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Abstract 

Recent state-of-the-art natural language understanding mod-

els, such as BERT and XLNet, score a pair of sentences (𝐴 

and 𝐵) using multiple cross-attention operations – a process 

in which each word in sentence 𝐴 attends to all words in 

sentence 𝐵 and vice versa. As a result, computing the simi-

larity between a query sentence and a set of candidate sen-

tences, requires the propagation of all query-candidate sen-

tence-pairs throughout a stack of cross-attention layers. This 

exhaustive process becomes computationally prohibitive 

when the number of candidate sentences is large. In con-

trast, sentence embedding techniques learn a sentence-to-

vector mapping and compute the similarity between the sen-

tence vectors via simple elementary operations. In this pa-

per, we introduce Distilled Sentence Embedding (DSE) – a 

model that is based on knowledge distillation from cross-

attentive models, focusing on sentence-pair tasks. The out-

line of DSE is as follows: Given a cross-attentive teacher 

model (e.g. a fine-tuned BERT), we train a sentence embed-

ding based student model to reconstruct the sentence-pair 

scores obtained by the teacher model. We empirically 

demonstrate the effectiveness of DSE on five GLUE sen-

tence-pair tasks. DSE significantly outperforms several 

ELMO variants and other sentence embedding methods, 

while accelerating computation of the query-candidate sen-

tence-pairs similarities by several orders of magnitude, with 

an average relative degradation of 4.6% compared to BERT. 

Furthermore, we show that DSE produces sentence embed-

dings that reach state-of-the-art performance on universal 

sentence representation benchmarks. Our code is made pub-

licly available at https://github.com/microsoft/Distilled-

Sentence-Embedding. 

 1. Introduction  

The emergence of self-attentive models such as the Trans-

former (Vaswani et al. 2017), GPT (Radford et al. 2018), 

BERT (Devlin et al. 2019) and XLNet (Yang et al. 2019) 
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significantly advanced the state-of-the-art in various lin-

guistic tasks such as machine translation (Vaswani et al. 

2017), sentiment analysis (Socher et al. 2013), question 

answering (Rajpurkar et al. 2016) and sentence similarity 

(Dolan and Brockett 2005; Cer et al. 2017). These models 

are built upon a stack of self-attention layers that enable 

each word to attend other words in a sentence. 

 In the latest models such as BERT and XLNet, self-

attention is applied in a bidirectional manner. This is dif-

ferent from conventional language models (Collobert et al. 

2011), in which each word in a sentence is conditioned 

solely on its preceding words. In addition, the architectures 

in (Devlin et al. 2019; Yang et al. 2019) support sentence-

pair input, endowing these models with the ability to infer 

sentence similarity. However, this capability entails a non-

negligible computational cost. In these models, scoring 

sentence-pairs involves a cross-attention (CA) operation in 

which each word in a sentence 𝐴 attends to all words in a 

sentence 𝐵 and vice versa (excluding the fact that each 

word attends to all other words in the same sentence as 

well). Moreover, CA is repeatedly applied in a cascade 

throughout a stack of multi-head attention layers (Vaswani 

et al. 2017). This CA entanglement is a double-edged 

sword. On the one hand, it is allegedly a key property that 

pushes forward the state-of-the-art, computing similarity 

between sentences by analyzing the relations between in-

dividual words 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. On the other hand, it en-

tails an excessively demanding inference phase in terms of 

time and computational power. 

    The computational bottleneck that is imposed by CA 

severely affects the inference phase in ranking and retrieval 

tasks. Assume a CA model 𝑇 and a set of candidates 𝑋 that 

contains 𝑁 sentences. The task is to retrieve the topmost 

similar sentences in 𝑋 w.r.t. a new query sentence 𝑞. A 

naïve solution is to compute the similarity between each 

sentence 𝑥 ∈ 𝑋 and 𝑞, which amounts to 𝑁 applications of 

𝑇 (scoring each sentence-pair (𝑞, 𝑥) using 𝑇). In other 

words, the propagation of the entire candidates set 𝑋 

through 𝑇 is necessary to produce the similarity scores 

w.r.t. a single query 𝑞. 

    A second problem with CA models is the fact that they 

are not trained to produce sentence embeddings w.r.t. the 
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task at hand. While several types of heuristics can be em-

ployed to produce sentence embedding (e.g., summing the 

several last hidden token representations, using the CLS 

hidden token (Devlin et al. 2019) as a sentence representa-

tion, etc.), none of them are truly justified. These opera-

tions are employed after the training phase is over and are 

not directly related to the original training objective. This 

problem is a key differentiator between CA models and 

other models (Conneau et al. 2017; Subramanian et al. 

2018) that inherently support sentence embedding. 

    In this paper, we present Distilled Sentence Embedding 

(DSE), a model for learning a sentence embedding via 

Knowledge Distillation (Hinton et al. 2014) from CA mod-

els. The essence of DSE is as follows: Given a trained CA 

teacher model and a student model. We train the student 

model to map sentences to vectors in a latent space, in 

which the application of a low-cost similarity function ap-

proximates the similarity score obtained by the teacher 

model for the corresponding sentence-pair. Specifically, 

DSE employs a pairwise training procedure in which each 

pair of sentences (𝐴, 𝐵) and score 𝑇𝐴𝐵  (that is obtained by 

the teacher model for the specific sentence-pair) is treated 

as a training example. The student model consists of para-

metric embedding and similarity functions. The embedding 

function maps the sentences 𝐴 and 𝐵 to vectors, on which 

the similarity function is applied to produce a similarity 

score 𝑆𝐴𝐵 . Finally, using a loss function, we compare be-

tween 𝑆𝐴𝐵  and 𝑇𝐴𝐵. 

