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Abstract

Reinforcement Learning (RL) has achieved impressive per-
formance in many complex environments due to the inte-
gration with Deep Neural Networks (DNNs). At the same
time, Genetic Algorithms (GAs), often seen as a compet-
ing approach to RL, had limited success in scaling up to the
DNNs required to solve challenging tasks. Contrary to this
dichotomic view, in the physical world, evolution and learn-
ing are complementary processes that continuously interact.
The recently proposed Evolutionary Reinforcement Learning
(ERL) framework has demonstrated mutual benefits to per-
formance when combining the two methods. However, ERL
has not fully addressed the scalability problem of GAs. In
this paper, we show that this problem is rooted in an unfor-
tunate combination of a simple genetic encoding for DNNs
and the use of traditional biologically-inspired variation op-
erators. When applied to these encodings, the standard op-
erators are destructive and cause catastrophic forgetting of
the traits the networks acquired. We propose a novel algo-
rithm called Proximal Distilled Evolutionary Reinforcement
Learning (PDERL) that is characterised by a hierarchical in-
tegration between evolution and learning. The main innova-
tion of PDERL is the use of learning-based variation oper-
ators that compensate for the simplicity of the genetic repre-
sentation. Unlike traditional operators, our proposals meet the
functional requirements of variation operators when applied
on directly-encoded DNNs. We evaluate PDERL in five robot
locomotion settings from the OpenAI gym. Our method out-
performs ERL, as well as two state-of-the-art RL algorithms,
PPO and TD3, in all tested environments.

Introduction

The field of Reinforcement Learning (RL) has recently
achieved great success by producing artificial agents that can
master the game of Go (Silver et al. 2017), play Atari games
(Mnih et al. 2015) or control robots to perform complex
tasks such as grasping objects (Andrychowicz et al. 2017) or
running (Lillicrap et al. 2015). Most of this success is caused
by the combination of RL with Deep Learning (Goodfellow,
Bengio, and Courville 2016), generically called Deep Rein-
forcement Learning (DRL).

At the same time, Genetic Algorithms (GAs), usually seen
as a competing approach to RL, have achieved limited suc-
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cess in evolving DNN-based control policies for complex
environments. Though previous work has shown GAs to
be competitive with other DRL algorithms in discrete en-
vironments (Such et al. 2017), they are still significantly
less sample efficient than a simple method like Deep Q-
Learning (Mnih et al. 2015). Moreover, in complex robotic
environments with large continuous state and action spaces,
where environment interactions are costly, their sample in-
efficiency is even more acute (Khadka and Tumer 2018),
(Such et al. 2017).

However, in the physical world, evolution and learning
interact in subtle ways. Perhaps, the most famous product of
this interaction is the Baldwin effect (Simpson 1953), which
explains how the genotype can assimilate learnt behaviours
over the course of many generations. A more spectacular by-
product of this interplay, which has received more attention
in recent years, is the epigenetic inheritance of learnt traits
(Dias and Ressler 2013).

Despite these exciting intricacies of learning and evolu-
tion, the two have almost always received separate treat-
ment in the field of AI. Though they have been analysed
together in computational simulations multiple times (Hin-
ton and Nowlan 1987), (Ackley and Littman 1992), (Suzuki
and Arita 2004), they have rarely been combined to produce
novel algorithms with direct applicability. This is surprising
given that nature has always been a great source of inspira-
tion for AI (Floreano and Mattiussi 2008).

For the first time, Khadka and Tumer (2018) have re-
cently demonstrated on robot locomotion tasks the practical
benefits of merging the two approaches in their Evolution-
ary Reinforcement Learning (ERL) framework. ERL uses
an RL-based agent alongside a genetically evolved popula-
tion, with a transfer of information between the two. How-
ever, ERL has not fully addressed the scalability problem
of GAs. While the gradient information from the RL agent
can significantly speed up the evolutionary search, the pop-
ulation of ERL is evolved using traditional variation opera-
tors. Paired with directly encoded DNNs, which is the most
common genetic representation in use, we show that these
operators are destructive.

