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Abstract

Deep models can be made scale-invariant when trained
with multi-scale information. Images can be easily made
multi-scale, given their grid-like structures. Extending this
to generic graphs poses major challenges. For example, in
link prediction tasks, inputs are represented as graphs consist-
ing of nodes and edges. Currently, the state-of-the-art model
for link prediction uses supervised heuristic learning, which
learns graph structure features centered on two target nodes.
It then learns graph neural networks to predict the existence
of links based on graph structure features. Thus, the perfor-
mance of link prediction models highly depends on graph
structure features. In this work, we propose a novel node ag-
gregation method that can transform the enclosing subgraph
into different scales and preserve the relationship between
two target nodes for link prediction. A theory for analyz-
ing the information loss during the re-scaling procedure is
also provided. Graphs in different scales can provide scale-
invariant information, which enables graph neural networks
to learn invariant features and improve link prediction perfor-
mance. Our experimental results on 14 datasets from differ-
ent areas demonstrate that our proposed method outperforms
the state-of-the-art methods by employing multi-scale graphs
without additional parameters.

Introduction

Multi-scale learning is an effective method to improve the
performance of deep learning model for image-to-image
tasks such as semantic segmentation (Chen et al. 2018b).
Instances in different scales make the identifying and label-
ing difficult using convolutional neural networks since these
instances should be labeled by considering a different range
of pixels. For example, a face can be identified by only con-
sidering the human body nearby. However, Identifying a car
depends on long range information. This problem can be ad-
dressed by a multi-scale convolution neural network, which
takes images in different scales as input to increase the ro-
bustness of models.

Image data is easy to re-scale and applied to multi-scale
learning framework since it has grid-like structures. Pixels
in the image also contain locality and order information.
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However, in many real-world tasks like friend recommen-
dation (Adamic and Adar 2003), movie recommendation
(Koren, Bell, and Volinsky 2009), knowledge graph comple-
tion (Nickel et al. 2016) and metabolic network reconstruc-
tion (Oyetunde et al. 2016), the input data is represented
as graphs for link prediction (Liben-Nowell and Kleinberg
2007). It is challenging to re-scale the graph data directly
and apply it to link prediction tasks.

There have been many methods proposed to solve link
prediction problems (Kipf and Welling 2016b; Perozzi, Al-
Rfou, and Skiena 2014; Tang et al. 2015; Qiu et al. 2018).
One class of these methods are heuristic methods (Lü and
Zhou 2011), which employ a heuristic function to com-
pute the similarity between two nodes and evaluate the exis-
tence of link. The heuristic function can compute the simi-
larity score using a subgraph or the whole graph (Bar-Yossef
and Mashiach 2008). However, these methods employ pre-
defined heuristic function to compute the score and predict
the existence of link. They cannot achieve satisfactory per-
formance on different kinds of graphs (Zhang and Chen
2018). To enable heuristic methods to perform well on dif-
ferent graphs, (Zhang and Chen 2018) proposed the SEAL
framework, which can learn graph structure features of an
enclosing subgraph and transform the link prediction prob-
lem to a graph classification problem.

Although SEAL framework works well for link predic-
tion tasks, it only employs a single scale enclosing subgraph
as the input. SEAL employs graph convolutional neural lay-
ers (Kipf and Welling 2016a) to aggregate node features in
the graph and extract representative features for each en-
closing graph. Although the node information can be prop-
agated deeper by stacking more graph convolution layers,
each node is most influenced by its neighbors (Xu et al.
2018). Therefore, if nodes in a neighborhood contain sim-
ilar and redundant information, the performance of graph
convolution network will be affected. In this situation, long
range neighbor information is required to achieve better per-
formance for link prediction tasks.

To tackle this challenge, we propose a node aggregation
method which transforms the input enclosing subgraph into
different scales. By employing the proposed node aggrega-
tion method on the original graph, we can obtain a new en-
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closing subgraph. A series of graphs in different scales can
be obtained by performing this procedure iteratively. These
graphs in different scales can provide complementary in-
formation, which is useful to predict the existence of link.
Our multi-scale link prediction method takes enclosing sub-
graphs in different scales as input and extracts graph struc-
ture features in different scales. The existence of link is pre-
dicted using hierarchical graph features. In addition, we pro-
vide theoretical analysis for our proposed method to guaran-
tee that the aggregation method can preserve graph structure
information.

Our contributions can be summarized as follows: 1) We
propose a multi-scale link prediction framework, which em-
ploys a new node aggregation method to transform the graph
into different scales to perform link prediction. 2) We pro-
vide theoretical analysis for our proposed method to guar-
antee that the aggregation method can alleviate redundant
information and preserve useful information. 3) We evalu-
ate our proposed multi-scale link prediction method on 14
datasets from different areas. Our proposed method achieves
better performance compared with the baseline methods in-
cluding a variant of heuristic methods, latent feature meth-
ods, and the state-of-the-art method (SEAL).