    During the training phase, the student model parameters 

(that includes both the embedding and similarity functions) 

are learned via stochastic gradient descent w.r.t. a loss 

function that compares the student output score 𝑆𝐴𝐵  to the 

teacher model score 𝑇𝐴𝐵 . In the inference phase, the student 

model maps an input sentence-pair to a vector-pair using 

the embedding function and then computes the vector-pair 

similarity score using the similarity function. DSE essen-

tially performs a disentanglement that enables the precom-

putation of the candidate sentence embeddings in advance. 

As a result, for ranking and retrieval tasks, the computa-

tional complexity of a query reduces to a single application 

of the student model to the query sentence 𝑞, followed by 

𝑁 applications of the low-cost similarity function (for each 

vector-pair). 

 We evaluate DSE on five sentence-pair tasks from the 

GLUE benchmark (Wang et al. 2018). Empirical results 

show that DSE significantly outperforms other sentence 

embedding methods as well as several attentive ELMO 

(Peters et al. 2018) variants, while providing average rela-

tive degradations of 4.6% and 3.1% compared to BERT-

Large and BERT-Base, respectively. We further analyze 

the quality of sentence embeddings produced by DSE on 

standard universal sentence representation benchmarks 

(Conneau and Kiela 2018). In this setting, DSE is initially 

pre-trained on a surrogate task. Then, general purpose sen-

tence representations are extracted from the model and 

evaluated on downstream tasks. The obtained embeddings 

are competitive with current top performing approaches. 

    Our main contributions are as follows: 1) We present 

DSE, a novel sentence embedding model that is supervised 

by the original sentence-pair similarity scores of state-of-

the-art CA models. 2) We show that DSE, as a general 

purpose sentence embedding method, reaches state-of-the-

art performance on standard universal sentence representa-

tion benchmarks. 3) DSE significantly speeds-up the com-

putation of online and offline query-candidate similarities, 

posing a practical solution for mass production systems at 

the cost of a relatively small degradation in performance. 

2. Related Work 

There have recently appeared an increasing number of 

studies suggesting usage of general language representa-

tion models for natural language understanding tasks. 

Among the most promising techniques, the unsupervised 

fine-tuning approach has been shown to be effective on 

many sentence-level tasks (Dai and Le 2015; Howard and 

Ruder 2018; Radford et al. 2018). This technique uses a 

sentence encoder to produce contextual token representa-

tions. The encoder training procedure is composed of two 

phases: (1) unsupervised training on unlabeled text, and (2) 

fine-tuning for supervised downstream tasks. The unsuper-

vised training allows the model to learn most of the param-

eters in advance, leaving only few parameters to be learned 

from scratch during fine-tuning. 

    More recently, BERT (Devlin et al. 2019) has emerged 

as a powerful method that has achieved state-of-the-art 

results in various sentence or sentence-pair language un-

derstanding tasks from the GLUE benchmark (Wang et al. 

2018), including sentiment analysis (Socher et al. 2013), 

paraphrase identification (Williams et al. 2017) and seman-

tic text similarity (Cer et al. 2017). Liu et al. (Liu et al. 

2019), introduce Multi-Task Deep Neural Network (MT-

DNN), which extends BERT by learning text representa-

tions across multiple natural language understanding tasks. 

In sentence-pair tasks, both BERT and MT-DNN require 

feeding both sentences together as a single input sequence. 

While other techniques, such as (Conneau et al. 2017; 

Subramanian et al. 2018), suggest extracting a feature vec-

tor for each sentence separately via an embedding function, 

followed by a relatively low cost similarity function which 

produces a similarity score for the vector-pair. 

    The problem of reducing the computational burden of 

neural networks at inference time has attracted considera-

ble attention in the literature. Hinton et al. (Hinton et al. 

2014), introduced Knowledge Distillation (KD) as a 

framework for model compression, where knowledge from 

a large model is used for training a simple model, by fol-

lowing a teacher-student paradigm. Specifically, the meth-

od leverages the probabilities produced by a teacher model 

for training a simple student model, by teaching the student 
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to predict both the true labels and the output probabilities 

of the teacher. 

    In the context of natural language understanding, Liu et 

al. (Liu et al. 2019) propose to distill knowledge from an 

ensemble of MT-DNN models (teachers), into a single 

MT-DNN model (a student). The authors show that by 

leveraging KD, a student MT-DNN model significantly 

outperforms the original MT-DNN (Liu et al. 2019) on 

various linguistic tasks. 

    Different from other KD studies, our method focuses on 

distilling knowledge from a CA model (the teacher), into a 

sentence embedding model that solely relies on self-

attention (the student). Specifically, we leverage KD for 

training a student BERT model to bypass BERT's require-

ment of feeding sentence-pairs as a unified sequence.  

    Excluding such an intrinsic operation from the student 

might hinder its ability to perfectly reconstruct its teacher’s 

knowledge. However, such a property would ease the 

adoption of BERT in other tasks, such as ranking and in-

formation retrieval, which require exhaustive computations 

across many documents or paragraphs in a given dataset. 

3. Distilled Sentence Embedding (DSE) 

In this section, we present the problem setup and describe 

the DSE model in detail. 

3.1   Problem Setup 

Let 𝒲 = {𝑤𝑖}𝑖=1
𝓌  be the vocabulary of all supported to-

kens. We define 𝑌 to be the set of all possible sentences 

that can be generated using the vocabulary 𝒲. 