This paper brings the following contributions:

• Demonstrates the negative side-effects in RL of the tradi-
tional genetic operators when applied to directly encoded
DNNs.
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• Proposes two novel genetic operators based on backprop-
agation. These operators do not cause catastrophic forget-
ting in combination with simple DNN representations.

• Integrates these operators as part of a novel framework
called Proximal Distilled Evolutionary Reinforcement
Learning (PDERL) that uses a hierarchy of interactions
between evolution and learning.

• Shows that PDERL outperforms ERL, PPO (Schulman et
al. 2017) and TD3 (Fujimoto, van Hoof, and Meger 2018)
in five robot locomotion environments from the OpenAI
gym (Brockman et al. 2016).

Background

This section introduces the Evolutionary Reinforcement
Learning (ERL) algorithm and the genetic operators it uses.

Evolutionary Reinforcement Learning

The proposed methods build upon the ERL framework in-
troduced by Khadka and Tumer (2018). In this framework,
a population of policies is evolved using GAs. The fitness
of the policies in the population is based on the cumula-
tive total reward obtained over a given number of evalua-
tion rounds. Alongside the population, an actor-critic agent
based on DDPG (Lillicrap et al. 2015) is trained via RL. The
RL agent and the population synchronise periodically to es-
tablish a bidirectional transfer of information.

The first type of synchronisation in ERL, from the RL
agent to the genetic population, is meant to speed up the evo-
lutionary search process. This synchronisation step clones
the actor of the RL agent into the population every few gen-
erations to transfer the policy gradient information. The syn-
chronisation period, ω, is a hyperparameter that controls the
rate of information flowing from the RL agent to the popu-
lation.

The second type of synchronisation consists of a reverse
information flow coming from the population to the RL
agent. The actors in the population collect experiences from
which the RL agent can learn off-policy. All the transitions
coming from rollouts in the population are added to the re-
play buffer of the DDPG agent. The population experiences
can be seen as being generated by evolution-guided param-
eter space noise (Plappert et al. 2018).

Genetic encoding and variation operators

The policies in the ERL population are represented by neu-
ral networks with a direct encoding. In this common genetic
representation, the weights of a network are recorded as a list
of real numbers. The ordering of the list is arbitrary but con-
sistent across the population. As we will show, applying the
usual biologically inspired variation operators on this repre-
sentation can produce destructive behaviour modifications.

In the physical world, mutations and crossovers rarely
have catastrophic phenotypic effects because the phenotype
is protected by the complex layers of physical, biological
and chemical processes that translate the DNA. In a direct
genetic encoding, the protective layers of translation are ab-
sent because the representation is so simple and immediate.

As such, the biologically inspired variation operators com-
monly found in the literature, including ERL, do not have
the desired functionality when paired with a direct encod-
ing. Ideally, crossovers should combine the best behaviours
of the two parents. At the same time, mutations should pro-
duce only a slight variation in the behaviour of the parent,
ensuring that the offspring inherits it to a significant extent.
However, because DNNs are sensitive to small modifications
of the weights (the genes in a direct encoding), these oper-
ators typically cause catastrophic forgetting of the parental
behaviours.

ERL evolves the population using two variation opera-
tors commonly used for list-based representations: n-point
crossovers and Gaussian mutations (Eiben and Smith 2015,
p. 49-79). n-point crossovers produce an offspring policy
by randomly exchanging segments of the lists of weights
belonging to the two parents, where n endpoints determine
the segments. ERL uses a version of the operator where the
unit-segments are rows of the dense layer matrices, ensuring
that an offspring receives nodes as they appear in the par-
ents rather than splicing the weights of nodes together. The
resulting child policy matrices contain a mix of rows (nodes)
coming from the matrices (layers) of both parents. This is in-
tended to produce functional consistency across generations.