Related Work
In link prediction tasks, we are given an undirected graph
G = (V,E), where V is the set of vertices and E ∈ V × V
is the set of observed links in the graph. The edges E can
also be derived from the adjacency matrix A of the graph.
Given any two vertices x and y in the graph, A(x, y) = 1 if
there exists an edge between x and y and A(x, y) = 0 other-
wise. The goal of the link prediction model is to determine
whether a link is likely to exist between two nodes in the
graph.

The link problem can be explored by analyzing the struc-
ture of graph centered on two nodes. The key idea is to ex-
plore which graph structure encourages two center nodes to
connect. One category of link prediction method based on
the graph structure is heuristic methods. Heuristic methods
explore the graph structure centered on two target nodes by
manually designed heuristic functions. The heuristic func-
tion can compute a similarity score between two nodes based
on the graph structure. Heuristic methods include common
neighbors, Adamic-Adar (Adamic and Adar 2003), prefer-
ential attachment (Barabási and Albert 1999), resource al-
location (Zhou, Lü, and Zhang 2009), Katz (Katz 1953),
PageRank (Brin and Page 2012), and SimRank (Jeh and
Widom 2002). The drawback of heuristic methods is that the
heuristic function is manually designed and cannot perform
well on all datasets (Zhang and Chen 2018). For example,
common neighbors can achieve good performance on social
networks. However, it commonly fails on biology networks
since nodes sharing more neighbors tend to disconnect with
each other (Kovács et al. 2019).

To tackle this challenge, (Zhang and Chen 2017) pro-
posed a supervised heuristic method Weisfeiler-Lehman
Neural Machine (WLNM) that can learn the heuristic func-
tion automatically based on the dataset. WLNM extracted
a fixed size subgraph centered on two target nodes and fed

it into a fully connected neural network to predict the ex-
istence of link between two target nodes. The state-of-the-
art link prediction method SEAL (Zhang and Chen 2018)
is also a supervised heuristic method. When predicting the
link between two nodes x and y using the SEAL frame-
work, an h-hop enclosing graph Gh

(x,y) consists of nodes
{i|min(d(i, x), d(i, y)) � h} where d(i, x) is the shortest
path/geodesic distance between i and x. SEAL learns the
feature of enclosing subgraphs by graph convolution neural
networks (Kipf and Welling 2016a; Zhang et al. 2018). The
extracted graph structure feature is used to predict the exis-
tence of link between two target nodes by a classifier.

A Multi-Scale Approach for Graph Link

Prediction

In this section, we introduce our multi-scale link predic-
tion method. We start with the node aggregation method and
multi-scale link prediction framework. Then the information
loss analysis in the aggregation procedure is described.

Node Aggregation and Multi-Scale Graph

The overall pipeline of supervised heuristic methods for link
prediction tasks can be summarized as enclosing subgraph
extraction, subgraph structure feature extraction, and classi-
fication based link prediction. The key to supervised heuris-
tic link prediction is how to extract the graph structure fea-
ture. Currently, the most effective method for graph feature
extraction is graph convolution networks (Bruna et al. 2014;
Duvenaud et al. 2015; Niepert, Ahmed, and Kutzkov 2016;
Kipf and Welling 2016a). Graph convolution networks gen-
erate the embedding feature for each node by using a lin-
ear transformation and propagate the embedding feature to
its neighbors. Therefore, the representation of each node is
high-level features from itself as well as its neighborhood.
Although the node feature can be propagated deeper by
stacking more graph convolution layers, each node is most
influenced by its neighbor nodes. If the representation of a
node is similar to that of its neighborhood, the node cannot
obtain information from long range neighbors efficiently. In
this case, the enclosing subgraph may contain redundant in-
formation that can hurt the performance of link prediction
models. To enable node features to propagate to its long
range neighbors efficiently, we propose a node aggregation
method that can remove redundant nodes and transform the
graph into a new scale. Our proposed aggregation method
takes an h-hop enclosing subgraph as the input and gener-
ate a new subgraph by removing redundant nodes. By ag-
gregating the subgraph iteratively, we can obtain a series of
subgraphs in different scales. Our proposed model employs
multi-scale enclosing subgraphs as inputs and extracts hi-
erarchical features to predict the existence of link. The key
intuition of our proposed method is that enclosing graphs in
different scales can provide complementary information for
link prediction tasks.

To aggregate redundant nodes in a neighborhood, we need
to evaluate the similarity between nodes. In this work, we
proposed to assign a label to each node and the label can
be used to discover redundant nodes in the graph. The label
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Figure 1: Diagram of our proposed method for link prediction tasks. The enclosing subgraph is extracted for link prediction.
The subgraph is aggregated and relabeled in different scales. The subgraphs in different scales are fed into graph neural network
for link prediction.

is also used as initial feature for each node for link predic-
tion. The label is computed in terms of the contribution of
determining the existence of link between two target nodes.

