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Abstract

We show that model compression can improve the population
risk of a pre-trained model, by studying the tradeoff between
the decrease in the generalization error and the increase in the
empirical risk with model compression. We first prove that
model compression reduces an information-theoretic bound
on the generalization error; this allows for an interpretation
of model compression as a regularization technique to avoid
overfitting. We then characterize the increase in empirical risk
with model compression using rate distortion theory. These
results imply that the population risk could be improved by
model compression if the decrease in generalization error ex-
ceeds the increase in empirical risk. We show through a linear
regression example that such a decrease in population risk
due to model compression is indeed possible. Our theoretical
results further suggest that the Hessian-weighted K-means
clustering compression approach can be improved by regular-
izing the distance between the clustering centers. We provide
experiments with neural networks to support our theoretical
assertions.

1 Introduction

The recent success of deep neural networks has dramatically
boosted the applications of machine learning (Krizhevsky,
Sutskever, and Hinton 2012; Silver et al. 2017; Goodfellow
et al. 2016). However, implementing a deep neural network
model on resource-limited devices becomes increasingly dif-
ficult, as deep neural networks usually have a large number of
parameters. For example, for the problem of image classifica-
tion, it takes over 200MB to save the parameters of AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), and more than
500MB for VGG-16 net (Simonyan and Zisserman 2014). It
is difficult to port such large models to mobile devices and
embedded systems, due to their limited storage, bandwidth,
energy and computational resources.

For this reason there has been a flurry of recent work on
compressing the parameters of deep neural networks (see
(Cheng et al. 2017; Krishnamoorthi 2018; Guo 2018) for
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recent surveys). Existing studies mainly focus on designing
compression algorithms to reduce the memory and compu-
tational cost, while keeping the same population risk. How-
ever, in some recent works (Choi, El-Khamy, and Lee 2016;
Zhu et al. 2016; Lin et al. 2017), it has been observed em-
pirically that the population risk of the compressed model
can sometimes be better than that of the original model. This
phenomenon is counterintuitive at a first glance, since com-
pression generally leads to information loss.

Indeed, as neural networks are usually trained by mini-
mizing the empirical risk, a compressed model has a larger
empirical risk than the original one. Despite this fact, model
compression could possibly improve the generalization error,
since it can be interpreted as a regularization technique to
avoid overfitting. As the population risk is the sum of the
empirical risk and the generalization error, it is possible for
the population risk to be reduced by model compression.

1.1 Contributions

In this paper, we provide an information-theoretic explanation
for the population risk improvement with model compression
by characterizing the tradeoff between generalization error
and empirical risk. Specifically, we focus on the case where
the model is compressed based on a pre-trained model.

We first prove that model compression tightens the
information-theoretic generalization error bound in (Ragin-
sky et al. 2016), and it can therefore be interpreted as a
regularization method to reduce overfitting. Furthermore, we
define the distortion as the difference in the empirical risk
between the original and compressed models, and use rate
distortion theory to characterize the distortion as a function
of the number of bits R used to describe the model. If the
decrease in generalization error exceeds the increase in empir-
ical risk, the population risk can be improved. An empirical
illustration of this result for the MNIST dataset is provided in
Figure 1, where model compression and population risk im-
provement are achieved simultaneously (details are given in
Section 7). To better demonstrate our theoretical results, we
investigate an example of linear regression comprehensively,
where we develop explicit bounds on the generalization error
and the distortion.

Our generalization error bound also suggests that the
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Figure 1: Population risk of the compressed model Ŵ and the
original model W vs. compression ratio (ratio of the number
of bits used for compressed model to the number of bits used
for original model). The generalization error of Ŵ decreases
and the empirical risk of Ŵ increases with more compression,
i.e., smaller compression ratio. The population risk of Ŵ is
less than that of W for compression ratio larger than 6%.

Hessian-weighted K-means clustering compression ap-
proach (Choi, El-Khamy, and Lee 2016) can be improved
by further regularizing the distance between the clustering
centers. Our numerical experiments with neural networks
validate our theoretical assertions and demonstrate the effec-
tiveness of the proposed regularizer.