However, the lack of an inherent node ordering in DNNs
means that hidden representations need not be consistent
over the population and as such the input to a node may not
be consistent from parent to offspring, creating the possi-
bility for destructive interference. This can cause the child
policy to diverge from that of the parents, as we will demon-
strate. Similarly, the damaging effects of adding Gaussian
noise to the parameters of a DNN have been discussed at
great length by Lehman et al. (2018). A common approach
to containing these issues, employed by ERL, is to mutate
only a fraction of the weights. Nevertheless, these muta-
tions are still destructive. Furthermore, evolving only a small
number of weights can slow down the evolutionary search
for better policies.

Method

This section introduces our proposed learning-based genetic
operators and describes how they are integrated with ERL.

The genetic memory

A significant problem of the population from ERL is that it
does not directly exploit the individual experiences collected
by the actors in the population. The population only benefits
indirectly, through the RL agent, which uses them to learn
and improve. The individual experiences of the agents are
an essential aspect of the new operators we introduce in the
next sections and, therefore, the agents also need a place to
store them.

The first modification we make to ERL is to equip the
members of the population, and the RL agent, with a small
personal replay buffer containing their most recent expe-
riences, at the expense of a marginally increased memory
footprint. Depending on its capacity κ, the buffer can also in-
clude experiences of their ancestors. Because the transitions
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in the buffer can span over multiple generations, we refer to
this personal replay buffer of each agent as the genetic mem-
ory. When the policies interact with the environment, they
not only store their experiences in DDPG’s replay buffer as
in ERL but also in their genetic memory.

The ancestral experiences in the genetic memory are in-
troduced through the variation operators. A mutated child
policy inherits the genetic memory of the parent entirely.
During crossover, the buffer is only partially inherited. The
crossover offspring fills its buffer with the most recent half
of transitions coming from each of the two parents’ genetic
memories.

Q-filtered distillation crossovers

In this section, we propose a Q-filtered behaviour distil-
lation crossover that selectively merges the behaviour of
two parent policies into a child policy. Unlike n-point
crossovers, this operator acts in the phenotype space, and
not in parameter space.

Figure 1: Q-filtered distillation crossover compared to n-
point crossover. The contour plots represent the state visi-
tation distributions of the agents (i.e. the average amount of
time the agent spends in each state) for the first two state
dimensions of an environment. The plot is generated by fit-
ting a Gaussian kernel density model over the states col-
lected over many episodes. These distributions show how
Q-filtered distillation crossover selectively merges the be-
haviours of the two parents by inheriting from the shapes of
both parent distributions. In contrast, the modes of the state
visitation distribution obtained by the traditional crossover
are mostly disjoint from the modes of the parent distribu-
tions.

For a pair of parent actors from the population, the
crossover operation works as follows. A new agent with an
initially empty associated genetic memory is created. The

genetic memory is filled in equal proportions with the lat-
est transitions coming from the genetic memories of the two
parents. The child agent is then trained via a form of Imi-
tation Learning (Osa et al. 2018) to selectively imitate the
actions the parents would take in the states from the newly
created genetic memory. Equivalently, this process can be
seen as a more general type of policy distillation (Rusu et al.
2016) process since it aims to “distil” the behaviour of the
parents into the child policy.

Algorithm 1: Distillation Crossover
Input : Parent policies μx, μy with memory Rx, Ry

Output: Child policy μz with memory empty Rz

1 Add latest κ
2 transitions from Rx to Rz

2 Add latest κ
2 transitions from Ry to Rz

3 Shuffle the transitions in Rz

4 Randomly initialise the weights θz of μz with the
weights of one of the parents

5 for e← 1 to epochs do
6 for i← 1 to κ/NC do
7 Sample state batch of size NC from Rz

8 Optimise θz to minimise L(C) using SGD
9 end

10 end

Unlike the conventional policy distillation proposed by
Rusu et al. (2016), two parent networks are involved, not
one. This introduces the problem of divergent behaviours.
The two parent policies can take radically different actions in
identical or similar states. The problem is how the child pol-
icy should decide whom to imitate in each state. The key ob-
servation of the proposed method is that the critic of the RL
agent already knows the values of certain states and actions.
Therefore, it can be used to select which actions should be
followed in a principled and globally consistent manner. We
propose the following Q-filtered behaviour cloning loss to
train the child policy:

