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Abstract

Reinforcement learning algorithms such as the deep determin-
istic policy gradient algorithm (DDPG) has been widely used
in continuous control tasks. However, the model-free DDPG
algorithm suffers from high sample complexity. In this paper
we consider the deterministic value gradients to improve the
sample efficiency of deep reinforcement learning algorithms.
Previous works consider deterministic value gradients with
the finite horizon, but it is too myopic compared with infinite
horizon. We firstly give a theoretical guarantee of the exis-
tence of the value gradients in this infinite setting. Based on
this theoretical guarantee, we propose a class of the determin-
istic value gradient algorithm (DVG) with infinite horizon,
and different rollout steps of the analytical gradients by the
learned model trade off between the variance of the value gra-
dients and the model bias. Furthermore, to better combine the
model-based deterministic value gradient estimators with the
model-free deterministic policy gradient estimator, we propose
the deterministic value-policy gradient (DVPG) algorithm. We
finally conduct extensive experiments comparing DVPG with
state-of-the-art methods on several standard continuous con-
trol benchmarks. Results demonstrate that DVPG substantially
outperforms other baselines.

Introduction

(Silver et al. 2014) propose the deterministic policy gradient
(DPG) algorithm that aims to find an optimal deterministic
policy that maximizes the expected long-term reward, which
lowers the variance when estimating the policy gradient, com-
pared to stochastic policies (Sutton et al. 2000). (Lillicrap et
al. 2015) further combine deep neural networks with DPG to
improve the modeling capacity, and propose the deep deter-
ministic policy gradient (DDPG) algorithm. It is recognized
that DDPG has been successful in robotic control tasks (Gu
et al. 2016) and dynamic mechanism design (Tang 2017;
Cai et al. 2018). Despite the effectiveness of DDPG in these
tasks, it suffers from the high sample complexity problem
(Schulman et al. 2015).

Deterministic value gradient methods (Werbos 1990;
Nguyen and Widrow 1990; Jordan and Rumelhart 1992;
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Fairbank 2008) compute the policy gradient through back
propagation of the reward along a trajectory predicted by
the learned model, which enables better sample efficiency.
However, to the best of our knowledge, existing works of
deterministic value gradient methods merely focus on finite
horizon, which are too myopic and can lead to large bias.
Stochastic value gradient (SVG) methods (Heess et al. 2015)
use the re-parameterization technique to optimize the stochas-
tic policies. Among the class of SVG algorithms, although
SVG(1) studies infinite-horizon problems, it only uses one-
step rollout, which limits its efficiency. Also, it suffers from
the high variance due to the importance sampling ratio and
the randomness of the policy.

In this paper, we study the setting with infinite horizon,
where both state transitions and policies are deterministic.
(Heess et al. 2015) gives recursive Bellman gradient equa-
tions of deterministic value gradients, but the gradient lacks
of theoretical guarantee as the DPG theorem does not hold in
this deterministic transition case. We prove that the gradient
indeed exists for a certain set of discount factors. We then
derive a closed form of the value gradients.

However, the estimation of the deterministic value gradi-
ents is much more challenging. The difficulty of the com-
putation of the gradient mainly comes from the dependency
of the gradient of the value function over the state. Such
computation may involve infinite times of the product of the
gradient of the transition function and is hard to converge.
Thus, applying the Bellman gradient equation recursively
may incur high instability.

To overcome these challenges, we use model-based ap-
proaches to predict the reward and transition function. Based
on the theoretical guarantee of the closed form of the value
gradients in the setting, we propose a class of deterministic
value gradients DVG(k) with infinite horizon, where k de-
notes the number of rollout steps. For each choice of k, we
use the rewards predicted by the model and the action-value
at k + 1 step to estimate of the value gradients over the state,
in order to reduce the instability of the gradient of the value
function over the state. Different number of rollout steps
maintains a trade-off between the accumulated model bias
and the variance of the gradient over the state. The determin-
istic policy gradient estimator can be viewed as a special case
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of this class, i.e., it never use the model to estimate the value
gradients, and we refer it to DVG(0).

