use
Gaussian kernel function to produce the distance or similar-
ity matrix and test each of these algorithms with different δ
values of the kernel parameter, i.e., δ = εX , εX/10, εX/20,
εX/30, εX/40, εX/50 where εX is the average distance of
data set X , to select the highest ARI and NMI values for
comparison. Since the performance of the MP, KKM, SC,
SC+N, SC+RF, SC+KM and NKM-NSC algorithms are af-
fected by the selection of initial points, each of them runs 30
times to compute the mean and standard deviation of ARI

and NMI on each data set. For the NKM-NSC algorithm, we
set α = β = γ = 1, the number of linear clusters p = �√n�,
the number of ensemble clusterings T = 12 and the maxi-
mum number of iterations τ = 10, respectively.

Table 1 shows the ARI and NMI values of these algo-
rithms on different data sets. In the table, we see that the
density-based algorithms DBSCAN and DP can effectively
recognize the nonlinearly-separable clusters on these syn-
thetic data sets. However, their performances are not good
on the real data sets. Compared to other algorithms, the SC
algorithm has high clustering accuracies on all the given data
sets. However, the accelerated spectral clustering algorithms
SC+N, SC+RF and SC+KM reduce the clustering accura-
cies of the original algorithm. Although the objective func-
tion of the KKM algorithm is equivalent to that of the SC
algorithm, the clustering quality of KKM is weaker than SC
on these data sets. According to the experimental results in
this table, we see that the clustering accuracy of NKM-NSC
is very close to SC. This shows that the proposed algorithm
can effectively approximate the clustering results of SC. We
also observe that the performance of the proposed algorithm
is slightly better than SC on some data sets. The main reason
is that the proposed algorithm uses linear clusters to simu-
late the nonlinear clusters, which can reduce the overfitting
of the clustering to some extent. Besides, we can see that the
standard deviation of the proposed algorithm on each data
set is less than 0.1. Therefore, we can conclude that the pro-
posed algorithm is effective and robust to deal with these
data sets.

In addition to the clustering accuracy, we compare the
clustering speed of these algorithms on data set MNIST. Ta-
ble 2 shows the running times of these algorithms with dif-
ferent numbers of objects on the data set. On this test, the
running time of the proposed algorithm is more than the MP,
SC+N, SC+RF and SC+KM algorithms but is less than the
SC, DBSCAN+KD and KKM algorithms. Compared to the
DP+KD algorithm, while the size of the data set is more than
4000, the proposed algorithm is more efficient than it. The
experimental result is basically consistent with their time
complexities. The computational cost of the proposed algo-
rithm is between the KKM algorithm and these accelerated
SC algorithms. Compared to the compared algorithms, the
proposed algorithm can better balance the effectiveness and
efficiency of nonlinearly separable clustering. Therefore, we
further test the efficiency of the proposed algorithm on data
set KDD-CUP’99. It is worth noting that except the pro-
posed algorithm, the compared algorithms need to compute
and operate a n × n pairwise-similarity matrix of all the
objects. If the number of objects is no less than 100, 000,
the memory size of the computer is required to be no less
than 74GB. Therefore, when these algorithms are used to
cluster a data set including no less than 100,000 objects in
a PC with the low configuration, the out-of-memory error
is caused. Due to the fact that the proposed algorithm need
not compute the n × n pairwise-similarity matrix, it can be
used to cluster the data set in the PC. Fig. 3 shows the run-
ning time of the proposed algorithm with different numbers
of objects which are from 100,000 to 1,000,000 on data set
KDD-CUP’99, given the PC with 16GB memory. Accord-
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Table 1: ARI and NMI values of different algorithms

Data Index DBSCAN+KD DP+KD MEAP MP KKM

Ring
ARI 1.0000 0.3987 0.1476 0.0068±0.0271 0.4801±0.0589
NMI 1.0000 0.6161 0.4924 0.0249±0.8422 0.6214±0.0689

Jain
ARI 0.8700 0.9773 0.2315 0.3812±0.0871 0.3340±0.1372
NMI 0.9000 0.9492 0.4902 1.6140±0.8635 0.3517±0.0783

Flame
ARI 0.8214 1.0000 0.6277 0.6609±0.2482 0.4947±0.1551
NMI 0.7464 1.0000 0.5393 0.7163±0.2934 0.4694±0.1191