1.2 Related Works

There have been many studies on model compression for
deep neural networks. The compression could happen by
varying the training process, e.g., network structure optimiza-
tion (Howard et al. 2017), low precision neural networks
(Gupta et al. 2015) and neural networks with binary weights
(Courbariaux, Bengio, and David 2015; Rastegari et al. 2016).
Here we mainly discuss compression approaches that are ap-
plied on a pre-trained model.

Pruning, quantization and matrix factorization are the most
popular approaches to compressing pre-trained deep neu-
ral networks. The study of pruning algorithms for model
compression which remove redundant parameters from neu-
ral networks dates back to (Mozer and Smolensky 1989;
LeCun, Denker, and Solla 1990; Hassibi and Stork 1993).
Recently, an iterative pruning and retraining algorithm to
further reduce the size of deep models is proposed in (Han
et al. 2015). In addition, the method of network quantiza-
tion or weight sharing is investigated in (Gong et al. 2014;
Han, Mao, and Dally 2015; Choi, El-Khamy, and Lee 2016;
Ullrich, Meeds, and Welling 2017; Louizos, Ullrich, and
Welling 2017), where a clustering algorithm is employed to
group the weights in a neural network. Matrix factorization,
i.e., low-rank approximation of the weights in neural net-
works has also been widely studied in (Denton et al. 2014;
Tai et al. 2015; Novikov et al. 2015).

All of the aforementioned works demonstrate the effec-
tiveness of their methods via comprehensive numerical ex-

periments. Little research has been done to develop a the-
oretical understanding of how model compression affects
performance. In recent work (Gao, Wang, and Oh 2018), an
information-theoretic view of model compression via rate-
distortion theory is provided, with the focus on purely mini-
mizing the empirical risk of the compressed model. In (Zhou
et al. 2018), a non-vacuous generalization error bound based
on the small complexity of the compressed model using a
PAC-Bayesian framework is discussed.

In contrast to these works, we study the problem from the
perspective of the population risk of the compressed model.
We develop an understanding as to why model compression
can improve population risk based on an analysis of both the
empirical risk and generalization error. More importantly, our
theoretical studies offer insights on designing practical model
compression algorithms, i.e., the increase in empirical risk
and the decrease in generalization error should be considered
jointly, so that the population risk can be improved.

Notation: For a random variable X generated from a distri-
bution μ, we use EX∼μ to denote the expectation taken over
X with distribution μ. We use Id to denote the d-dimensional
identity matrix, and ‖A‖ to denote the spectral norm of a
matrix A. The cumulant generating function (CGF) of a ran-
dom variable X is defined as ΛX(λ) � lnE[eλ(X−EX)]. All
logarithms are natural ones.

2 Preliminaries

2.1 Generalization Error

Consider an instance space Z , a hypothesis space W , and
a nonnegative loss function � : W × Z → R

+. A training
dataset S = {Z1, · · · , Zn} consists of n i.i.d samples Zi ∈
Z drawn from an unknown distribution μ. The goal of a
supervised learning algorithm is to find an output hypothesis
w ∈ W that minimizes the population risk:

Lμ(w) � EZ∼μ[�(w,Z)]. (1)

In practice, μ is unknown, and therefore Lμ(w) cannot be
computed directly. Instead, the empirical risk of w on the
training dataset S is studied, which is defined as

LS(w) �
1

n

n∑
i=1

�(w,Zi). (2)

A learning algorithm can be characterized by a random-
ized mapping from the training data set S to a hypothesis
W according to a conditional distribution PW |S . The gen-
eralization error of a supervised learning algorithm is the
expected difference between the population risk of the output
hypothesis and its empirical risk on the training dataset:

gen(μ, PW |S) � EW,S [Lμ(W )− LS(W )], (3)

where the expectation is taken over the joint distribution
PS,W = PS ⊗ PW |S .

2.2 Review of Rate Distortion Theory

Rate distortion theory, firstly introduced by (Shannon 1959),
is a major branch of information theory which studies the
fundamental limits of lossy data compression. It addresses
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the minimal number of bits per symbol, as measured by the
rate R, to transmit a random variable W such that the receiver
can reconstruct W without exceeding a given distortion D.