As the model-based approaches are more sample effi-
cient than model-free algorithms (Li and Todorov 2004;
Levine and Koltun 2013), and the model-based deterministic
value gradients may incur model bias (Wahlström, Schön, and
Deisenroth 2015), we consider an essential question: How
to combines the model-based gradients and the model-free
gradients efficiently?

We propose a temporal difference method to ensemble
gradients with different rollout steps. The intuition is to en-
semble different gradient estimators with geometric decaying
weights. Based on this estimator, we propose the determinis-
tic value-policy gradient (DVPG) algorithm. The algorithm
updates the policy by stochastic gradient ascent with the
ensembled value gradients of the policy, and the weight main-
tains a trade-off between sample efficiency and performance.

To sum up, the main contribution of the paper is as follows:

• First of all, we provide a theoretical guarantee for the
existence of the deterministic value gradients in settings
with infinite horizon.

• Secondly, we propose a novel algorithm that ensembles
the deterministic value gradients and the deterministic
policy gradients, called deterministic value-policy gradient
(DVPG), which effectively combines the model-free and
model-based methods. DVPG reduces sample complexity,
enables faster convergence and performance improvement.

• Finally, we conduct extensive experiments on standard
benchmarks comparing with DDPG, DDPG with model-
based rollouts, the stochastic value gradient algorithm,
SVG(1) and state-of-the-art stochastic policy gradient
methods. Results confirm that DVPG significantly outper-
forms other algorithms in terms of both sample efficiency
and performance.

Related Work

Model-based algorithms has been widely studied (Moldovan
et al. 2015; Montgomery and Levine 2016; Ha and Schmid-
huber 2018; Hafner et al. 2018; Chua et al. 2018) in re-
cent years. Model-based methods allows for more efficient
computations and faster convergence than model-free meth-
ods (Wang and Dietterich 2003; Li and Todorov 2004;
Levine and Koltun 2013; Watter et al. 2015).

There are two classes of model-based methods, one is to
use learned model to do imagination rollouts to accelerate
the learning. (Gu et al. 2016; Kurutach et al. 2018) generate
synthetic samples by the learned model. PILCO (Deisenroth
and Rasmussen 2011) learns the transition model by Gaussian
processes and applies policy improvement on analytic policy
gradients. The other is to use learned model to get better
estimates of action-value functions. The value prediction
network (VPN) (Oh, Singh, and Lee 2017) uses the learned
transition model to get a better target estimate. (Feinberg et
al. 2018; Buckman et al. 2018) combines different model-
based value expansion functions by TD(k) trick or stochastic
distributions to improve the estimator of the action-value
function.

Different from previous model-based methods, we present
a temporal difference method that ensembles model-based
deterministic value gradients and model-free policy gradients.
Our technique can be combined with both the imagination
rollout technique and the model-based value expansion tech-
nique.

Preliminaries

A Markov decision process (MDP) is a tuple
(S,A, p, r, γ, p0), where S and A denote the set of
states and actions respectively. p(st+1|st, at) represents
the conditional density from state st to state st+1 under
action at. The density of the initial state distribution is
denoted by p0(s). At each time step t, the agent interacts
with the environment with a deterministic policy μθ. We use
r(st, at) to represent the immediate reward, contributing
to the discounted overall rewards from state s0 following
μθ, denoted by J(μθ) = E[

∑∞
k=0 γ

kr(ak, sk)|μθ, s0].
Here, γ ∈ [0, 1) is the discount factor. The Q-function
of state st and action at under policy μθ is denoted by
Qμθ (st, at) = E[

∑∞
k=t γ

k−tr(ak, sk)|μθ, st, at]. The corre-
sponding value function of state st under policy μθ is denoted
by V μθ (st) = Qμθ (st, μθ(st)). We denote the density at
state s

′
after t time steps from state s following the policy μθ

by p(s, s
′
, t, μθ) . We denote the discounted state distribution

by ρμθ (s
′
) =

∫
S
∑∞

t=1 γ
t−1p0(s)p(s, s

′
, t, μθ)ds. The

agent aims to find an optimal policy that maximizes J(μθ).