Agg
ARI 0.9018 0.9053 0.6812 0.5759±0.2911 0.9949±0.2294
NMI 0.8619 0.8581 0.8376 0.6677±0.1659 0.9776±0.1491

T4.8k
ARI 0.8189 0.6880 0.7546 0.5523±0.6876 0.9818±0.0549
NMI 0.8590 0.8105 0.8321 0.6059±0.8792 0.9898±0.0308

T7.1k
ARI 0.9952 0.4378 0.4489 0.3676±0.2937 0.9658±0.0634
NMI 0.9913 0.7118 0.7660 0.6354±0.2072 0.9858±0.0256

Chain
ARI 1.0000 0.7367 0.6763 0.9743±0.1382 0.9777±0.0039
NMI 1.0000 0.7761 0.6966 0.9777±0.1199 0.9558±0.0063

Atom
ARI 0.9154 0.6394 1.0000 0.5735±0.2110 0.6584±0.1164
NMI 0.8818 0.6624 1.0000 0.6614±0.2061 0.7021±0.1482

Iris
ARI 0.5681 0.4966 0.7028 0.8586±0.0845 0.8796±0.0097
NMI 0.7611 0.6607 0.7277 0.8623±0.0932 0.8771±0.0138

Wine
ARI 0.4272 0.4536 0.7586 0.5841±0.1727 0.8673±0.1633
NMI 0.5309 0.5862 0.7390 0.6539±0.1319 0.8406±0.1051

Breast
ARI 0.6606 0.5038 0.7620 0.4314±0.2716 0.6949±0.0058
NMI 0.4140 0.4758 0.6640 0.3729±0.2106 0.5723±0.0024

Digits
ARI 0.4772 0.5915 0.6626 0.7081±0.0494 0.6874±0.0656
NMI 0.5368 0.6438 0.7294 0.8015±0.0396 0.7835±0.0316

Statlog
ARI 0.3021 0.3172 0.2840 0.3121±0.0687 0.5423±0.0510
NMI 0.4582 0.4869 0.5370 0.4484±0.0430 0.6226±0.0186

MNIST
ARI 0.1125 0.2861 0.3975 0.3459±0.0373 0.4883±0.0423
NMI 0.3430 0.4856 0.5484 0.5122±0.0126 0.6554±0.0107

Data Index SC SC+N SC+RF SC+KM NKM-NSC

Ring
ARI 1.0000±0.0000 0.4031±0.0442 0.3832±0.0762 0.5146±0.1782 1.0000±0.0000
NMI 1.0000±0.0000 0.6057±0.0541 0.5758±0.1051 0.6501±0.1451 1.0000±0.0000

Jain
ARI 1.0000±0.0000 0.6247±0.0097 0.5412±0.0322 0.6199±0.3830 1.0000±0.0000
NMI 1.0000±0.0000 0.7011±0.0093 0.6720±0.0564 0.6354±0.3646 1.0000±0.0000

Flame
ARI 0.9337±0.0021 0.8889±0.0612 0.3424±0.2313 0.8529±0.2437 0.9650±0.0164
NMI 0.9269±0.0013 0.8358±0.0563 0.3482±0.2006 0.8192±0.1919 0.9276±0.0310

Agg
ARI 0.7731±0.0011 0.5131±0.2423 0.3637±0.1507 0.3312±0.1323 0.9920±0.0014
NMI 0.8794±0.0025 0.6067±0.1393 0.5338±0.1270 0.5250±0.1241 0.9884±0.0018

T4.8k
ARI 1.0000±0.0000 0.4755±0.0503 0.4359±0.0573 0.3569±0.0742 0.8807±0.0406
NMI 1.0000±0.0000 0.6481±0.0459 0.5981±0.0450 0.5540±0.0761 0.8972±0.0229

T7.1k
ARI 1.0000±0.0000 05156±0.1055 0.4610±0.1912 0.6057±0.1142 0.8723±0.0821
NMI 1.0000±0.0000 0.6535±0.0913 0.5385±0.1352 0.7868±0.0815 0.9105±0.0483

Chain
ARI 1.0000±0.0000 0.9408±0.0051 0.9728±0.0122 0.6919±0.3643 1.0000±0.0000
NMI 1.0000±0.0000 0.9024±0.0069 0.9489±0.0195 0.7042±0.3046 1.0000±0.0000