The node labeling function is designed based on two crite-
ria: 1) Identifying the role of two target nodes. 2) Providing
relative position information for each node. In this work, we
employ the following function to label each node i in the
enclosing subgraph centered on two target nodes x and y:

fl(i) = 1 +min(dx, dy) + dx + dy, (1)

where dx = d(i, x), dy = d(i, y) are minimal distance be-
tween node i and two target nodes x and y, respectively. The
label of target node is set to 1. If dx = ∞ or dy = ∞, then
fl(i) = 0. Since the goal of our proposed method is to ag-
gregate redundant nodes, we mainly focus on nodes which
may contain similar information. We propose to aggregate
nodes with the same label in neighborhoods:

{(i, j)|fl(i) = fl(j) and A(i, j) = 1}. (2)

After aggregating all nodes that satisfy the condition in (2)
in the enclosing subgraph, we can obtain a new subgraph
and relabel it using fl(·). By conducting this procedure it-
eratively, we can obtain subgraphs in different scales, which
provide complementary information for link prediction. The
label of each node is used as the initial feature. Enclosing
subgraphs in different scales are fed into a graph neural net-
work to predict whether the link exists between two target
nodes. The whole pipeline of our proposed model can be
summarized in Figure 1. Note that our graph feature extrac-
tion network contains multiple copies of a single network
and these networks share the same parameters. The graph
structure extraction network can take the graph with any size
as the input since parameters in the network are linear trans-
formation matrices, which are not related to the graph size.

Our proposed method can transform an enclosing sub-
graph into different scales by aggregating redundant nodes.
There exists an inevitable loss in terms of graph structure
information during the aggregation procedure. Therefore, in
the aggregation procedure we must guarantee that: 1) Only
nodes containing similar information can be aggregated. 2)
The aggregation procedure should not affect the relationship
between the two target nodes significantly. In this work, we
provide a theoretical analysis of our proposed aggregation
method in terms of the two criteria.

Node-Wise Loss Analysis

We propose to aggregate nodes with the same label in a
neighborhood since they contain similar information and
satisfy some important properties. Here, we describe these
properties in detail.

Theorem 1. Given any non-target nodes i and j, we have
that d(i, x) + d(i, y) = d(j, x) + d(j, y) if A(i, j) = 1 and
fl(i) = fl(j).

Theorem 2. After aggregating the node pair (i, j) which
satisfies the condition in (2) into a new node k, then 0 �
fl(i)− fl(k) � 1.

The proof of Theorem 1 and Theorem 2 are described in
the Appendix.

Discussion: It can be observed from Theorem 1 that the
summation of distance to targets is equal for node i, j. The
two nodes have the same minimal distance to target nodes
and the same summation distance. Therefore, two nodes
contain the same information in terms of distance relation-
ship to target nodes. We can observe from Theorem 2 that
after aggregating the label of nodes changes in a small range.
Therefore, Theorem 1 guarantees that aggregated nodes con-
tain similar information in terms of distance metric and The-
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orem 2 provides the boundary of the label difference for ag-
gregated nodes. Although the changing of graph structure is
more complex in practice, the experimental results show that
the aggregated graph can still provide useful information for
link prediction tasks. These properties can help preserve the
graph structure information when aggregating nodes.

Target-Wise Loss Analysis

The graph aggregation method can aggregate redundant
nodes in the graph. As discussed above, there exists an up-
per boundary for the changing of node label. In addition, the
relationship between two target nodes should not change. If
there exists a link between two target nodes in the original
graph, the two nodes should also be connected in the aggre-
gated graph. In this work, we evaluate the node relationship
between two nodes using two heuristic functions: Katz index
and Random Walk.

Katz index Analysis: Since the node aggregation
method is proposed based on the minimal distance between
nodes, we evaluate the effect of aggregating nodes using a
distance based metric named Katz index. The definition of
Katz index between two target nodes x and y is described as
follows:

Katzx,y =
∞∑

l=1

βl|walks〈l〉(x, y)|, (3)

where βl (0 < β < 1) is weights for the walk with length l,
walks〈l〉(x, y) is a set walks with length l between x and y,
and | · | counts the number of elements in the set. Katz index
computes the number of walks between x and y and assigns
higher weights to shorter walks.

Here, we refer the Katz index of two target nodes in orig-
inal enclosing subgraph as Katzx,y and that in the aggra-
gated graph as Katz

′
x,y . The relationship changed between

two target nodes in terms of Katz index can be expressed as
Katzx,y − Katz

′
x,y . Our proposed aggregation method only

affects walks through node i and j. Based on the analy-
sis in the proof of Theorem 1, we have that the difference
between original walk through node i and the correspond-
ing walk after aggregation is between 0 and 1. Therefore,
Katzx,y − Katz

′
x,y is bounded by:

0 < Katzx,y − Katz
′
x,y < β1 λij

|Γ(i) ∩ Γ(j)| , (4)

where Γ(·) represents the neighbor set of a node, | · | counts
the number of elements in the set, λij is the number of walk
through node i and j.