Deterministic Value Gradients

In this section, we study a setting of infinite horizon with
deterministic state transition, which poses challenges for the
existence of deterministic value gradients. We first prove that
under proper condition, the deterministic value gradient does
exist. Based on the theoretical guarantee, we then propose a
class of practical algorithms by rolling out different number
of steps. Finally, we discuss the difference and connection
between our proposed algorithms and existing works.

Deterministic Policy Gradient (DPG) Theorem (Silver et
al. 2014), proves the existence of the deterministic policy
gradient for MDP that satisfies the regular condition, which
requires the probability density of the next state p(s

′ |s, a)
to be differentiable in a. In the proof of the DPG theorem,
the existence of the gradient of the value function is firstly
proven, i.e.,

∇θV
μθ (s) =

∫
S

∞∑
t=0

γtp(s, s′, t, μθ)∇θμθ(s
′)

∇a′Qμθ (s′, a′)|a′=μθ(s′)ds
′,

(1)

then the gradient of the long-terms rewards exists. Without
this condition, the arguments in the proof of the DPG theorem
do not work 1, and poses challenges for cases where the
differentiability is not satisfied. Note this condition does not
hold in any case with deterministic transitions. Therefore,
one must need a new theoretical guarantee to determine the

1Please refer to http://proceedings.mlr.press/v32/silver14-
supp.pdf
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existence of the gradient of V μθ (s) over θ in deterministic
state transition cases.

Deterministic Value Gradient Theorem

We now analyze the gradient of a deterministic policy. De-
note T (s, a) the next state given current state s and action
a. Without loss of generality, we assume that the transition
function T is continuous, differentiable in s and a and is
bounded. Note that the regular condition is not equivalent to
this assumption. Consider a simple example that a transition
T (s, a) = s + a, then the gradient of p(s′|s, a) over a is
infinite or does not exist. However, the gradient of T (s, a)
over a exists. By definition,

∇θV
μθ (s) =∇θ

(
r (s, μθ(s)) + γV μθ (s

′
)|s′=T (s,μθ(s))

)

=∇θr(s, μθ(s)) + γ∇θV
μθ (s

′
)|s′=T (s,μθ(s))

+ γ∇θT (s, μθ(s))∇s′V
μθ (s

′
).

Therefore, the key of the existence (estimation) of the
gradient of V μθ (s) over θ is the existence (estimation) of
∇sV

μθ (s). In Theorem 1, we give a sufficient condition of
the existence of ∇sV

μθ (s).
Theorem 1 For any policy μθ, the gradient of the value func-
tion over the state, ∇sV

μθ (s), exists with two assumptions:
• A.1: The set of states that the policy visits starting from

any initial state s is finite.
• A.2: For any initial state s, by Assumption A.1, we

get that there is a periodic loop of visited states.
Let (s0, s1, ..., sk) denote the loop2, and A(s) =

γk+1
∏k

i=0 ∇siT (si, μθ(si)), the power sum of A(s),∑∞
m=0 A

m(s) converges.
Proof 1 By definition,

V μθ (s) = r(s, μθ(s)) + γV μθ (s
′
)|s′=T (s,μθ(s))

. (2)

Taking the gradient of Eq. (2), we obtain
�sV

μθ (s) =�s r(s, μθ(s))

+γ �s T (s, μθ(s))�s′ V
μθ (s

′
)|s′=T (s,μθ(s))

.

(3)
Unrolling Eq. (3) with infinite steps, we get

�sV
μθ (s) =

∞∑
t=0

γtg(s, t, μθ)�st r(st, μθ(st)), (4)

where g(s, t, μθ) =
∏t−1

i=0 �siT (si, μθ(si)), s0 = s and si
is the state after i steps following policy μθ.