Specifically, let Wm = {W1,W2, · · · ,Wm} denote a se-
quence of m i.i.d. random variables Wi ∈ W generated
from a source distribution PW . An encoder fm : Wm →
{1, 2, · · · ,M} maps the message Wm into a codeword, and
a decoder gm : {1, 2, · · · ,M} → Ŵm reconstructs the
message by an estimate Ŵm from the codeword, where
Ŵ ⊆ W denotes the range of Ŵ . A distortion metric
d : W × W → R

+ quantifies the difference between the
original and reconstructed messages. The distortion between
sequences wm and ŵm is defined to be

d(wm, ŵm) � 1

m

m∑
i=1

d(wi, ŵi). (4)

A commonly used distortion metric is the square distortion
function: d(w, ŵ) = (w − ŵ)2.

Definition 1. An (m,M,D)-pair is achievable, if there ex-
ists a (probabilistic) encoder-decoder pair (fm, gm) such
that the alphabet of codeword has size M and the expected
distortion E[d(Wm; gm(fm(Wm)))] ≤ D.

Definition 2. The rate-distortion function and the distortion-
rate function are defined as

R(D) � lim
m→∞

1

m
log2 M

∗(m,D), (5)

D(R) � lim
m→∞D∗(m,R), (6)

where M∗(m,D) � min{M:(m,M,D)is achievable} and
D∗(m,R) � min{D: (m, 2mR, D)-pair is achievable}.

The main theorem of rate distortion theory is as follows.

Lemma 1. (Cover and Thomas 2012) For an i.i.d. source
W with distribution PW and distortion function d(w, ŵ), it
follows that

R(D) = min
PŴ |W :E[d(W,Ŵ )]≤D

I(W ; Ŵ ), (7)

D(R) = min
PŴ |W :I(W ;Ŵ )≤R

E[d(W, Ŵ )]. (8)

The rate-distortion function quantifies the smallest number
of bits required to compress the data given the distortion, and
the distortion-rate function quantifies the minimal distortion
that can be achieved under the rate constraint.

3 Compression Improves Generalization

In this section, we prove that a lossy compression algorithm
can be used to improve the generalization error of a super-
vised learning algorithm via an information-theoretic gen-
eralization error bound. We start from the following lemma
which provides an upper bound on the generalization error
using the mutual information I(S;W ) between training data
set S and the output of the learning algorithm W .

Lemma 2. (Xu and Raginsky 2017) Suppose �(w,Z) is σ-
sub-Gaussian1 under Z ∼ μ for all w ∈ W , then

|gen(μ, PW |S)| ≤
√

2σ2

n
I(S;W ). (9)

Compression can be viewed as a post-processing of the
output of a learning algorithm. The output model W gen-
erated by a learning algorithm can be quantized, pruned,
factorized or even perturbed by noise, which results in a com-
pressed model Ŵ . Assume that the compression algorithm
is only based on W , and can be described by a conditional
distribution PŴ |W . Then the following Markov chain holds:

S → W → Ŵ . By the data processing inequality,

I(S; Ŵ ) ≤ min{I(W ; Ŵ ), I(S,W )}.
Thus, we have the following theorem characterizing the gen-
eralization error of the compressed model.
Theorem 1. Consider a learning algorithm PW |S , a com-
pression algorithm PŴ |W , and suppose �(ŵ, Z) is σ-sub-

Gaussian under Z ∼ μ for all ŵ ∈ Ŵ . Then

|gen(μ, PŴ |S)| ≤
√

2σ2

n
min{I(W ; Ŵ ), I(S,W )}. (10)

Note that the generalization error bound in Theorem 1
for the compressed model is tighter than the one in Lemma
2. Thus, a compression algorithm can be interpreted as a
regularization technique to reduce the generalization error.

4 Tradeoff between Generalization Error

and Distortion

In this section, we define the distortion metric in model com-
pression, and connect the distortion with the generalization
error bound using rate-distortion theory. We show that the
population risk can possibly be improved by trading-off be-
tween the generalization error and the distortion.

4.1 Distortion Metric in Model Compression

Consider the expected population risk of the compressed
model Ŵ ,

ES,W,Ŵ [Lμ(Ŵ )]

= E[Lμ(Ŵ )− LS(Ŵ ) + LS(Ŵ )− LS(W ) + LS(W )]

= E[LS(W )] + gen(μ, PŴ |S) + E[LS(Ŵ )− LS(W )].