L(C) =

NC∑
i

‖μz(si)− μx(si)‖2 IQ(si,μx(si))>Q(si,μy(si))

+

NC∑
j

‖μz(sj)− μy(sj)‖2 IQ(sj ,μy(sj))>Q(sj ,μx(sj))

+
1

NC

NC∑
k

‖μz(sk)‖2 ,

where the sum is taken over a batch of size NC sampled
from the genetic memories of the two parent agents. μx and
μy represent the deterministic parent policies, while μz is
the deterministic policy of the child agent.

The indicator function I uses the Q-Network of the RL
agent to decide which parent takes the best action in each
state. The child policy is trained to imitate those actions
by minimising the first two terms. The final term is an
L2 regularisation that prevents the outputs from saturating
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the hyperbolic tangent activation. Figure 1 contains a dia-
gram comparing this new crossover with the ERL n-point
crossover. We refer to ERL with the distillation crossover as
Distilled Evolutionary Reinforcement Learning (DERL).

We note that while this operator is indeed more compu-
tationally intensive, a small number of training epochs over
the relatively small genetic memory suffices. Additionally,
we expect a distributed implementation of our method to
compensate for the incurred wall clock time penalties. We
leave this endeavour for future work.

Parent selection mechanism

An interesting question is how parents should be selected
for this crossover. A general approach is to define a mating
score function m : Π×Π→ R that takes as input two poli-
cies and provides a score. The pairs with higher scores are
more likely to be selected. Similarly to Gangwani and Peng
(2018), we distinguish two ways of computing the score:
greedy and distance-based.

Greedy The score m(μx, μy) = f(μx) + f(μy) can be
greedily determined by the sum of the fitness of the two par-
ents. This type of selection generally increases the stability
of the population and makes it unlikely that good individuals
are not selected.

Distance based The score m(μx, μy) = dΠ(μx, μy) can
be computed using a distance metric in the space of all pos-
sible policies. “Different” policies are more likely to be se-
lected for mating. The exact notion of “different” depends on
the precise form of the distance metric dΠ. Here, we propose
a distance metric in the behaviour space of the two policies
that takes the form:

dΠ(μx, μy) = Ex∼ρx [‖μx(x)− μy(x)‖2]
+ Ex∼ρy

[‖μx(x)− μy(x)‖2],
where ρx and ρy are the state-visitation distributions of the
two agents.

This distance metric measures the expected difference in
the actions taken by the two parent policies over states com-
ing from a mixture of their state visitation distributions.
This expectation is in practice stochastically approximated
by sampling a large batch from the genetic memories of the
two agents. This strategy biases the introduction of novel be-
haviours into the population at the expense of stability as the
probability that fit individuals are not selected is increased.

Proximal mutations

As showed by Lehman et al. (2018), Gaussian mutations
can have catastrophic consequences on the behaviour of an
agent. In fact, the stability of the policy update is a prob-
lem even for gradient descent approaches, where an inap-
propriate step size can have unpredictable consequences in
the performance landscape. Methods like PPO (Schulman et
al. 2017) are remarkably stable by minimising an auxiliary
KL divergence term that keeps the behaviour of the new pol-
icy close to the old one.

Based on these motivations, we integrate the safe mu-
tation operator SM-G-SUM that has been proposed by

Figure 2: Proximal mutations compared to Gaussian muta-
tions. The blue contour plot shows the state visitation distri-
bution of the parent policy. The red contour plots show the
difference between the distribution of the children and that
of the parent. The difference plots are generated by taking
the normalised difference between the parent and child prob-
ability densities. The behaviour of the policy obtained by
proximal mutation is a small perturbative adjustment to the
parent behaviour. In contrast, the traditional mutation pro-
duces a divergent behaviour, even though it modifies only a
fraction of the weights (shown in red).