With the assumption A.1, we rewrite (4) by the indicator
function I(s, s

′
, t, μθ) that indicates whether s

′
is obtained

after t steps from the initial state s following the policy μθ:

�sV
μθ (s) =

∞∑
t=0

∑
s′∈B(s,θ)

γtg(s, t, μθ)I(s, s
′
, t, μθ)

�s′ r(s
′
, μθ(s

′
)),

(5)

2Note that s0 is not equal to sk.

Where B(s, θ) is the set of states the policy visits from s.
We now prove that for any μθ, s, s

′
, the infinite sum of

gradients,
∑∞

t=0 γ
tg(s, t, μθ)I(s, s

′
, t, μθ) converges.

For each state s′, there are three cases during the process
from the initial state s with infinite steps:

1. Never visited:
∑∞

t=0 γ
tg(s, t, μθ)I(s, s

′
, t, μθ) = 0.

2. Visited once: Let ts′ denote the number of
steps that it takes to reach the state s′, then∑∞

t=0 γ
tg(s, t, μθ)I(s, s

′
, t, μθ) = γt

s
′ g(s, ts′ , μθ).

3. Visited infinite times: Let t1 denote the number of steps it
takes to reach s′ for the first time. The state s′ will be re-
visited every k steps after the previous visit. By definition,

∞∑
t=0

γtg(s, t, μθ)I(s, s
′
, t, μθ)

=
∞∑
a=0

γt1g(s, t1, μθ)A
a(s).

(6)

By the assumption A.2 we get (6) converges.

By exchanging the order of the limit and the summation,

�sV
μθ (s) =

∑
s′∈B(s,θ)

∞∑
t=0

γtg(s, t, μθ)I(s, s
′
, t, μθ)

�s′ r(s
′
, μθ(s

′
)).

(7)

Assumption A.1 guarantees the existence of the stationary
distribution of states theoretically. Actually, it holds on most
continuous tasks, e.g., InvertedPendulum-v2 in MuJoCo. We
directly test a deterministic policy with a 2-layer fully con-
nected network on this environment with 10,000 episodes3,
and we count the number that each state is visited. After pro-
jecting the data into 2D space by t-SNE (Maaten and Hinton
2008), we obtain the state visitation density contour as shown
in Figure 1. We have two interesting findings: (1) The set
of states visited by the policy is finite. (2) Many states are
visited for multiple times, which justifies Assumption A.1.

By the analysis of Assumption A.2, we get that for any
policy and state, there exists a set of discount factors such
that the gradient of the value function over the state exists, as
illustrated in Corollary 1.

Corollary 1 For any policy μθ and any initial state s, let
(s0, s1, ..., sk) denote the loop of states following the pol-
icy and the state, C(s, μθ, k) =

∏k
i=0 ∇siT (si, μθ(si)), the

gradient of the value function over the state, ∇sV
μθ (s) exists

if γk+1 max {||C(s, μθ, k)||∞, ||C(s, μθ, k)||1} < 1.

In Theorem 2, we show that the deterministic value gradi-
ents exist and obtain the closed form based on the analysis in
Theorem 1.

Theorem 2 (Deterministic Value Gradient Theorem) For
any policy μθ and MDP with deterministic state transitions,

3We test different weights, the observation of finite visited states
set is very common among different weights.
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Figure 1: State visitation density countour on
InvertedPendulum-v2.

if assumptions A.1 and A.2 hold, the value gradients exist,
and

∇θV
μθ (s) =

∑
s′∈B(s,θ)

ρμθ (s, s′)∇θμθ(s
′)(∇a′r(s′, a′)+

γ∇a′T (s′, a′)∇s′′V
μθ (s

′′
)|s′′=T (s′,a′)),

where a′ is the action the policy takes at state s′, ρμθ (s, s′)
is the discounted state distribution starting from the
state s and the policy, and is defined as ρμθ (s, s′) =∑∞

t=1 γ
t−1I(s, s′, t, μθ).