Note that the first empirical risk term is independent of the
compression algorithm, the second generalization error term
can be upper bounded by Theorem 1, and the third term
E[LS(Ŵ )−LS(W )] quantifies the distortion in the empirical
risk if we use the compressed model Ŵ instead of the original
model W . We then define the following distortion metric for
model compression:

dS(w, ŵ) � LS(ŵ)− LS(w), (11)

1A random variable X is σ-sub-Gaussian if ΛX(λ) ≤ σ2λ2

2
,

∀λ ∈ R.
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which is the difference in the empirical risk between the com-
pressed model Ŵ and the original model W . By Theorem 1,
it follows that

ES,W,Ŵ [Lμ(Ŵ )− LS(W )]

≤
√

2σ2

n
I(W ; Ŵ ) + ES,W,Ŵ [dS(Ŵ ,W )]

� LS,W (PŴ |W ), (12)

where LS,W (PŴ |W ) is an upper bound on the expected dif-

ference between the population risk of Ŵ and the empirical
risk of the original model W on training dataset S.

4.2 Population Risk Improvement

By Lemma 1, the tightest bound in (12) that can be achieved
at rate R is given in the following theorem.

Theorem 2. Suppose the assumptions in Theorem 1 hold,
and I(W ; Ŵ ) = R, then

min
PŴ |W :I(W ;Ŵ )=R

ES,W,Ŵ [Lμ(Ŵ )− LS(W )]

≤
√

2σ2

n
R+D(R). (13)

From the properties of the distortion-rate function (Cover
and Thomas 2012), we know that D(R) is a decreasing func-
tion of R. Thus, to minimize the population risk of the com-
pressed model Ŵ , there is a tradeoff between the rate R,
which upper bounds the generalization error, and the distor-
tion D(R) on the empirical risk. Such a tradeoff is similar
to the relationship between the complexity of the hypothesis
space, e.g., VC dimension, and the empirical risk, where a
simple and small model could have a small generalization
error, but may underfit the training data. As will be shown
Section 7, such a tradeoff can be observed in practice, and it is
possible to improve the population risk of Ŵ with a properly
chosen compression algorithm and compression ratio.

5 Example: Linear Regression

In this section, we comprehensively explore the example of
linear regression to get a better understanding of the results
in Section 4. To this end, we develop explicit upper bound
for generalization error and distortion-rate function D(R).
All the proofs are provided in (Bu et al. 2019).

Suppose that the dataset S = {Z1, · · · , Zn} =
{(X1, Y1), · · · , (Xn, Yn)} is generated from the following
linear model with weight vector w∗ = (w∗(1), · · · , w∗(d)) ∈
R

d,
Yi = X�

i w∗ + εi, i = 1, · · · , n, (14)

where Xi’s are i.i.d. d-dimensional random vectors with dis-
tribution N (0,ΣX), and εi ∼ N (0, σ′2) denotes i.i.d. Gaus-
sian noise. We adopt the mean squared error as the loss
function, and the empirical risk on S is

LS(w) =
1

n

n∑
i=1

(Yi −X�
i w)2 =

1

n
‖Y −X�w‖22, (15)

for w ∈ W = R
d, where X ∈ R

d×n denotes all the input
samples, and Y ∈ R

n denotes the responses. If n > d, the
ERM solution is

W = (XX�)−1XY, (16)

which is deterministic given S. Its generalization error can
be computed exactly as in the following lemma.
Lemma 3. If n > d+ 1, then

gen(μ, PW |S) =
σ′2d
n

(2 +
d+ 1

n− d− 1
). (17)

5.1 Information-Theoretic Generalization
Bounds for Compressed Linear Model

We note that the mutual information based bound in Lemma
2 is not applicable for this linear regression model, since W
is a deterministic function of S, and I(S;W ) = ∞. How-
ever, this issue can be resolved if we post-process the ERM
solution W by a compression algorithm, and use Theorem 1
to upper bound the generalization error by I(Ŵ ;W ).