 Let 𝑇: 𝑌 × 𝑌 → ℝ be the teacher model (e.g., a fine-

tuned BERT model). 𝑇 receives a sentence-pair (𝑦, 𝑧) ∈
𝑌 × 𝑌 and outputs a similarity score 𝑇𝑦𝑧 ≜ 𝑇(𝑦, 𝑧). Note 

that 𝑇 is not necessarily a symmetric function. 

 Let 𝜓,𝜙: 𝑌 → ℝ𝑑 be sentence embedding functions that 

embed a sentence 𝑦 ∈ 𝑌 in a 𝑑-dimensional latent vector 

space. The usage of different sentence embedding func-

tions, 𝜓 and 𝜙, is due to the fact that 𝑇 is not necessarily a 

symmetric function. For example, in BERT, the sentences 

𝐴 and 𝐵 are associated with different segment embeddings. 

Therefore, 𝜓 and 𝜙 play a similar role as the common con-

text and target representations that appear in many neural 

embedding methods (Barkan 2017; Barkan and 

Koenigstein 2016; Mikolov et al. 2013; Mnih and Hinton 

2009). 

    Let 𝑓:ℝ𝑑 × ℝ𝑑 → ℝ be a (parametric) similarity func-

tion. 𝑓 scores the similarity between sentence embeddings 

that are produced by 𝜓 and 𝜙. Then, the student model 

𝑆: 𝑌 × 𝑌 → ℝ is defined as 

                           𝑆𝑦𝑧 ≜ 𝑓(𝜓(𝑦), 𝜙(𝑧)).                          (1)    

    Given a set of paired training sentences 𝑋 =
{(𝑦𝑖 , 𝑧𝑖)}𝑖=1

𝑁 , our goal is to train the student model 𝑆 such 

that for all (𝑦, 𝑧) ∈ 𝑋, its similarity score 𝑆𝑦𝑧 approximates 

the teacher model’s score 𝑇𝑦𝑧 with a high accuracy. To this 

end, we propose to learn the student model parameters via 

a pairwise training procedure, which is explained in Sec-

tion 3.2.  

    Note that in some sentence-pair tasks the teacher mod-

el’s codomain is multidimensional. For example, the 

MNLI (Williams et al. 2017) task is to predict whether the 

relation between two sentences is neutral, contradictory or 

entailment. In this case, the codomain of the teacher model 

𝑇 is ℝ3  and hence the codomain of the similarity function 

𝑓 (and the student model 𝑆) is ℝ3 as well. 

3.2   Pairwise Training 

In pairwise training, we define a loss function ℒ:ℝ × ℝ →
ℝ and train 𝑆 to minimize ℒ(𝑆𝑦𝑧 , 𝑇𝑦𝑧) in an end-to-end 

fashion. Specifically, given a sentence-pair (𝑦, 𝑧) ∈ 𝑋 × 𝑋, 

we compute the embeddings 𝜓(𝑦) and 𝜙(𝑧) for the sen-

tences 𝑦 and 𝑧, respectively. Then, the similarity score 𝑆𝑦𝑧 

is computed using the similarity function 𝑓 according to 

Eq. (1).  

    Note that ℒ can be either a regression or classification 

loss depending on the task at hand. Moreover, ℒ can be 

trivially extended to support multiple teacher models. In 

(Hinton et al. 2014) the authors suggest using two teacher 

models 𝑇 and 𝑅, where 𝑅 is simply the ground truth labels 

as follows  

       ℒ𝑦𝑧 = 𝛼𝑙𝑑𝑠𝑡𝑙(𝑆𝑦𝑧 , 𝑇𝑦𝑧)  + (1 − 𝛼)𝑙𝑙𝑏𝑙(𝑆𝑦𝑧 , 𝑅𝑦𝑧)      (2)                               

where 𝛼 ∈ [0,1] is a hyperparameter that controls the rela-

tive amount of supervision that is induced by 𝑇 and 𝑅. In 

this case, the student model is simultaneously supervised 

by 𝑇 and 𝑅. Note that in general, the distillation loss 𝑙𝑑𝑠𝑡𝑙  
and the ground truth label loss 𝑙𝑙𝑏𝑙  are not restricted to be 

the same loss function (as shown in Section 3.5). The DSE 

model is illustrated in Fig. 1. 

3.3   The Teacher Model  

The teacher model 𝑇 is implemented as a BERT-Large 

model from (Devlin et al. 2019), consisting of 24 encoder 

layers that each employ a self-attention mechanism. For a 

sentence-pair input, 𝑇 employs CA between the two sen-

tences. The teacher model is initialized to the pre-trained 

version from (Devlin et al. 2019) and then fine-tuned ac-

cording to each specific sentence-pair task. 

    After the fine-tuning phase, we compute the score 𝑇𝑦𝑧 

for a sentence-pair (𝑦, 𝑧) by propagating a unified repre-

sentation of the sentence-pair throughout 𝑇, as done in 

(Devlin et al. 2019). The score is then extracted from the 

output layer, which is placed on top of the last hidden rep-

resentation of the CLS token. Note that 𝑇𝑦𝑧 is set to the 

logit value (before the softmax / sigmoid activation). 

    It is important to emphasize that DSE is not limited to 

BERT as a teacher model. For example, we could use the 

exact same method with an XLNet (Yang et al. 2019) 
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teacher. The choice of BERT is mainly due to its preva-

lence in the natural language understanding community. 