Deterministic Value Gradient Algorithm

The value gradient methods estimate the gradient of value
function recursively (Fairbank and Alonso 2012):

∇θV
μθ (s) =∇θr(s, μθ(s)) + γ∇θT (s, μθ(s))∇s′V

μθ (s′)

+ γ∇θV
μθ (s′)

(8)

�sV
μθ (s) =�s r(s, μθ(s)) + γ �s T (s, μθ(s))

�s′ V
μθ (s

′
)|s′=T (s,μθ(s))

.
(9)

In fact, there are two kinds of approaches for estimating
the gradient of the value function over the state, i.e., infinite
and finite. On the one hand, directly estimating the gradient
of the value function over the state recursively by Eq. (9)
for infinite times is slow to converge. On the other hand,
estimating the gradient by finite horizon like traditional value
gradient methods (Werbos 1990; Nguyen and Widrow 1990;
Heess et al. 2015) may cause large bias of the gradient.

We set out to estimate the action-value function denoted
by Qw(s, a) with parameter w, and replace ∇sV

μθ (s) by
∇sQ

w(s, μθ(s)) in Eq. (8). In this way, we can directly ob-
tain a 1-step estimator of the value gradients,

G1(μθ, s) =∇θr(s, μθ(s)) + γ∇θT (s, μθ(s))

∇s1Q
w(s1, μθ(s1)) + γG1(μθ, s1),

(10)

where s1 is the next state of s, which can be generalized
to k(k ≥ 2) rollout steps. Let si denote the state visited
by the policy at the i-th step starting form the initial state
s0, g(s, t, μθ, T ) =

∏t−1
i=1 ∇siT (si, μθ(si)). We choose to

rollout k − 1 steps to get rewards, then replace ∇skV
μθ (sk)

by ∇skQ
w(sk, μθ(sk)) in Eq. (9), and we get

Lk(μθ, s, r, T ) =

k−1∑
t=1

γt−1g(s, t, μθ, T )∇str(st, μθ(st))

+γk−1g(s, k, μθ, T )∇skQ
w(sk, μθ(sk)).

Replacing ∇s′V
μθ (s′) with Lk(μθ, s, r, T ) in Eq. (8), we

get a k-step estimator of the value gradients:

Gk(μθ, s) =∇θr(s, μθ(s)) + γ∇θT (s, μθ(s)

Lk(μθ, s, r, T ) + γGk(μθ, s1).
(11)

It is easy to see that Gk(μθ, s) and G1(μθ, s) are the same
if we have the true reward and transition functions, which
is generally not the case as we need to learn the model in
practical environments.

We estimate the recursive value gradient form by the same
way as the implementation of the DDPG algorithm. Let
Dk(μθ, s, T, r) denote the value gradient at the sampled state
s with k rollout steps, on the true transition function T and
reward function r, which is defined as:

Dk(μθ, s, T, r) =∇θr(s, μθ(s)) + γ∇θT (s, μθ(s))

Lk(μθ, s, r, T ).
(12)

To be specific, the recursive value gradient form Gk(μθ, s0)
can be rewritten as

∑∞
j=0 γ

jDk(μθ, sj , T, r). Let ρ(s0, s)
denote the discounted state distribution from state
s0, then

∑∞
j=0 γ

jDk(μθ, sj , T, r) can be rewritten as∑
s ρ(s0, s)Dk(μθ, s, T, r).
Then, we propose the deterministic value gradients with

infinite horizon, where the algorithm is shown in Algorithm
1. As the model is not given, we choose to predict the re-
ward function and the transition function. Given n samples
(sj , aj , rj , sj+1), for each choice of k, we employ the em-
pirical state distribution to approximate the discounted state
distribution. With the learned transition function T ′ and re-
ward function r′, we use 1

n

∑
j Dk(μθ, sj , T

′, r′) to update
the current policy. We choose to use experience replay to
compare with the DDPG algorithm fairly. Different choices
of the number of rollout steps trade-off between the variance
and the bias. Larger steps means lower variance of the value
gradients, and larger bias due to the accumulated model error.