Random Walk Analysis: Since the influence of node x
to node y in graph neural networks is equivalent to the ran-
dom walk starting at x (Xu et al. 2018), we also evaluate the
effect of aggregating nodes using the random walk method.
The random walk computes the probability of a walker start
at x and end with y. At each time step, the walker can move
to a random neighbor with probability 1 − α or return to x
with probability α. The random walk score from node x to
y can be described as:

[πx]y = α
∑

w:x�y

P (w)(1− α)|w|, (5)

where w : x � y represents a walk from node x to y, |w|
is the length of the walk, and P (w) is the probability of a
walker traveling following w. The [πx]y takes all walks from
node x to y into consideration. The probability P (w) of the
walk w = 〈x, v1, . . . , vl−1, y〉 can is computed by:

P (w) =
1

|Γ(x)|
l−1∏

i=1

1

|Γ(vi)| . (6)

To estimate the influence of aggregating node i and j, we
compute the difference between [πx]y in the original enclos-
ing subgraph and [πx]

′
y in the subgraph after aggregation.

Since the aggregation procedure only affects the walks via
node i and j, after aggregating the node i and j into k the
difference can be represented as:

[πx]
′
y − [πx]y = α(

∑

w:x�k�y

P (w)(1− α)|w|−
∑

w:x�i�y

P (w)(1− α)|w| −
∑

w:x�j�y

P (w)(1− α)|w|).

Among walks via node i, α
∑

w:x�i�y P (w)(1−α)|w| can
be expressed as 1

Γ(i)θi, where θi = αP (w)(1−α)|w|Γ(i). In

terms of walks via node j, α
∑

w:x�j�y P (w)(1−α)|w| can
be expressed as 1

Γ(j)θj , where θj = αP (w)(1− α)|w|Γ(j).

Then [πx]
′
y − [πx]y is bounded by:

[πx]
′
y − [πx]y <

θi + θj
|Γ(i) ∪ Γ(j)| −

θi
Γ(i)

− θj
Γ(j)

. (7)

Discussion: It can be seen from equation 4 and 7 that
when two nodes share a large number of neighbor nodes,
the information loss in the aggregation procedure is limited.
In this work, we employed enclosing subgraphs with three
different scales for link prediction tasks. Our experimental
results show that if we use subgraphs in different scales in-
dividually, the performance of model using input in different
scales is competitive. This demonstrates that the informa-
tion loss in aggregation procedure is limited and the rela-
tionship between two target nodes does not change. Our ex-
perimental results using all subgraphs in different scales also
demonstrate that enclosing subgraphs with different scales
can provide complementary information, which can improve
the performance of link prediction models.

Experiments

In this section, we evaluate our proposed method for link
prediction tasks on 14 different datasets. We perform the
qualitative evaluation in terms of area under the curve
(AUC). The code and datasets are attached in supplemen-
tary.

Datasets

In the experiments, we evaluate our proposed method on 14
datasets including BUP, C.ele, USAir, SMG, EML, NSC,
YST, Power, KHN, ADV, GRQ, LDG, HPD, ZWL (Watts
and Strogatz 1998; Newman 2001). The details of these
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Table 1: AUC comparison with baseline methods (80% training links).
Model BUP C.ele USAir SMG EML NSC YST
CN 84.46(±3.12) 81.96(±2.08) 92.96(±0.80) 81.30(±0.94) 82.01(±0.68) 97.20(±0.46) 68.50(±0.68)
Jaccard 83.21(±3.13) 76.43(±2.14) 89.43(±0.93) 77.65(±1.14) 81.79(±0.66) 96.98(±0.48) 68.36(±0.68)
PA 65.18(±3.21) 75.92(±2.07) 88.79(±1.38) 83.00(±1.23) 77.89(±0.87) 97.99(±0.24) 77.37(±0.78)
AA 85.22(±3.09) 83.63(±1.91) 94.08(±0.76) 82.08(±0.92) 82.19(±0.66) 97.27(±0.46) 68.53(±0.68)
RA 85.39(±2.95) 83.96(±1.75) 94.61(±0.69) 82.05(±0.91) 82.16(±0.65) 97.28(±0.45) 68.52(±0.69)
Katz 87.10(±2.73) 84.84(±2.05) 92.01(±0.88) 86.09(±1.06) 88.45(±0.68) 98.00(±0.31) 80.56(±0.78)
PR 90.13(±2.45) 89.14(±1.35) 93.74(±1.01) 89.13(±0.90) 89.46(±0.63) 98.05(±0.29) 81.40(±0.75)
SR 85.47(±2.75) 75.65(±2.24) 79.21(±1.50) 78.39(±1.14) 86.90(±0.71) 97.19(±0.48) 73.93(±0.95)
ENS 85.79(±3.30) 76.09(±2.07) 88.90(±1.37) 83.14(±1.17) 78.09(±0.86) 98.00(±0.24) 77.53(±0.78)
N2V 80.25(±5.55) 80.08(±1.52) 85.40(±0.96) 78.30(±1.22) 83.06(±1.42) 96.23(±0.95) 77.07(±0.36)
SEAL 93.32(±0.84) 87.44(±1.21) 95.21(±0.77) 91.53(±0.46) 92.01(±0.38) 99.55(±0.01) 90.72(±0.25)
mLink 93.54(±0.63) 89.08(±0.86) 96.43(±0.33) 92.05(±0.32) 92.03(±0.31) 99.65(±0.01) 91.40(±0.13)