Algorithm 2: Proximal Mutation
Input : Parent policy μx with memory Rx

Output: Child policy μy with memory Ry

1 Initialise Ry ← Rx and μy ← μx

2 Sample state batch of size NM from Rx

3 Compute s on the batch samples si as in Equation 1.
4 Mutate θy ← θy +

x
s ,x ∼ N (0, σI)

Lehman et al. (2018) with the genetic memory of the pop-
ulation. This operator uses the gradient of each dimension
of the output action over a batch of NM transitions from the
genetic memory to compute the sensitivity s of the actions
to weight perturbations:

s =

√√√√ |A|∑
k

( NM∑
i

∇θμθ(si)k

)2

(1)

The sensitivity is then used to scale the Gaussian pertur-
bation of each weight accordingly by θ ← θ + x

s , with
x ∼ N (0, σI), where σ is a mutation magnitude hyperpa-
rameter. The resulting operator produces child policies that
are in the proximity of their parent’s behaviour. Therefore,
we refer to this operator as a proximal mutation (Figure 2),
and the version of ERL using it as Proximal Evolutionary
Reinforcement Learning (PERL).

While the proximal mutations do not explicitly use learn-
ing, they rely on the capacity of the policies to learn, or in
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other words, to be differentiable. Without this property, these
behaviour sensitivities to the parameter perturbations cannot
be computed analytically.

Integration

The full benefits of the newly introduced operators are re-
alised when they are used together. The Q-filtered distilla-
tion crossover increases the stability of the population and
drives the agents towards regions of the state-action space
with higher Q-values. The proximal mutations improve the
exploration of the population and its ability to discover bet-
ter policies. As will be seen in the evaluation section, the
operators complement each other. We refer to their dual in-
tegration with ERL as Proximal Distilled Evolutionary Re-
inforcement Learning (PDERL).

Figure 3: A high-level view of PDERL. The new com-
ponents and interactions are drawn in green and red. In
PDERL, there is a higher flow of information from the in-
dividual experiences and learning (right) to the population
(left) than in ERL.

Ultimately, PDERL contains a hierarchy of interactions
between learning and evolution. A high-level interaction is
realised through the information exchange between the pop-
ulation and the RL agent. The newly introduced operators
add a lower layer of interaction, at the level of the genetic
operators. A diagram of PDERL is given by Figure 3.

Evaluation

This section evaluates the performance of the proposed
methods, and also takes a closer look at the behaviour of
the proposed operators.

Experimental setup

The architecture of the policy and critic networks is iden-
tical to ERL. Those hyperparameters that are shared with

ERL have the same values as those reported by Khadka and
Tumer (2018), with a few exceptions. For Walker2D, the
synchronisation rate ω was decreased from 10 to 1 to allow
a higher information flow from the RL agent to the popula-
tion. In the same environment, the number of evaluations ξ
was increased from 3 to 5 because of the high total reward
variance across episodes. Finally, the fraction of elites in the
Hopper and Ant environments was reduced from 0.3 to 0.2.
Generally, a higher number of elites increases the stability of
the population, but the stability gained through the new op-
erators makes higher values of this parameter unnecessary.

For the PDERL specific hyperparameters, we performed
little tuning due to the limited computational resources. In
what follows we report the chosen values alongside the
values that were considered. The crossover and mutation
batch sizes are NC = 128 and NM = 256 (searched over
64, 128, 256). The genetic memory has a capacity of κ = 8k
transitions (2k, 4k, 8k, 10k). The learning rate for the distil-
lation crossover is 10−3 (10−2, 10−3, 10−4, 10−5), and the
child policy is trained for 12 epochs (4, 8, 12, 16) . All the
training procedures use the Adam optimiser. Greedy parent
selection is used unless otherwise indicated. As in ERL, the
population is formed of k = 10 actors.