The Difference between Infinite and Finite Horizon

In this section, we discuss the advantage of our proposed
DVG algorithm over finite horizon and validate the effect on a
continuous control task. The estimator of deterministic value
gradients with finite horizon, DVGF, is defined as (Fairbank
and Alonso 2012):

Fk(μθ, s) =∇θr(s, μθ(s)) + γ∇θT (s, μθ(s))

k−1∑
t=1

γt−1

g(s, t, μθ, T )∇str(st, μθ(st)) + γFk(μθ, s1).
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Algorithm 1 The DVG(k) algorithm
1: Initialize the reward network r′, transition network T ′,

critic network Q, actor network μθ, target networks Q′,
μ′
θ and experience replay buffer B

2: for episode= 0, ..., N − 1 do
3: for t = 1, ..., T do
4: Select action according to the current policy and

exploration noise
5: Execute action at, observe reward rt and new state

st+1, and store transition (st, at, rt, st+1) in B
6: Sample a random minibatch of n transitions from B
7: Update the critic Q by minimizing the TD error:

1
n

∑n
j (rj + γQ′(sj+1, μθ(sj+1))−Q(sj , aj))

2

8: Update the reward network r′ and the transition
network T ′ on the batch by minimizing the square
loss

9: Estimate the value gradients by
1
n

∑
j Dk(μθ, sj , T

′, r′) and perform gradient
update on the policy

10: Update the target networks by θQ
′
= τθQ + (1−

τ)θQ
′
; θμ

′
= τθμ + (1− τ)θμ

′

11: end for
12: end for

Note that Fk(μθ, s) does not take rewards after
the k-th step into consideration. Therefore, given n
samples {(sj , aj , rj , sj+1)}, DVGF uses the sample
mean of D′

k(μθ, s, T
′, r′) to update the policy, where

D′
k(μθ, s, T

′, r′) is defined as:

D′
k(μθ, s, T

′, r′) = ∇θr
′(s, μθ(s)) + γ∇θT

′(s, μθ(s))

k−1∑
t=1

γt−1g(s, t, μθ, T
′)∇s

′
t
r(s

′
t, μθ(s

′
t)).

We then test the two approaches on the environment
HumanoidStandup-v2, where we choose the parameter k
to be 24. As shown in Figure 2, DVG significantly outper-
forms DVGF, which validates our claim that only considering
finite horizon fails to achieve the same performance as that
of infinite horizon.
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Figure 2: Comparisons of DVG and DVGF.
4For the choice of k, we test DVGF with steps ranging from 1 to

5, and we choose the parameter with the best performance for fair
comparison.
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Figure 3: Comparisons of DVG with DDPG.

Connection and Comparison of DVG and DDPG

By the proof of the DPG theorem in (Silver et al. 2014), Eq.
(8) can be re-written as

∇θV
μθ (s) = ∇θμθ(s)∇aQ

μθ (s, a) + γ∇θV
μθ (s1). (13)

The DDPG algorithm uses the gradient of the estima-
tor of the Q function over the action, ∇aQ

w(s, a) to esti-
mate ∇aQ

μθ (s, a), i.e., G0(μθ, s) = ∇θμθ(s)∇aQ
w(s, a)+

γG0(μθ, s1).
The DDPG algorithm is a model-free algorithm which does

not predict the reward and the transition, and can be viewed as
the DVG(0) algorithm. We compare the DVG algorithm with
different rollout steps k and DDPG on a continuous control
task in MuJoCo, Hopper-v2. From Figure 3, we get that DVG
with any choice of the number of rollout steps is more sample
efficient than DDPG, which validates the power of model-
based techniques. DVG(1) outperforms DDPG and DVG
with other number of rollout steps in terms of performance
as it trades off well between the bias and the variance of
the value gradients. Note that with a larger number of step,
DVG(5) is not stable due to the propagated model error.