Model Power KHN ADV LDG HPD GRQ ZWL
CN 57.32(±0.39) 77.83(±0.46) 88.39(±0.21) 86.40(±0.19) 71.49(±0.41) 89.56(±0.44) 91.93(±0.16)
Jaccard 57.32(±0.39) 76.19(±0.51) 86.87(±0.17) 85.33(±0.20) 71.35(±0.41) 89.57(±0.44) 91.66(±0.18)
PA 45.09(±1.03) 81.18(±0.83) 89.44(±0.23) 84.27(±0.16) 81.98(±0.31) 73.95(±0.38) 82.11(±0.25)
AA 57.32(±0.39) 78.38(±0.44) 88.71(±0.22) 86.69(±0.18) 71.55(±0.41) 89.59(±0.43) 92.08(±0.17)
RA 57.32(±0.39) 78.38(±0.44) 88.71(±0.21) 86.70(±0.18) 71.54(±0.41) 89.59(±0.43) 92.08(±0.16)
Katz 59.59(±1.51) 84.60(±0.79) 92.13(±0.21) 92.96(±0.19) 85.47(±0.35) 89.81(±0.59) 96.42(±0.12)
PR 59.88(±1.51) 88.43(±0.80) 92.78(±0.18) 94.46(±0.19) 87.19(±0.34) 89.98(±0.57) 97.20(±0.12)
SR 70.18(±0.75) 79.55(±0.90) 86.18(±0.22) 90.95(±0.14) 81.73(±0.37) 89.81(±0.58) 95.97(±0.16)
ENS 77.14(±1.36) 81.44(±0.83) 89.47(±0.23) 84.43(±0.17) 82.14(±0.31) 74.65(±0.39) 82.22(±0.25)
N2V 70.37(±1.15) 82.21(±1.19) 77.70(±0.83) 91.88(±0.56) 79.61(±1.14) 91.33(±0.53) 94.38(±0.51)
SEAL 81.37(±0.93) 92.69(±0.14) 95.07(±0.13) 96.44(±0.13) 92.26(±0.09) 97.10(±0.12) 97.46(±0.02)
mLink 83.14(±0.61) 92.89(±0.11) 95.21(±0.10) 96.62(±0.11) 92.64(±0.08) 97.56(±0.10) 97.67(±0.01)

datasets are summarized in Supplementary. In order to eval-
uate the performance of our proposed method, different per-
cents of link are used to train these models. We randomly
select 50% and 80% existing links from each graph as pos-
itive training samples. The remaining 50% and 20% links
are used as positive test samples to evaluate models. Follow-
ing the standard manner of learning-based link prediction,
the same number of nonexistent links are sampled from the
dataset as negative training samples and negative test sam-
ples, respectively.

Baseline Methods

We compare our proposed multi-scale link prediction
(mLink) with eight different heuristic methods including:
common neighbors (CN), Jaccard, preferential attachment
(PA), Adamic-Adar (AA), resource allocation (RA), Katz,
PageRank (PR), SimRank (SR). The ensemble model that
employs eight heuristic scores is also compared in our ex-
periments. We also compare our proposed method with an
important latent feature method node2vec (N2V) (Grover
and Leskovec 2016). The state-of-the-art method SEAL is
also compared in this work. We follow the configuration of
SEAL (Zhang and Chen 2018) in our experiments.

In order to guarantee that the comparison between our
proposed method and the SEAL framework is fair, we em-
ploy the same graph neural network (DGCNN) (Zhang and
Chen 2018) to predict the existence of link for both SEAL
and our proposed mLink. The details of configuration about
baseline methods and our proposed method are shown in the
supplementary material.

Experiments Setup

The damping factor in the Katz method is set to 0.001. The
damping factor in the PageRank (PR) is set to 0.85. The con-
stant factor in the SimRank (SR) is set to 0.8. For node2vec,
we use 128-dimensional embeddings from the software with
default parameters.