When reporting the results, we use the official imple-
mentations for ERL1 and TD32, and the OpenAI Baselines3

implementation for PPO. Our code is publicly available at
https://github.com/crisbodnar/pderl.

Performance evaluation

This section evaluates the mean reward obtained by the
newly proposed methods as a function of the number of
environment frames experienced. The results are reported
across five random seeds. Figure 4 shows the mean reward
and the standard deviation obtained by all algorithms on five
MuJoCo (Todorov, Erez, and Tassa 2012) environments.

While PERL and DERL bring improvements across mul-
tiple environments, they do not perform well across all
of them. PERL is effective in stable environments like
HalfCheetah and Hopper, where the total reward has low
variance over multiple rollouts. At the same time, DERL
is more useful in unstable environments like Walker2d and
Ant since it drives the population towards regions with
higher Q values. In contrast, PDERL performs consistently
well across all the settings, demonstrating that the newly
introduced operators are complementary. PDERL signifi-
cantly outperforms ERL and PPO across all environments
and, despite being generally less sample efficient than TD3,
it catches up eventually. Ultimately, PDERL significantly
outperforms TD3 on Swimmer, HalfCheetah and Ant, and
marginally on Hopper and Walker2d.

Table 1 reports the final reward statistics for all the tested
models and environments. Side by side videos of ERL and
PDERL running on simulated robots can be found at https://
youtu.be/7OGDom1y2YM. The following subsections take

1https://github.com/ShawK91/erl paper nips18
2https://github.com/sfujim/TD3
3https://github.com/openai/baselines/
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(a) Swimmer-v2 (b) HalfCheetah-v2 (c) Hopper-v2

(d) Walker2d-v2 (e) Ant-v2

Figure 4: The mean reward obtained on Swimmer (a), HalfCheetah (b), Hopper (c), Walker2d (d) and Ant (e). PDERL outper-
form ERL, PPO and TD3 on all the environments.

a closer look at the newly introduced operators and offer a
justification for the improvements achieved by PDERL.

Environment Metric TD3 PPO ERL PERL DERL PDERL

Swimmer
Mean 53 113 334 327 333 337
Std. 26 3 20 26 6 12
Median 51 114 346 354 338 348

HalfCheetah
Mean 11534 1810 10963 13668 11362 13522
Std. 713 28 225 236 358 287
Median 11334 1810 11025 13625 11609 13553

Hopper
Mean 3231 2348 2049 3497 2869 3397
Std. 213 342 841 63 920 202
Median 3282 2484 1807 3501 3446 3400

Walker2D
Mean 4925 3816 1666 3364 4050 5184
Std. 476 413 737 818 1170 477
Median 5190 3636 1384 3804 4491 5333

Ant
Mean 6212 3151 4330 4528 4911 6845
Std. 216 686 1806 2003 1920 407
Median 6121 3337 5164 3331 5693 6948

Table 1: Final performance in all environments. The result
with the highest mean is shown in bold. PERL marginally
outperforms PDERL on two environments, but PDERL con-
sistently performs well across all environments.

Crossover evaluation

A good indicator for the quality of a crossover operator is
the fitness of the offspring compared to that of the parents.
Figure 5 plots this metric for ten randomly chosen pairs of
parents in the Ant environment. Each group of bars gives the
fitness of the two parents and the policies obtained by the
two types of crossovers. All these values are normalised by
the fitness of the first parent. The performance of the child

Figure 5: Normalised crossover performance on the Ant en-
vironment. The distillation crossover achieves higher fitness
than the n-point crossover. Fitness is relative to Parent 1 in
each group.

obtained via an n-point crossover regularly falls below 40%
the fitness of the best parent. At the same time, the fitness
of the policies obtained by distillation is generally at least as
good as that of the parents.