Atom
ARI 1.0000±0.0000 0.5175±0.1312 0.4354±0.2660 0.8836±0.2634 1.0000±0.0000
NMI 1.0000±0.0000 0.5930±0.1102 0.4427±0.2752 0.8968±0.2323 1.0000±0.0000

Iris
ARI 0.9038±0.0042 0.8871±0.0447 0.8851±0.0216 0.8610±0.0976 0.8921±0.0193
NMI 0.8996±0.0037 0.8871±0.0331 0.8795±0.0220 0.8616±0.0891 0.8893±0.0102

Wine
ARI 0.9325±0.0010 0.8906±0.1340 0.8405±0.0539 0.8339±0.1338 0.8977±0.0363
NMI 0.9116±0.0015 0.8737±0.1139 0.8172±0.0513 0.8063±0.0825 0.9082±0.0341

Breast
ARI 0.7302±0.0034 0.7011±0.0285 0.7105±0.0387 0.7288±0.1094 0.7248±0.0150
NMI 0.6231±0.0041 0.5798±0.0178 0.5939±0.0427 0.6485±0.1196 0.6230±0.0156

Digits
ARI 0.8683±0.0021 0.6078±0.0478 0.6305±0.0547 0.7769±0.0834 0.8434±0.0165
NMI 0.9337±0.0027 0.7563±0.0159 0.6961±0.0302 0.8479±0.0394 0.8838±0.0121

Statlog
ARI 0.6130±0.0048 0.5502±0.0549 0.5373±0.0262 0.5306±0.0682 0.6119±0.0220
NMI 0.6304±0.0059 0.6251±0.0243 0.6166±0.0350 0.6094±0.0412 0.6344±0.0178

MNIST
ARI 0.5174±0.0067 0.4078±0.0054 0.3234±0.0386 0.4575±0.0115 0.5427±0.0362
NMI 0.6849±0.0071 0.5272±0.0061 0.4399±0.0276 0.6134±0.0091 0.6632±0.0222
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Table 2: Running times of different algorithms

Algorithm 2,000 4,000 6,000 8,000 10,000
DBSCAN+KD 14.69 42.47 82.31 168.70 227.70
DP+KD 5.42 19.97 43.84 79.00 118.11
MEAP 62.72 249.39 478.63 754.23 1,045.38
SC 260.69 1,197.60 4,491.70 10,306.00 20,261.00
SC+N 1.02 0.88 2.64 2.70 3.83
SC+RF 3.11 5.88 10.58 11.20 14.44
SC+KM 2.14 5.50 8.78 12.59 15.81
MP 3.30 4.89 8.13 17.61 18.33
KKM 19.19 53.22 100.50 161.86 241.47
NKM-NSC 8.46 19.81 41.40 72.39 92.34

ing to the figure, we can see that the proposed algorithm is
suitable to cluster large-scale data sets on a PC with the low
configuration.
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Figure 3: The running times on data set KDD-CUP’99

Next, we analyze the effects of the number of linear clus-
ters p, the number of ensemble clusterings T and the number
of iterations τ on the performance of the proposed algorithm
by the experiments. Fig. 4 shows the NMI and ARI values
against different p, T and τ on data set MNIST, while other
parameters are fixed. According to Figs.4(a,b,d,e), we can
see that the NMI and ARI values of the proposed algorithm
basically increase as the value of the parameters p and T in-
crease. However, we also see that the NMI and ARI values
more slowly increase, after the parameter values are grow-
ing to a certain extent. According to the time complexity of
the proposed algorithm, we know that the computing cost
increases as the values of the parameters p and T increase.
This experimental result tells us that we should select the
suitable values of the parameters to balance the computing
cost and the clustering accuracy. According to Figs.4(c,f),
we can see that the NMI and ARI values do not change, af-
ter the number of iterations is more than 6. This indicates
that the proposed algorithm can rapidly converge.

Conclusions

In this paper, we have proposed a new clustering algorithm
for nonlinearly separable data sets. It is an extension of the
k-means algorithm. Its optimization objective function is
made up of three terms including a linearly separable clus-
tering, a nonlinearly separable clustering and an ensemble
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Figure 4: Effect of the parameters

clustering. The proposed algorithm can rapidly and effec-
tively recognize non-linearly separable clusters. In the ex-
perimental analysis, we have compared the proposed algo-
rithm with other nonlinearly separable clustering algorithms
on synthetic and real data sets. The comparison results have
illustrated that the performance of the proposed algorithm is
very effective and efficient.
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