The graph convolution layer employs a learnable linear
transformation to generate the embedding for each node in
the graph and the feature of each node is propagated to its
neighborhoods. The node feature in each layer is concate-
nated as the final feature of each node. Since each enclosing
subgraph contains a different number of nodes and edges,
the sort pooling layer is employed to generate a fixed size
feature vector for each graph.

In our experiments, we perform our aggregation method
and relabel the enclosing subgraph for two times. Then the
enclosing subgraphs in three scales are fed into a graph
structure feature extraction network. The feature extraction
networks for graphs in different scales share the same pa-
rameters. We employ four graph convolution layers to ex-
tract node features. The number of channel for four graph
convolution layers is set to 32, 32, 32, 1. The ratio of sort
pooling layer is set to 0.6. The classification network con-
sists of two 1-D convolution layers and a fully connected
layer. The number of channel for two 1-D convolution lay-
ers is set to 16, 32. We train the DGCNN network for 50
epochs. The hop number h is set to 2 for those graphs.
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Table 2: AUC comparison with baseline methods (50% training links).
Model BUP C.ele USAir SMG EML NSC YST
CN 73.62(±2.06) 72.29(±0.82) 87.93(±0.43) 70.26(±0.54) 70.80(±0.44) 91.87(±0.68) 61.37(±0.29)
Jaccard 72.93(±2.06) 69.75(±0.86) 84.82(±0.52) 69.06(±0.66) 70.74(±0.45) 91.73(±0.72) 61.33(±0.30)
PA 64.21(±2.37) 73.81(±0.97) 87.59(±0.50) 80.87(±0.47) 76.53(±0.27) 96.31(±0.58) 75.92(±0.40)
AA 74.08(±2.00) 73.37(±0.80) 88.61(±0.40) 70.68(±0.49) 70.87(±0.43) 91.91(±0.68) 61.38(±0.29)
RA 74.12(±1.97) 73.42(±0.82) 88.73(±0.39) 70.67(±0.49) 70.87(±0.43) 91.92(±0.68) 61.38(±0.29)
Katz 81.61(±3.40) 79.99(±0.59) 88.91(±0.39) 80.65(±0.58) 84.16(±0.64) 95.99(±0.62) 77.28(±0.37)
PR 84.07(±3.39) 84.95(±0.58) 90.57(±0.39) 84.59(±0.45) 85.43(±0.63) 96.06(±0.60) 77.90(±3.69)
SR 80.98(±3.03) 76.05(±0.80) 81.09(±0.59) 75.28(±0.74) 83.05(±0.64) 95.59(±0.68) 73.71(±0.41)
ENS 76.52(±7.51) 74.11(±0.96) 87.81(±0.50) 81.06(±0.47) 76.84(±0.28) 96.32(±0.58) 76.08(±0.39)
N2V 80.94(±2.65) 75.53(±1.23) 84.63(±1.58) 73.50(±1.22) 80.15(±1.26) 94.20(±1.25) 73.62(±0.74)
SEAL 85.10(±0.82) 81.23(±1.52) 93.23(±1.46) 86.56(±0.53) 85.83(±0.46) 99.07(±0.02) 85.56(±0.28)
mLink 87.50(±0.53) 83.49(±0.93) 94.65(±0.36) 88.49(±0.38) 87.06(±0.35) 99.17(±0.01) 87.80(±0.17)

Model Power KHN ADV LDG HPD GRQ ZWL
CN 53.58(±0.22) 66.40(±0.25) 79.70(±0.20) 74.23(±0.19) 62.76(±0.11) 78.52(±0.19) 81.80(±0.01)
Jaccard 53.38(±0.22) 66.02(±0.25) 79.02(±0.20) 73.92(±0.20) 62.71(±0.11) 78.52(±0.18) 81.66(±0.01)
PA 46.79(±0.69) 78.04(±0.46) 88.61(±0.15) 82.24(±0.16) 80.42(±0.10) 73.00(±0.28) 81.17(±0.14)
AA 53.38(±0.22) 66.60(±0.25) 79.90(±0.19) 74.37(±0.18) 62.77(±0.11) 78.53(±0.18) 81.89(±0.08)
RA 53.38(±0.22) 66.60(±0.25) 79.89(±0.19) 74.37(±0.18) 62.77(±0.11) 78.53(±0.18) 81.89(±0.08)
Katz 57.34(±0.51) 78.99(±0.20) 90.04(±0.17) 88.61(±0.19) 81.60(±0.12) 82.50(±0.21) 93.72(±0.06)
PR 57.34(±0.52) 82.34(±0.21) 90.97(±0.15) 90.50(±0.19) 83.15(±0.17) 82.64(±0.22) 95.11(±0.09)
SR 56.16(±0.45) 75.87(±0.19) 84.87(±0.14) 87.95(±0.14) 78.88(±0.22) 82.68(±0.24) 94.00(±0.10)
ENS 62.70(±0.95) 78.16(±0.46) 88.66(±0.16) 82.50(±0.17) 80.58(±0.10) 73.60(±0.27) 81.37(±0.13)
N2V 55.40(±0.84) 78.53(±0.72) 74.67(±0.98) 88.82(±0.44) 75.84(±1.03) 84.24(±0.35) 92.06(±0.61)
SEAL 65.80(±1.10) 87.43(±0.17) 92.75(±0.14) 92.98(±0.16) 88.05(±0.10) 90.07(±0.15) 94.94(±0.02)
mLink 67.02(±0.63) 88.10(±0.15) 93.06(±0.10) 93.13(±0.12) 88.42(±0.09) 92.44(±0.12) 95.05(±0.01)