3.4   The Student Model  

The teacher model is based on BERT, which is not sym-

metric due to its use of different segment embeddings for 

input sentences. Yet, to refrain from doubling the number 

of parameters, we decide to implement a symmetric (Sia-

mese) student model by learning a single mutual embed-

ding function 𝜓 (= 𝜙). The embedding function 𝜓 is im-

plemented using a BERT-Large model that operates on a 

single sentence (using only the segment embedding A) and 

outputs a vector representation. Specifically, given a sen-

tence 𝑦, we first add the CLS token to the beginning of 𝑦 

and a SEP token to the end, before feeding 𝜓 with the re-

sulted representation. Then, we compute the average pool-

ing operation across the hidden tokens for each of the last 

four encoder layers’ outputs. Experimentally, we observed 

degradations in performance when including the CLS to-

ken in the pooling of hidden tokens, thus, it is excluded 

from it. We attribute this to the fact that during pre-training 

the CLS token representation is used for encoding infor-

mation across two sentences for the Next Sentence Predic-

tion task (Devlin et al. 2019), and is therefore not well 

suited for representing a single sentence. The pooling op-

eration produces four 1024-dimensional vectors (one for 

each encoder layer) that are then concatenated to form a 

4096-dimensional representation as the final sentence em-

bedding (hence 𝑑 = 4096).  

    Inspired by (Wang et al. 2018), we use the similarity 

function  

                        𝑓(𝑢, 𝑣) = 𝑤𝑇𝑅𝑒𝐿𝑈(𝑊ℎ)                        (3) 

where ℎ = [𝑢, 𝑣, 𝑢 ∘ 𝑣, |𝑢 − 𝑣|] ∈ ℝ16384 (∘ stands for the 

Hadamard product), 𝑊 ∈ ℝ512×16384 and  𝑤 ∈ ℝ512. Both 

𝑊 and 𝑤 are learnable parameters. Note that 𝑢, 𝑣 ∈ ℝ4096 

are the sentences’ representations that are produced by the 

embedding function 𝜓. 

    Like the teacher model, 𝜓 is initialized to the pre-trained 

version of BERT-Large from (Devlin et al. 2019). Note 

that we could initialize 𝜓 to the fine-tuned teacher model, 

however in our initial experiments we found it to perform 

worse. 

3.5   The Loss Function  

We implement a loss function according to Eq. (2) - a line-

ar combination of the distillation and label losses. The dis-

tillation loss term is set to the L2 loss 

          𝑙𝑑𝑠𝑡𝑙(𝑆𝑦𝑧 , 𝑇𝑦𝑧) = 𝑙𝐿2(𝑆𝑦𝑧 , 𝑇𝑦𝑧) = ‖𝑆𝑦𝑧 − 𝑇𝑦𝑧‖2
2
.  

The motivation behind this choice is the analysis from 

(Hinton et al. 2014), where it is shown that for high tem-

perature values, minimization of the cross-entropy loss 

over the softmax outputs, is equivalent to minimizing L2 

loss over the logits (before applying softmax). Indeed, our 

initial experiments revealed that using the L2 loss on the 

logits produces superior distillation results. 

    The label loss is set according to the task at hand: For a 

multiclass classification task we set 

                     𝑙𝑙𝑏𝑙(𝑆𝑦𝑧 , 𝑅𝑦𝑧) = 𝑙𝑐𝑐𝑒(𝜌(𝑆𝑦𝑧), 𝑅𝑦𝑧)  

where 𝑅𝑦𝑧 ∈ {0,1}𝑛 is a one-hot vector, 𝜌(𝑆𝑦𝑧) ∈ [0,1]𝑛 is 

a discrete probability distribution obtained by applying the 

softmax function 𝜌, and 𝑙𝑐𝑐𝑒(𝑎, 𝑏) = −∑ 𝑏𝑖 log 𝑎𝑖
𝑛
𝑖=1  is the 

categorical cross entropy loss. For a binary classification 

task, we use the same loss with 𝑛 = 2. For a regression 

task we set 𝑙𝑙𝑏𝑙(𝑆𝑦𝑧 , 𝑅𝑦𝑧) = 𝑙𝐿2(𝑆𝑦𝑧 , 𝑅𝑦𝑧), where 𝑅𝑦𝑧 ∈ ℝ. 

4. Experimental Setup and Results 

We evaluate DSE in two different settings: First, task spe-

cific embeddings for sentence-pair tasks, where the whole 

model is trained in an end-to-end fashion and evaluated on 

a specific dataset. Second, universal sentence representa-

tions generation, in which the model is pre-trained to pro-

duce general purpose sentence embeddings. In addition, we 

report empirical results that showcase the efficiency of 

DSE in computing sentence-pair similarities compared to 

BERT.   

4.1   Sentence-Pair Modeling 

For sentence-pair tasks, our evaluation includes several 

datasets from the GLUE benchmark: MRPC (Dolan and 

Brockett, 2005), MNLI (Williams et al., 2018), QQP, 

QNLI (Wang et al., 2018), and STS-B (Cer et al., 2017). 

        

        𝑓

   

 𝜓

 ( )

 𝜙

 ( )

          

           

   Task 

training 

data
 

   

   

       ,            ,    
 −     

 

 

Figure 1. A schematic illustration of the DSE model. 
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These datasets represent different tasks that revolve around 

modeling and scoring sentence-pairs. MRPC, STS-B, and 

QQP focus on semantic similarity of phrases or questions, 

MNLI is a natural language inference (NLI) benchmark, 

and lastly, QNLI is a question answering dataset. We refer 

to (Wang et al. 2018) for a detailed description of these 

datasets. 