The DVPG Algorithm

As discussed before, the model-based DVG algorithm are
more sample efficient than the model-free DDPG algorithm.
However, it suffers from the model bias which results in
performance loss. In this section, we consider to ensemble
these different gradient estimators for better performance.

Motivated by the idea of TD(λ) algorithm (Sutton and
Barto 2018), which ensembles the TD(k) error with a geo-
metric decaying weight λ, we propose a temporal-difference
method to ensemble DVG with varying rollout steps and
the model-free deterministic policy gradients. We defined
the temporal difference deterministic value gradients as
Gλ,t(μθ, s) = (1− λ)

∑t
k=0 λ

kGk(μθ, s), where t denotes
the maximal number of rollout steps by the learned model.
For the gradient update rule, we also apply sample based
methods: given n samples {(sj , aj , rj , sj+1)}, we use

1

n

∑
j

((1− λ)∇θμθ(sj)∇aQ
w(sj , a) + (1− λ)

t∑
k=1

λkDk(μθ, sj , T
′, r′))

(14)
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to update the policy. Based on this ensembled deterministic
value-policy gradients, we propose the deterministic value-
policy gradient algorithm, shown in Algorithm 2 5.

Algorithm 2 The DVPG algorithm
1: Initialize the weight λ and the number of maximal steps

t
2: Initialize the reward network r′, transition network T ′,

critic network Q, actor network μθ, target networks Q′,
μ′
θ and experience replay buffer B

3: for episode= 0, ..., N − 1 do
4: for t = 1, ..., T do
5: Select action according to the current policy and

exploration noise
6: Execute action at, observe reward rt and new state

st+1, and store transition (st, at, rt, st+1) in B
7: Sample a random minibatch of n transitions from B
8: Update the critic Q by minimizing the TD error:

1
n

∑n
j (rj + γQ′(sj+1, μθ(sj+1))−Q(sj , aj))

2

9: Update the reward network r′ and the transition
network T ′ on the batch by minimizing the square
loss

10: Estimate the value gradients by Eq. (14), and per-
form gradient update on the policy

11: Update the target networks by θQ
′
= τθQ + (1−

τ)θQ
′
; θμ

′
= τθμ + (1− τ)θμ

′

12: end for
13: end for

Experimental Results

We design a series of experiments to evaluate DVG and
DVPG. We investigate the following aspects: (1) What is
the effect of the discount factor on DVG? (2) How sensi-
tive is DVPG to the hyper-parameters? (3) How does DVPG
compare with state-of-the-art methods?

We evaluate DVPG in a number of continuous control
benchmark tasks in OpenAI Gym based on the MuJoCo
simulator. We compare DVPG with DDPG, DVG, DDPG
with imagination rollouts (DDPG(model)), and SVG with 1
step rollout and experience replay (SVG(1)) in the text. We
also compare DVPG with methods using stochastic policies,
e.g. ACKTR, TRPO, and DVPG outperforms ACKTR and
TRPO significantly. We omit the results due to the limit of
the space. We plot the averaged rewards of episodes over
5 different random seeds with the number of real samples,
and the shade region represents the 75% confidence interval.
We choose the same hyperparameters of the actor and critic
network for all algorithms. The prediction models of DVPG,
DVG and DDPG(model) are the same.

The Effect of Discount Factors on DVG

From Eq. (9), we get that ∇sV
μθ (s) is equivalent to the

infinite sum of the gradient vectors. To study the effect of

5The only difference between the DVG(k) algorithm and the
DVPG algorithm is the update rule of the policy.

the discount factor on DVG, we train the algorithm with 2
rollout steps with different values of the discount factor on
the environment InvertedPendulum-v2. As shown in Figure 5,
0.95 performs the best in terms of rewards and stability while
0.85 and 0.99 performs comparably, while the performance
of 0.8 and 0.6 are inferior to other values. This is because the
convergence of the computation of the gradient of the value
function over the state may be slow if the discount factor
is close to 1 while a smaller value of γ may enable better
convergence of ∇sV

μθ (s). However, the sum of rewards
discounted by a too small γ will be too myopic, and fails to
perform good. Here, 0.95 trades-off well between the stability
and the performance, which is as expected that there exists
an optimal intermediate value for the discount factor.
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Figure 5: The effect of discount factors.