Table 3: AUC comparison with enclosing subgraphs in different scales (50% training links).
Model BUP C.ele USAir SMG EML NSC YST
Scale-1 85.10(±0.82) 81.23(±1.52) 93.23(±1.46) 86.56(±0.53) 85.83(±0.46) 99.07(±0.02) 85.56(±0.28)
Scale-2 84.94(±0.79) 80.34(±1.33) 92.05(±1.26) 87.06(±0.47) 83.74(±0.42) 99.04(±0.01) 85.97(±0.26)
Scale-3 84.47(±0.81) 77.71(±1.02) 90.15(±0.97) 86.04(±0.49) 83.94(±0.43) 99.03(±0.02) 85.93(±0.25)
All Scales 87.50(±0.53) 83.49(±0.93) 94.65(±0.36) 88.49(±0.38) 87.06(±0.35) 99.17(±0.01) 87.80(±0.17)

Model Power KHN ADV LDG HPD GRQ ZWL
Scale-1 65.80(±1.10) 87.43(±0.17) 92.75(±0.14) 92.98(±0.16) 88.05(±0.10) 90.07(±0.15) 94.94(±0.02)
Scale-2 65.36(±1.02) 88.03(±0.16) 92.23(±0.13) 92.87(±0.15) 88.27(±0.13) 90.78(±0.09) 94.64(±0.02)
Scale-3 65.37(±1.04) 87.94(±0.16) 90.98(±0.14) 92.36(±0.15) 88.15(±0.14) 90.72(±0.09) 93.71(±0.02)
All Scales 67.02(±0.63) 88.10(±0.15) 93.06(±0.10) 93.13(±0.12) 88.42(±0.09) 92.44(±0.12) 95.05(±0.01)

Results and Analysis

We evaluate our proposed method (mLink) on 14 different
datasets from different areas. We perform each method for
ten times. The average AUC results and standard deviations
are shown in Table 1 and Table 2. It can be seen from re-
sults that SEAL and mLink generally achieve better per-
formance than heuristic methods and latent feature method
since these methods can learn graph structure features based
on the given dataset to perform link prediction. In C.ele and
ZWL datasets, PageRank method performs better than our
proposed method. However, it only works well in some net-
works from special areas. By employing multi-scale graphs,
our proposed method outperforms the SEAL framework by
large margins on most datasets in terms of AUC and standard
deviations, which also demonstrates multi-scale enclosing
subgraph can improve the performance for link prediction
tasks without introducing additional parameters. Our pro-

posed method can outperform the state-of-the-art method
SEAL both using 50% and 80% training links. We can ob-
serve from results that our proposed method can perform
well even with only 50% training links. When using 80%
training links, both SEAL and our proposed method can
achieve satisfactory performance. If we only use 50% train-
ing links, our proposed method can outperform SEAL sig-
nificantly. Our proposed multi-scale link prediction method
can also be considered as a data-augmentation method for
link prediction.

Information Loss Analysis

To demonstrate that the aggregated subgraph does not lose
important structure information, we train the graph neural
network with three single scale graphs. We denote the origi-
nal enclosing subgraph as Scale-1. The aggregated graphs
are represented as Scale-2 and Scale-3, respectively. The
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Table 4: Averaged AUC comparison with Multi-scale graph embedding methods (50% training links).
Model BUP C.ele USAir SMG EML NSC YST KHN ADV LDG HPD GRQ ZWL
Role2Vec 85.85 75.74 82.37 73.67 76.73 97.62 76.5 73.89 67.24 86.95 74.72 92.76 85.75
HARP 83.90 77.06 79.11 72.87 82.22 97.82 76.15 81.79 71.80 89.09 74.18 85.84 87.17
mLink 87.50 83.49 94.65 88.49 87.06 99.17 87.80 92.89 95.21 96.62 92.64 97.56 97.67

AUC results using three single graphs are shown in Table
3. It can be seen from results that models using graphs in
different scales achieve comparative performance. It also
demonstrates that the structure information is preserved dur-
ing the aggregation procedure. The model that employs all
three graphs achieve the best performance since graphs in
different scales can provide complementary information.