4.1.1   Models and Hyperparameter Configuration 

The models that participate in the evaluation are as fol-

lows: 

    BERT-Large: This is the BERT-Large model from 

(Devlin et al. 2019). This model is also used as a teacher 

model. Results are reported from (Devlin et al. 2019). 

    BERT-Base: This is the BERT-Base model from 

(Devlin et al. 2019). Results are reported from (Devlin et 

al. 2019). 

    DSE: This is our proposed model from Section 3. We 

consider three variants of DSE that differ by the parameter 

values of 𝛼 ∈ {0,0.5,1} which controls the amount of dis-

tillation. For all datasets we set the distillation loss 𝑙𝑑𝑠𝑡𝑙 =
𝑙𝐿2. For QQP, MRPC, QNLI and MNLI we set the label 

loss 𝑙𝑙𝑏𝑙 = 𝑙𝑐𝑐𝑒 . Specifically, for MNLI we further used 

𝑤 ∈ ℝ3×512 in Eq. (3) to support a 3-dimensional output. 

For STS-B, we set  𝑙𝑙𝑏𝑙 = 𝑙𝐿2. We used the Adam optimizer 

(Kingma and Ba 2014) with minibatch size of 32 and a 

learning rate of 2e-5, except for STS-B, where we used a 

learning rate of 1e-5.  The models were trained for 8 

epochs. The best model was selected based on the dev set.  

    DSE (Frozen  ): We trained another version of DSE in 

which 𝜓 is frozen. Since 𝜓 is implemented as BERT (Sec-

tion 3.4), we further want to investigate the actual benefit 

from fine-tuning 𝜓 w.r.t. the task at hand. Therefore, we 

present results for a DSE version in which 𝜓 is not fine-

tuned. Note that the parametric similarity function is still 

learned in this version. 

    ELMO + Attn: This is the BiLSTM + ELMO, Attn 

model from (Wang et al. 2018). It comes in two variants: 

Single-Task (ST) and Multi-Task (MT) Training. The re-

sults are reported taken from (Wang et al. 2018). 

    GenSen: Since DSE is a sentence embedding model, we 

further compare its performance with GenSen (Subramani-

an et al. 2018), which is the best performing sentence em-

bedding model from (Wang et al. 2018). The results are 

taken from (Wang et al. 2018). 

4.1.2   Sentence-Pair Tasks Results 

Table 1 presents the results for each combination of model 

and dataset. In addition, we provide the average score that 

is computed across the datasets for each model (AVG col-

umn). The last two columns present the relative degrada-

tion compared to BERT-Large and the relative improve-

ment obtained by DSE (𝛼 = 0.5) over each model (report-

ed in percentages). 

    First, we compare between the four DSE variants. We 

see that for MNLI, QNLI, MRPC and QQP, enabling dis-

tillation (𝛼 ∈ {0.5,1}) slightly improves upon using 𝛼 = 0. 

However, on STS-B, distillation seems to hurt perfor-

mance. We attribute the degradation to the fact that STS-B 

is a regression task and therefore the ground truth labels 

are already provided in a resolution that is finer than binary 

values. Lastly, we see that the frozen version of DSE per-

forms much worse than all other DSE variants. This is evi-

dence for the importance of fine-tuning 𝜓, which further 

confirms that a naïve use of pre-trained BERT for sentence 

embedding produces relatively poor results, in some cases. 

Therefore, we conclude that the distilled version of DSE 

(𝛼 ∈ {0.5,1}) performs the best. From now on, we focus on 

Model MNLI QQP QNLI MRPC STS-B AVG Degradation 

compared to 

BERT-Large 

Improvement 

obtained by 

DSE ( = 𝟎. 𝟓) 

Cross Attentive Models 

BERT-Large 86.7/85.9 72.1/89.3 92.7 89.3/85.4 87.6/86.5 86.82 0% -4.6% 

BERT-Base 84.6/83.4 71.2/89.2 90.2 88.9/84.8 87.1/85.8 85.54 0.9% -3.1% 

ELMO + Attn (MT) 74.1/74.5 63.1/84.3 79.8 84.4/78.0 74.2/72.3 76.45 11.9% 8.3% 

ELMO + Attn (ST) 76.9/76.7 66.1/86.5 76.7 80.2/68.8 55.5/52.5 71.66 17.4% 15.6% 

Sentence Embedding Models 

GenSen 71.4/71.3 59.8/82.9 78.6 83.0/76.6 79.3/79.2 76.07 12.3% 8.9% 

DSE (𝛼 = 1) 80.3/79.4 68.4/86.8 86.1 86.8/80.8 86.8/86.1 82.76 4.7% 0.1% 

DSE (𝛼 = 0.5) 80.9/80.4 68.5/86.9 86.0 86.7/80.7 86.4/85.8 82.83 4.6% 0% 

DSE (𝛼 = 0) 79.7/79.0 67.0/86.8 84.8 86.5/79.9 87.0/86.5 82.2 5.3% 0.8% 

DSE (Frozen 𝜓, 𝛼 = 1) 69.3/69.9 62.5/81.4 76.9 86.5/79.9 73.3/73.0 74.96 13.6% 10.5% 

Table 1: A comparison between DSE to other models across different test sets. For MNLI, accuracy is reported for matched / mis-

matched test sets. For QQP and MRPC, F1/accuracy scores are reported. For QNLI, accuracy is reported. For STS-B, Pearson / 

Spearman correlation coefficients are reported. AVG column presents the average score across all datasets, where each dataset’s 

score is the mean of its one or two reported scores. Degradation and improvement columns present the relative degradation compared 

to BERT-Large and the relative improvement obtained by DSE (𝛼 = 0.5) over each model (reported in percentages), respectively. 
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a comparison between the 𝛼 = 0.5 version of DSE and the 

other models.  