Ablation Study of DVPG

We evaluate the effect of the weight of bootstrapping on
DVPG with different values from 0.1 to 0.9, where the num-
ber of rollout steps is set to be 4. From Figure 6, we get that
the performance of the DVPG decreases with the increase
of the value λ, where 0.1 performs the best in terms of the
sample efficiency and the performance. Thus, we choose the
value of the weight to be 0.1 in all experiments.
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Figure 6: The weight of bootstrapping.

We evaluate the effect of the number of rollout steps rang-
ing from 1 to 5. Results in Figure 7 show that DVPG with
different number of rollout steps all succeed to learn a good
policy, with 1 rollout step performing the best. Indeed, the
number of rollout steps trade off between the model-error
and the variance. There is an optimal value of the number of
rollout steps for each environment, which is the only one pa-
rameter we tune. To summarize, for the number of look steps,
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Figure 4: Performance comparisons on environments from the MuJoCo simulator.

1 rollout step works the best on Humanoid-v2, Swimmer-v2
and HalfCheetah-v2, while 2 rollout steps performs the best
on HumanoidStandup-v2, Hopper-v2 and Ant-v2. For fair
comparisons, we choose the same number of rollout steps for
both the DVG and the DVPG algorithm.
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Figure 7: The number of rollout steps.

Performance Comparisons

In this section we compare DVPG with the model-free base-
line DDPG, and model-based baselines including DVG,
DDPG(model) and SVG(1) on several continuous control
tasks on MuJoCo. As shown in Figure 4, there are two classes
of comparisons.

Firstly, we compare DVPG with DDPG and DVG to vali-
date the effect of the temporal difference technique to ensem-
ble model-based and model-free deterministic value gradi-
ents. The DVG algorithm is the most sample efficient than
other algorithms in environments HumanoidStandup-v2, and
Hopper-v2. For sample efficiency, DVPG outperforms DDPG
as it trades off between the model-based deterministic value
gradients and the model-free deterministic policy gradients.
In the end of the training, DVPG outperforms other two al-

gorithms significantly, which demonstrates the power of the
temporal difference technique. In other four environments,
DVPG outperforms other algorithms in terms of both sample
efficiency and performance. The performance of DVG and
DDPG on Swimmer-v2 and Ant-v2 are comparable, while
DVG performs bad in Halfcheetah-v2 and Humanoid-v2 due
to the model-error.

Secondly, we compare DVPG with SVG(1) and DDPG
with imagination rollouts. Results show that the DVPG al-
gorithm significantly outperforms these two model-based
algorithms in terms of sample efficiency and performance,
especially in environments where other model-based algo-
rithms do not get better performance than the model-free
DDPG algorithm. For the performance of the SVG(1) algo-
rithm, it fails to learn good policies in Ant-v2, which is also
reported in (Kurutach et al. 2018).

Conclusion

Due to high sample complexity of the model-free DDPG
algorithm and high bias of the deterministic value gradients
with finite horizon, we study the deterministic value gradients
with infinite horizon. We prove the existence of the determin-
istic value gradients for a certain set of discount factors in
this infinite setting. Based on this theoretical guarantee, we
propose the DVG algorithm with different rollout steps by
the model. We then propose a temporal difference method
to ensemble deterministic value gradients and deterministic
policy gradients, to trade off between the bias due to the
model error and the variance of the model-free policy gra-
dients, called the DVPG algorithm. We compare DVPG on
several continuous control benchmarks. Results show that
DVPG substantially outperforms other baselines in terms of
convergence and performance. For future work, it is promis-
ing to apply the temporal difference technique presented in
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this paper to other model-free algorithms and combine with
other model-based techniques.
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