Comparasion with Multi-scale Graph Embedding
Methods

We also compare our method with multi-scale graph embed-
ding methods including Role2Vec (Ahmed et al. 2018) and
HARP (Chen et al. 2018a). Experimental results are shown
in Table 4. We can see that our method can outperform the
multi-scale graph embedding methods. The two methods are
proposed to learn the embedding in a hierarchical manner.
Both HARP and R2V belong to node embedding methods.
When links in the graph are limited, the performance will
be affected, especially for the plain graph without node at-
tributes.

Conclusions

In this work, we explore the supervised heuristic method for
link prediction tasks. To enable the graph neural network
extract features from graphs in different scales and improve
the performance of supervised heuristic models, we propose
a novel node aggregation method to transform the graph into
different scales while preserving important information. The
theory analysis is also provided for discussing information
loss in the re-scaling procedure. We compare our proposed
method with baseline methods on 14 datasets from differ-
ent areas. Our experimental results show that our proposed
method can achieve better performance by employing inputs
in different scales.

Appendix

A. Proof of Theorem 1

Proof. If min(d(i, x), d(i, y)) = d(i, x) and
min(d(j, x), d(j, y)) = d(j, x), then fl(i) = 1 + d(i, x) +
d(i, x)+ d(i, y) and fl(j) = 1+ d(j, x)+ d(j, x)+ d(j, y).
Based on the above assumption, We can obtain that:

fl(i)−fl(j) = 2(d(i, x)−d(j, x))+(d(i, y)−d(j, y)) = 0

Since A(i, j) = 1, then d(i, x) = d(j, x) or |d(i, x) −
d(j, x)| = 1. We also have that d(i, y) = d(j, y) or |d(i, y)−
d(j, y)| = 1. Because node i, j share the same label fl(i) =
fl(j), to guarantee fl(i) − fl(j) = 0 in this situation, we
must have that d(i, x) = d(j, x) and d(i, y) = d(j, y). Then
the theorem is proved.

The same conclusion can also be easily ob-
tained if min(d(i, x), d(i, y)) = d(i, y) and
min(d(j, x), d(j, y)) = d(j, y). If min(d(i, x), d(i, y)) =
d(i, x) and min(d(j, x), d(j, y)) = d(j, y), then
fl(i) = 1 + d(i, x) + d(i, x) + d(i, y) and
fl(j) = 1 + d(j, y) + d(j, x) + d(j, y). Based on the
above assumption, We can obtain that:

fl(i)−fl(j) = (2d(i, x)−d(j, x))+(d(i, y)−2d(j, y)) = 0

To guarantee fl(i) − fl(j) = 0 in this situation, we have
that d(i, x) = d(j, y) and d(i, y) = d(j, x). Then the theo-
rem is proved.

The same conclusion can also be easily obtained when
min(d(i, x), d(i, y)) = d(i, y) and min(d(j, x), d(j, y)) =
d(j, x)

This completes the proof of the theorem.

B. Proof for Theorem 2

Proof. When aggregating the node pair (i, j) into a new
node k, it is equivalent to add all neighbors of node j to
neighbors of node i and remove node j from the graph or
add all neighbors of node i to neighbors of node j and re-
move node i from the graph. Therefore, fl(k) can be derived
from fl(i).

Based on the proof of Theorem 1, we have
that d(i, x) = d(j, x) and d(i, y) = d(j, y) if
min(d(i, x), d(i, y)) = d(i, x) and min(d(j, x), d(j, y)) =
d(j, x) or min(d(i, x), d(i, y)) = d(i, y) and
min(d(j, x), d(j, y)) = d(j, y). In this situation, ag-
gregating node j to node i does not affect the minimal
distance for node i to target nodes x and y, since the
minimal distance from j to target nodes are the same. We
can draw conclusion that:

fl(k) = fl(i) = 1+min(d(i, x), d(i, y))+d(i, x)+d(i, y).

Therefore, we have fl(i) − fl(k) = 0 that satisfies 0 �
fl(i)− fl(k) � 1.

Based on the proof of Theorem 1, we have that d(i, x) =
d(j, y) and d(i, y) = d(j, x) if min(d(i, x), d(i, y)) =
d(i, x), min(d(j, x), d(j, y)) = d(j, y), d(i, x) �= d(i, y)
and d(j, x) �= d(j, y). In this situation, we have that
d(i, y) = d(j, y) + 1, since if there exists shorter a
path from i to j that d(i, y) < d(j, y), it violates
min(d(i, x), d(i, y)) = d(i, x) and d(i, x) �= d(i, y).

Therefore, we have fl(i) − fl(k) = 1 that satisfies 0 �
fl(i)− fl(k) � 1.

This completes the proof of the theorem.
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