    Next, we turn to consider the performance gaps between 

DSE and BERT. Recall that DSE is supervised by BERT-

Large and hence the performance gaps between the two 

models quantifies the ability of the former to reconstruct 

the latter’s scores. We see that the largest and smallest 

relative degradations occur on the MNLI and STS-B da-

tasets, respectively. Overall, DSE results in an average 

relative degradations of 4.6% and 3.1% compared to 

BERT-Large and BERT-Base, respectively. We attribute 

these degradations to the fact that DSE lacks the CA mech-

anism that exists in BERT, which seems to capture im-

portant information that yields further improvements. 

 Next, we turn to compare the performance of DSE 

against the ELMO + Attn variants, which are the best per-

forming models from (Wang et al. 2018). First, we see that 

DSE significantly outperforms ELMO + Attn (ST) across 

all datasets with an average relative improvement of 

15.6%. This is despite the fact ELMO + Attn employs CA 

operations.  However, it is important to note that the CA 

mechanism in ELMO + Attn (Appendix B.1 in (Wang et 

al. 2018)) is substantially different from the one that exists 

in BERT (Devlin et al. 2019), which is based on self-

attention (Vaswani et al. 2017). Moreover, DSE provides 

an average relative improvement of 8.3% compared to 

ELMO + Attn (MT), even though DSE is trained in a sin-

gle-task manner. 

    Finally, we turn to compare between DSE and GenSen 

(Subramanian et al. 2018), which is reported to perform the 

best among all other sentence embedding models in (Wang 

et al. 2018). Table 1 shows that DSE outperforms GenSen 

across all datasets, providing an average relative improve-

ment of 8.9%. Yet, it is important to note that although 

GenSen is pre-trained on MNLI and SNLI (Bowman et al. 

2015) datasets, it is not fine-tuned w.r.t. the rest of the 

tasks from Section 4.1. Similar analysis holds for other 

currently existing pre-trained sentence embedding meth-

ods, such as (Kiros et al. 2015;  Nie, Bennett, and Good-

man 2017; Conneau et al. 2017), with DSE obtaining an 

even higher relative improvement. Therefore, we omit their 

results from Table 1. 

 To the best of our knowledge, these results place DSE as 

the best performing task specific fine-tuned sentence em-

bedding model on GLUE sentence-pair tasks. 

4.2   Universal Sentence Embeddings 

We further evaluate DSE by examining its applicability for 

producing universal sentence embeddings. In this setup, 

the model is initially pre-trained on one or more surrogate 

tasks. Then, the learned model is used to generate sentence 

embeddings, that are evaluated on various downstream 

tasks in a separate procedure that does not further update 

the pre-trained model. 

 Choosing a suitable pre-training task and dataset is cru-

cial for learning representations that are meaningful for 

multiple tasks. Current top performing approaches mainly 

vary in this aspect, suggesting both supervised and unsu-

pervised techniques. Following (Conneau et al. 2017), we 

opt for pre-training DSE on the AllNLI (MNLI + SNLI) 

dataset. Sentence embeddings are then extracted from the 

student model and evaluated on standard benchmarks using 

the SentEval toolkit (Conneau and Kiela 2018). Both pre-

training and sentence embedding generation are done as 

described in Section 3. We refer to (Conneau and Kiela 

2018) for a detailed description of the datasets and the 

evaluation protocol. 

4.2.1 Downstream Tasks Results 

For each sentence embedding method and dataset included 

in the evaluation, Table 2 contains the results of a shallow 

linear model trained on top of the precomputed embed-

dings. We report results for our approach with 𝛼 = 0.5, 

which showed the most promising performance in Section 

4.1.2, and compare it to the current state-of-the-art meth-

ods: Infersent (Conneau et al. 2017) and Gensen. Addition-

ally, we include a comparison to a DSE variant without 

distillation (𝛼 = 0), and to sentence embeddings that are 

extracted from a pre-trained BERT-Large model using the 

procedure described in Section 3.4. 

 As can be seen in Table 2, BERT-Large embeddings 

reach competitive results on several datasets to both In-

ferSent and GenSen. Significant improvements are ob-

served mostly for sentiment analysis related datasets. In 

contrast, on STS-B (semantic similarity), SICK-R, and 

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS-B AVG 

GenSen 82.5 87.7 94.0 90.9 83.2 93.0 84.4/78.6 0.888 87.8 78.9/78.6 86.8 

InferSent 81.1 86.3 92.4 90.2 84.6 88.2 83.1/76.2 0.884 86.3 75.8/75.5 85.2 

BERT-Large 83.5 88.8 95.5 89.1 87.1 93.2 83.5/76.4 0.838 82.2 68.4/68.3 85.1 

DSE (𝛼 = 0.5) 83.6 90.2 93.6 89.8 91.0 91.8 83.8/77.9 0.856 86.7 70.7/71.4 86.4 

DSE (𝛼 = 0) 83.1 89.8 93.1 89.4 88.3 92.0 81.8/76.2 0.847 86.1 73.1/74.1 85.9 

Table 2: Universal sentence embedding benchmarks results. The evaluation results are of linear models trained over each of the mod-

el’s sentence representations.  The results for Gensen and InferSent are taken from their respective papers. We report the F1/accuracy 

scores for MRPC, Pearson correlation for SICK-R, Pearson/Spearman correlations for STSB, and accuracy for the rest. AVG column 

presents the average score across all datasets, where each dataset’s score is the mean of its one or two reported scores. 
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SICK-E (NLI), BERT-Large embeddings are subpar com-

pared to InferSent and GenSen, which are pre-trained di-

rectly on NLI datasets. Furthermore, recall that BERT is 

not explicitly trained to generate sentence embeddings, 

possibly explaining the downfalls in some of the tasks. 