Consider a compression algorithm, which maps the orig-
inal weights W ∈ R

d to the compressed model Ŵ ∈ Ŵ ⊆
R

d. For a fixed and compact Ŵ , we define

C(w∗) � sup
ŵ∈Ŵ

‖ŵ − w∗‖22, (18)

which measures the largest distance between the reconstruc-
tion ŵ and the optimal weights w∗. The following theorem
provides an upper bound on the generalization error of the
compressed model Ŵ .
Theorem 3. Consider the ERM solution W =
(XX�)−1XY , and suppose Ŵ is compact, then

gen(μ, PŴ |S) ≤ 2σ∗2
�

√
I(W ; Ŵ )

n
, (19)

where σ∗2
� � C(w∗)‖ΣX‖+ σ′2.

5.2 Distortion-Rate Function for Linear Model

In this subsection, we provide an upper bound on the
distortion-rate function D(R) for the linear regression model,
and further demonstrate the tradeoff between generalization
error and distortion.

Note that ∇LS(W ) = 0, since W minimizes the empirical
risk. The Hessian matrix of the loss function is

HS(W ) =
1

n
XX�, (20)

which is not a function of W . Then, the distortion function
can be written as:

ES,W,Ŵ [dS(Ŵ ,W )]

= ES,W,Ŵ [LS(Ŵ )− LS(W )]

= ES,W,Ŵ [(Ŵ −W )�
1

n
XX�(Ŵ −W )]. (21)

The following theorem characterizes upper bounds for R(D)
and D(R) for linear regression.
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Theorem 4. For the ERM solution W = (XX�)−1XY , we
have

R(D) ≤ d

2

(
ln

dσ′2

(n− d− 1)D

)+

, D ≥ 0, (22)

D(R) ≤ dσ′2

n− d− 1
e−

2R
d , R ≥ 0, (23)

where (x)+ = max{0, x}.
Remark 1. As shown in (Vershynin 2010), if n = O(d/ε2),
‖ 1
nXX� − ΣX‖ ≤ ε holds with high probability. Then, the

following lower bound on R(D) holds if we can approximate
1
nXX� in (21) using ΣX ,

R(D) � d

2

(
ln

dσ′2

(n− d− 1)D

)+

−D(PW ‖PWG
), (24)

where WG denotes a Gaussian random vector with the same
mean and variance as W .

The proof of the upper bound for R(D) is based on con-
sidering a Gaussian random vector which has the same mean
and covariance matrix as W . In addition, the upper bound is
achieved when W − Ŵ is independent of the dataset S with
the following conditional distribution,

PŴ |W = N (
(1− α)W + αw∗, (1− α)

D

d
Σ−1

X

)
, (25)

where α � nD
dσ′2 ≤ 1. Note that this “compression algorithm”

requires the knowledge of optimal weights w∗, which is
unknown in practice.

Combing Theorems 3 and 4, we have the following result.
Corollary 1. Under the same assumptions as in Theorem 3,
we have

minPŴ |W :I(W ;Ŵ )=RES,W,Ŵ [Lμ(Ŵ )− LS(W )]

≤ 2σ∗2
�

√
R

n
+

dσ′2

n− d− 1
e−

2R
d , R ≥ 0. (26)

It is clear that in (26) the first term corresponds to the
generalization error, which decreases with compression, and
the second term corresponds to the empirical risk, which
increases with compression.

5.3 Evaluation and Visualization

In the following plots, we generate the training data set S
using the linear model in (14) by letting d = 50, n = 80,
ΣX = Id and σ′2 = 1. We consider the following two com-
pression algorithms. The first one is the conditional distribu-
tion PŴ |W in the proof of achievability (25), which requires
the knowledge of w∗ and is denoted as “Oracle”. The sec-
ond one is the well-known K-means clustering algorithm,
where the weights in W are grouped into K clusters and rep-
resented by the cluster centers in the reconstruction Ŵ . By
changing the number of clusters K, we can control the rate
R, i.e., I(W ; Ŵ ). We average the performance and estimate
I(W ; Ŵ ) of these algorithms with 10000 Monte-Carlo trials
in the simulation. We note that I(W ; Ŵ ) equals to the num-
ber of bits used in compression only in the asymptotic regime

Figure 2: Comparison between the generalization error bound
and generalization errors of different algorithms for linear
regression.

Figure 3: Distortions achieved by different algorithms for
linear regression.