The state visitation distributions of the parents and chil-
dren offer a clearer picture of the two operators. Figure 6
shows these distributions for a sample crossover in the Ant
environment. The n-point crossover produces a behaviour
that diverges from that of the parents. In contrast, the Q-
filtered distillation crossover generates a policy whose be-
haviour contains the best traits of the parent behaviours. The
new operator implicitly drives each new generation in the
population towards regions with higher Q values.
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Figure 6: This figure shows the state visitation distributions
for the distillation crossover and the n-point crossover. Un-
like the n-point crossover, the distillation crossover pro-
duces policies that selectively merge the behaviour of the
parents.

Mutation evaluation

Figure 7: Normalised mutation performance on the Ant envi-
ronment. The proximal mutations obtain significantly higher
fitness than the Gaussian mutations. Fitness is relative to the
Parent in each group.

Figure 7 shows the fitness of the children obtained by
the two types of mutation for ten randomly selected parents
on the Ant environment. Most Gaussian mutations produce
child policies with fitness that is either negative or close to
zero. At the same time, the proximal mutations create indi-
viduals that often surpass the fitness of the parents.

Figure 8: As before, the blue contours represent the state vis-
itation distribution of the parent, whereas the red ones repre-
sent the difference. The child obtained by proximal mutation
inherits the behaviour of the parent to a large degree and ob-
tains a 600 fitness boost. The behaviour obtained by Gaus-
sian mutation is entirely different from that of the parent.
The KL divergence between the parent and child distribu-
tions (0.03 and 0.53) quantitatively confirm this.

As in the previous section, the analysis of the state visi-
tation distribution of the policies reveals the destructive be-

haviour of the Gaussian mutations. The contours of these
distributions for a sample mutation are given in Figure 8.
The policy mutated by additive Gaussian noise completely
diverges from the behaviour of the parent. This sudden
change in behaviour causes catastrophic forgetting, and the
new offspring falls in performance to a total reward of−187.
In contrast, the proximal mutation generates only a subtle
change in the state visitation distribution. The offspring thus
obtained inherits to a great extent the behaviour of the par-
ent, and achieves a significantly higher total reward of 5496.

Related work

This paper is part of an emerging direction of research at-
tempting to merge Evolutionary Algorithms and Deep Re-
inforcement Learning: Khadka and Tumer (2018), Pourchot
and Sigaud (2019), Gangwani and Peng (2018), Khadka et
al. (2019).

Most closely related are the papers of Lehman et al.
(2018) and Gangwani and Peng (2018). Both of these works
address the destructive behaviours of classic variation oper-
ators. Lehman et al. (2018) focus exclusively on safe mu-
tations, and one of their proposed operators is directly em-
ployed in the proximal mutations. However, their paper is
lacking a treatment of crossovers and the integration with
learning explored here. The methods of Gangwani and Peng
(2018) are focused exclusively on safe operators for stochas-
tic policies, while the methods proposed in this work can be
applied to stochastic and deterministic policies alike. The
closest aspect of their work is that they also introduce a
crossover operator with the goal of merging the behaviour of
two agents. Their solution reduces the problem to the tradi-
tional single parent distillation problem using a maximum-
likelihood approach to combine the behaviours of the two
parents. They also propose a mutation operator based on gra-
dient ascent using policy gradient methods. However, this
deprives their method of the benefits of derivative-free opti-
misation such as the robustness to local optima.

Discussion

The ERL framework demonstrates that genetic algorithms
can be scaled to DNNs when combined with learning meth-
ods. In this paper we have proposed the PDERL extension
and shown that performance is further improved with a hier-
archical integration of learning and evolution. While main-
taining a bi-directional flow of information between the pop-
ulation and RL agent, our method also uses learning within
the genetic operators which, unlike traditional implementa-
tions, produce the desired functionality when applied to di-
rectly encoded DNNs. Finally, we show that PDERL outper-
forms ERL, PPO and TD3 in all tested environments.

Many exciting directions for future research remain, as
discussed in the text. An immediate extension would be
to develop a distributed version able to exploit larger and
more diverse populations. Better management of the inher-
ited genetic memories may yield efficiency gains by priori-
tising key experiences. Lastly, we note the potential for using
learning algorithms at the level of selection operators.
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