 We now turn to compare DSE with the other baselines. 

As in the sentence-pair tasks evaluation, using DSE with 

𝛼 = 0.5 improves upon the non-distilled variant (𝛼 = 0), 

outperforming it on 8 of the 10 benchmarks. Specifically, 

substantial gains are obtained on SST and MRPC, demon-

strating the effectiveness of knowledge distillation. There-

fore, from now on, DSE relates to the 𝑎 = 0.5 model. 

 DSE significantly outperforms BERT-Large embeddings 

on sentiment analysis and NLI tasks, obtaining a relative 

improvement of 4.4% and 5.4% on SST and SICK-E re-

spectively. The improved results on SICK-E, as well as on 

SICK-R, are straightforwardly explained by the pre-

training procedure of DSE, which is done on NLI datasets. 

An interesting byproduct is the improvement on sentiment 

analysis benchmarks, suggesting there is a strong connec-

tion between the tasks. In total, DSE outperforms BERT-

Large embeddings on 8 datasets, emphasizing the im-

portance of further fine-tuning BERT in a sentence embed-

ding oriented manner. 

 Finally, we turn to compare DSE to current state-of-the-

art methods: InferSent and GenSen. DSE is competitive 

with both, outperforming them on 7 and 3 datasets, respec-

tively. We attribute these impressive results, especially on 

sentiment analysis benchmarks, to the larger transformer 

architecture and robust BERT pre-training that the DSE 

student model is based on. On these datasets, BERT-Large 

improves upon InferSent and GenSen as well, though by a 

smaller margin, further suggesting this notion. On average, 

GenSen remains the current top performing method, slight-

ly outperforming DSE. GenSen utilizes an extensive pre-

training phase that includes multiple supervised and unsu-

pervised tasks. The fact that DSE surpasses GenSen by a 

large margin on some datasets, yet underperforms on oth-

ers, implies that multitask pre-training results in good gen-

eralization on various tasks, while the specialized NLI pre-

training can suffer on tasks that it is less correlated with. 

Overall, DSE is shown to provide state-of-the-art results. 

4.3   Computational Efficiency Evaluation 

In this section, we report computation times that were 

measured for DSE and BERT-Large. We conducted two 

experiments on a single NVIDIA V100 32GB GPU using 

PyTorch. The first experiment is designed to simulate an 

offline computation of a pairwise sentence similarity ma-

trix. To this end, we compute the 1M optional sentence-

pair similarities between 1000 sentences. For BERT-Large, 

we simply performed 1M forward passes with a maximal 

batch size of 300. This operation took ~9.6 hours. For 

DSE, we first computed the 1000 sentence embeddings 

using 𝜓, which amounts to 1000 forward passes of BERT-

Large with the same batch size of 300. This operation took 

~35 seconds. Then, we computed the 1M pairwise similari-

ties between the sentence embeddings using 𝑓 with a max-

imal batch size of 200K. This operation took ~2 seconds. 

    Table 3 summarizes the results. We see that DSE pro-

vides a computation time that is 934 times faster than 

BERT-Large: 37 seconds vs. 9.6 hours. Therefore, we con-

clude that for large datasets that contain tens of thousands 

of sentences, computing the sentence-pair similarity matrix 

using BERT-Large becomes infeasible, while DSE remains 

a practical solution. In addition, we see that 𝑓 allows much 

larger batch sizes, compared to BERT-Large (200k vs. 

300) with an average computation time per batch that is 

~21 times faster. 

Model Speed

up 

factor 

Time Max 

batch 

size 

Time / Max 

batch size  

BERT-Large 1 9.66hr 300 10.43s 

DSE (𝜓 

phase)  
- 34.73s 300 10.43s 

DSE (𝑓 phase) - 2.48s 200k 0.49s 

DSE 934 37.21s - - 

Table 3: Time comparison between DSE and BERT-Large for an 

offline computation of 1M sentence-pairs similarities for a cata-

log of 1000 sentences. 

    The second experiment is designed to simulate a scenar-

io of online query-candidate similarities computation. In 

this scenario, the task is to compute the similarities be-

tween a new query sentence to all the sentences in an exist-

ing catalog. It is assumed that the sentence embedding for 

all the sentences in the catalog are precomputed using 𝜓.  

    For BERT-Large, we ran 100K forward passes with a 

batch size of 300. This operation took ~58 minutes. For 

DSE, we compute the embedding for the query sentence 

using 𝜓 in 52 milliseconds and then compute the 100K 

query-candidate sentence similarities using 𝑓 in 204 milli-

seconds (all the similarities are computed in a single batch 

of size 100K as the maximal batch size is 200K, as report-

ed in Table 2). The results are summarized in Table 4. We 

see that DSE provides a computation time that is 13.5K 

times faster than BERT-Large: 256 milliseconds seconds 

vs. 58 minutes.  