Figure 4: Comparison of the population risks achieved by
different algorithms for linear regression.

of large number of samples. In practice, we may have only
one sample of the weights W , and therefore I(W ; Ŵ ) simply
measures the extent to which compression is performed by
the compression algorithm.

In Figure 2, we plot the generalization error bound in
Theorem 3 as a function of the rate R, and compare the gen-
eralization errors of the Oracle and K-means algorithms. It
can be seen that Theorem 3 provides a valid upper bound for
the generalization error, but this bound is tight only when R
is small. Moreover, both compression algorithms can achieve
smaller generalization errors compared to that of the ERM
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solution W , which validates the result in Theorem 1.
Figure 3 plots the upper bound on the distortion-rate func-

tion in Theorem 4 and the distortions achieved by the Oracle
and K-means algorithms. The distortion of the Oracle de-
creases as we increase the rate R, and matches the D(R)
function well. However, there is a large gap between the
distortion achieved by K-means algorithms and D(R). One
possible explanation is that since w∗ is unknown, it is im-
possible for the K-means algorithm to learn the optimal
cluster center with only one sample of W . Even if we view
W (j), j = 1, · · · , d as i.i.d. samples from the same distribu-
tion, there is still a gap between the distortion achieved by the
K-means algorithm and the optimal quantization as studied
in (Linder, Lugosi, and Zeger 1994).

We plot the population risks of the ERM solution W , the
Oracle and K-means algorithms in Figure 4. It is not sur-
prising that the Oracle algorithm achieves a small population
risk, since Ŵ is a function of w∗ and Ŵ = w∗ when R = 0.
However, it can be seen that the K-means algorithm achieves
a smaller population risk than the original model W , since
the decrease in generalization error exceeds the increase in
empirical risk, when we use fewer clusters in the K-means
algorithm, i.e. a smaller rate R. We note that the minimal
population risk is achieved when K = 2, since we initialize
w∗ so that w∗(i), 1 ≤ i ≤ d, can be well approximated by
two cluster centers.

6 Quantization Algorithm Minimizing LS,W

In this section, we propose an improvement of the Hessian-
weighted (HW) K-means clustering algorithm (Choi, El-
Khamy, and Lee 2016) for model compression by regulariz-
ing the distance between the cluster centers, which minimizes
the upper bound LS,W (PŴ |W ), as suggested by our theoreti-
cal results.

The goal of HW K-means is to minimize the distortion
on the empirical risk dS(Ŵ ,W ), which has the following
Taylor series approximation:

dS(Ŵ ,W )

≈ (Ŵ −W )T∇LS(W ) +
1

2
(Ŵ −W )THS(W )(Ŵ −W ),

where HS(W ) is the Hessian matrix. Assuming that W is a
local minimum of LS(W ) and ∇LS(W ) ≈ 0, the first term
can be ignored. Furthermore, the Hessian matrix HS(W )
can be approximated by a diagonal matrix, which further
simplifies the objective to dS(Ŵ ,W ) ≈ ∑d

j=1 h
(j)(W (j) −

Ŵ (j))2, where h(j) is the j-th diagonal element of the Hes-
sian matrix.

Given network parameters w = {w(1), · · · , w(d)}, the
HW K-means clustering algorithm (Choi, El-Khamy, and
Lee 2016) partitions them into K disjoint clusters, using a set
of cluster centers c = {c(1), · · · , c(K)}, and a cluster assign-
ment C =

{
C(1), · · · , C(K)

}
, while solving the following

optimization problem:

min

K∑
k=1

∑
w(j)∈C(k)

h(j)|w(j) − c(k)|2. (27)

In contrast to HW K-means which only cares about em-
pirical risk, our goal is to obtain as small a population risk as
possible by minimizing the upper bound

LS,W (PŴ |W ) =

√
2σ2

n
I(W ; Ŵ ) + E[dS(Ŵ ,W )]. (28)

Here, we fix the number of clusters K so that I(W ; Ŵ ) ≤
log2 K, and we want to minimize LS,W (PŴ |W ) by carefully
designing the reconstructed weights, i.e., by choosing cluster
centers{c(1), · · · , c(K)}. Then, minimizing the sub-Gaussian
parameter σ is one way to control the generalization error
of the compression algorithm. Recall that in Theorem 3, we
have

gen(μ, PŴ |S) ≤ 2
(
C(w∗)‖ΣX‖+σ′2)

√
I(W ; Ŵ )

n
, (29)

where the sub-Gaussian parameter is related to C(w∗) =
supŵ∈Ŵ ‖ŵ−w∗‖22 in linear regression. Note that this quan-
tity can be interpreted as the diameter of the set W . Since the
ground truth w∗ is unknown in practice, we then propose the
following diameter regularization by approximating C(w∗)
in (29) by

βmax
k1,k2

|c(k1) − c(k2)|2, β ≥ 0, (30)

where β is a parameter controls the penalty term, and can
be selected by cross validation in practice. Our diameter-
regularized Hessian-weighted (DRHW) K-means algorithm
solves the following optimization problem:

min
K∑

k=1

∑
w(j)∈C(k)

h(j)|w(j)−c(k)|2+βmax
k1,k2

|c(k1)−c(k2)|2.

(31)
An iterative algorithm to solve this optimization problem is
provided in (Bu et al. 2019).

7 Experiments

In this section, we provide some real-world experiments to
validate our theoretical assertions and the DRHW K-means
algorithm.2 Our experiments include compression of: (i) a
three-layer fully connected network on MNIST; and (ii) a
convolutional neural network with five conv layers and three
linear layers on CIFAR10.3

In Theorem 1, an upper bound on the expected generaliza-
tion error is provided, and therefore we independently train
50 different models (with the same structure but different
parameter initializations), and average the results. We use
10% of the training data to train the model for MNIST, and
use 20% of the training data to train the model for CIFAR10.
For each experiment, we use the same number of clusters for
each convolutional layer and fully connected layer.

In Figures 5 and 6, we compare DRHW K-means with
HW K-means for different compression ratios on the MNIST

2All the codes of our experiments are available at the following
link https://github.com/wgao9/weight-quant.

3We downloaded the pre-trained model in PyTorch from
https://github.com/aaron-xichen/pytorch-playground.

3305



0

0.03

0.06

0.09

0.12

4% 6% 8% 10% 12%

Empricisl Risk( =50)

Empirical Risk( =0)

C
ro

ss
E

nt
ro

py
L

os
s

0.16

0.2

0.24

0.28

4% 6% 8% 10% 12%

Population Risk Original

Population Risk( =0)

Population Risk( =50)

Generalization Error( =0)

Generalization Error( =50)

C
ro

ss
E

nt
ro

py
L

os
s

Compression Ratio

Figure 5: Comparison between the diameter regularized Hes-
sian weighted K-means algorithm (β = 50) and the original
one (β = 0) on MNIST. Top: empirical risks. Bottom: popu-
lation risks and generalization errors.

and CIFAR10 datasets. Both figures demonstrate that the
proposed quantization algorithm increases the empirical risk,
but decreases the generalization error, and the net effect is
that the proposed algorithm has a smaller population risk
than the original model. More importantly, DRHW K-means
algorithm has a better population risk than the HW K-means
algorithm.

In Figure 7, we study how β affects the performance of our
diameter-regularized Hessian-weighted K-means algorithm.
It can be seen that as β increases, the generalization error
decreases and distortion in empirical risk increases, which
validates the idea that this proposed diameter regularizer can
be used to reduce the generalization error. The value of β
that results in the best population risk can be chosen via
cross-validation in practice.

8 Conclusion

In this paper, we have provided an information-theoretical un-
derstanding of how model compression affects the population
risk of a compressed model. We have shown that compression
controls the tradeoff between generalization error and empiri-
cal risk. Our theoretical studies convey an important message
for designing practical model compression algorithms, which
is that we should consider the increase in empirical risk and
the decrease in generalization error jointly, so as to achieve a
smaller population risk.
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Figure 6: Comparison between the diameter regularized Hes-
sian weighted K-means algorithm (β = 25) and the original
one (β = 0) on CIFAR10. Top: empirical risks. Bottom:
population risks and generalization errors.
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Figure 7: Diameter-regularized Hessian-weighted K-means
with different β on the MNIST dataset with K = 7.
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