Model Speedup factor Time 

BERT-Large 1 58m 

DSE (𝜓 phase)  - 0.052s 

DSE (𝑓 phase) - 0.204s 

DSE 13594 0.256s 

Table 4: Time comparison between DSE and BERT-Large for an 

online computation of sentence similarities between a query sen-

tence and a catalog of 100K sentences. 

 

    The results in Tables 2 and 3 demonstrates the effective-

ness of DSE: Obviously, using BERT-Large is impractical 

in both cases (offline and online), while DSE provides a 
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practical alternative in the expense of a small relative deg-

radation (4.6%) in quality compared to BERT-Large. 

5. Conclusion 

Computing sentence similarities via CA models such as 

BERT is impractical for large scale catalogs. To this end, 

we introduce DSE: a sentence embedding method that is 

based on knowledge distillation from CA models. DSE 

bypasses the need for CA operations, enabling precompu-

tation of sentence representations for the existing catalog in 

advance, and fast query operations using a low-cost simi-

larity function. We demonstrate the effectiveness of DSE 

on five sentence-pair tasks, where it is shown to outper-

form other sentence embedding methods as well as several 

attentive versions of ELMO. Furthermore, sentence em-

beddings produced by DSE provide state-of-the-art results 

on various benchmarks. Thus, DSE provides a practical 

solution for mass production systems, allowing sentence 

similarities computation times that are several orders of 

magnitude faster compared to BERT-Large, at the cost of a 

small relative degradation. 

References 

Barkan, O. 2017. Bayesian neural word embedding. In AAAI, 
3135–3143. 

Barkan, O., and Koenigstein, N. 2016. Item2vec: Neural item 
embedding for collaborative filtering. In IEEE MLSP, 2016. 

Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D. 2015. 
A large annotated corpus for learning natural language inference. 
EMNLP 632–642. 

Cer D.; Diab M.; Agirre E.; Lopez-Gazpio I. and Lucia S. 2017 
SemEval-2017 task 1: Semantic textual similarity multilingual 
and crosslingual focused evaluation. In Proceedings of SemEval-
2017, pages 1–14, Vancouver, Canada. 

Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, 
K.; and Kuksa, P. 2011. Natural language processing (almost) 
from scratch. Journal of Machine Learning Research 12 
(Aug):2493–2537. 

Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and Bordes, 
A. 2017. Supervised learning of universal sentence representa-
tions from natural language inference data. In EMNLP, 670–680.  

Conneau, A., and Kiela, D. 2018. Senteval: An evaluation toolkit 
for universal sentence representations. LREC. 

Dai, A. M., and Le, Q. V. 2015. Semi-supervised sequence learn-
ing. In Advances in Neural Information Processing Systems, 
3061–3069. 

Devlin J.; Chang M-W; Lee K; and Toutanova K. 2019. BERT: 
Pre-training of deep bidirectional transformers for language un-
derstanding. In NAACL. 

Dolan, W. B. and Brockett, C. 2005. Automatically constructing a 
corpus of sentential paraphrases. In IWP@IJCNLP. 

Hinton, G.; Vinyals, O.; and Dean, J. 2014. Distilling the 
knowledge in a neural network. In NIPS Workshop on Deep 
Learning and Representation Learning. Hoffman, J.; Tzeng, E.; 
Park, T.; Zhu, J.; I 

Howard, J., and Ruder, S. 2018. Universal language model fine-
tuning for text classification. arXiv preprint arXiv:1801.06146. 

Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic 
optimization. In Proceedings of the 3rd International Conference 
on Learning Representations (ICLR). 

Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urtasun, R.; 
Torralba, A.; and Fidler, S. 2015. Skip-thought vectors. In Ad-
vances in Neural Information Processing Systems, (pp. 3294-
3302). 

Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Multi-task deep 
neural networks for natural language understanding. arXiv pre-
print arXiv:1901.11504. 

Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Improving Multi-
Task Deep Neural Networks via Knowledge Distillation for Natu-
ral Language Understanding. arXiv preprint arXiv:1904.09482. 

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 
2013. Distributed representations of words and phrases and their 
compositionality. In NIPS. 

Mnih, A., and Hinton, G. E. 2009. A scalable hierarchical distrib-
uted language model. In NIPS. 

Nie, A.; Bennet, E. D.; and Goodman, N. D. 2017. Dissent: Sen-
tence representation learning from explicit discourse relations. 
arXiv preprint arXiv:1710.04334. 

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; 
Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized word 
representations. In NAACL, 2227–2237. 

Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever, I. 
2018. Improving language understanding by generative pre-
training. 

Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016. 
SQuAD: 100,000+ questions for machine comprehension of text. 
In EMNLP. 

Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning, C. D.; 
Ng, A. Y.; Potts, C.; et al. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In Proceed-
ings of the conference on empirical methods in natural language 
processing (EMNLP), volume 1631, 1642. 

Subramanian, S.; Trischler, A.; Bengio, Y.; and Pal, C. J. 2018. 
Learning general purpose distributed sentence representations via 
large scale multi-task learning. In ICLR. 

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; 
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is 
all you need. In Advances in Neural Information Processing Sys-
tems, 5998–6008. 

Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and Bow-
man, S. R. 2018. Glue: A multi-task benchmark and analysis 
platform for natural language understanding. arXiv preprint 
arXiv:1804.07461. 

Williams, A.; Nangia, N.; and Bowman, S. R. 2017. A broadcov-
erage challenge corpus for sentence understanding through infer-
ence. arXiv preprint arXiv:1704.05426 

Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J. G.; Salakhutdinov, R.; 
& Le, Q. V. 2019. XLNet: Generalized autoregressive pretraining 
for language understanding. 

3242


