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Abstract

Active learning algorithms automatically identify the salient
and exemplar samples from large amounts of unlabeled data
and tremendously reduce human annotation effort in induc-
ing a machine learning model. In a traditional active learn-
ing setup, the labeling oracles are assumed to be infallible,
that is, they always provide correct answers (in terms of class
labels) to the queried unlabeled instances. However, in real-
world applications, oracles are often imperfect and provide
incorrect label annotations. Oracles also have diverse exper-
tise and while they may be noisy, certain oracles may provide
accurate annotations to certain specific instances. In this pa-
per, we propose a novel framework to address the challenging
problem of active learning in the presence of multiple imper-
fect oracles. We pose the optimal sample and oracle selec-
tion as a constrained optimization problem and derive a linear
programming relaxation to select a batch of (sample-oracle)
pairs, which can potentially augment maximal information to
the underlying classification model. Our extensive empirical
studies on 9 challenging datasets (from a variety of applica-
tion domains) corroborate the usefulness of our framework
over competing baselines.

Introduction

Supervised learning algorithms require a large amount of la-
beled data to induce a reliable model. However, while un-
labeled data is cheap and easily available, obtaining class
labels requires extensive human effort, often from experts
with very limited availability. Thus, developing intelligent
learning algorithms under the constraint of weak human su-
pervision has attracted significant research attention. Active
Learning (AL) algorithms address this challenge by auto-
matically identifying the salient and exemplar samples from
large amounts of unlabeled data. This tremendously reduces
human annotation effort as only a few samples, that are iden-
tified by the algorithm, need to be labeled manually. Further,
since the model gets trained on the highly informative sam-
ples from the underlying data population, it typically depicts
better generalization capability than a passive learner, where
training samples are obtained at random from the data pop-
ulation. In a serial query AL setting, the learner queries only

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a single instance in each iteration, which is annotated and
appended to the training set. This results in frequent model
updates and also cannot exploit the presence of multiple la-
beling oracles. In batch mode active learning (BMAL), the
learner queries batches of unlabeled samples and can lever-
age the availability of multiple labeling agents. Common ap-
plications of AL include computer vision (Chakraborty et
al. 2015), text mining (Tong and Koller 2001), spam filter-
ing (Sculley 2007) and bioinformatics (Osmanbeyoglu et al.
2010) among others.

Traditional active learning algorithms assume the label-
ing oracles to be infallible, i.e. they always provide correct
answers to the queried instances. This assumption may not
hold for several real-world applications, where we usually
have multiple labelers providing different qualities of anno-
tation. For instance, with the advent of crowdsourcing plat-
forms like the Amazon Mechanical Turk (AMT), hundreds
of annotators are available over the Internet to provide vary-
ing degrees of noisy annotations. As another example, con-
sider a medical image classification application, where we
have expert doctors as well as novice residents providing
varying degrees of noisy labels. In such situations, some an-
notators may be more reliable (and hence more expensive)
than others; there may exist different prior knowledge about
annotators; more importantly, annotator effectiveness may
vary depending on the specific data instance considered.
This diversity among annotators has rendered typical super-
vised learning algorithms sub-optimal and has motivated the
development of algorithms that are annotator-aware (Urner,
Ben-David, and Shamir 2012).

In this paper, we propose a novel framework to address
the problem of batch mode active learning (which queries
a batch of unlabeled samples simultaneously) in the pres-
ence of multiple imperfect labeling oracles. Our objective is
to select a batch of exemplar unlabeled samples and iden-
tify the optimal labeling oracle for each queried sample. We
pose the sample selection based on the uncertainty and re-
dundancy criteria and the oracle selection based on the la-
beling cost and the error probability conditions. The active
sample and oracle selection problem is solved using a sin-
gle optimization framework to select a batch of informative
(sample-oracle) pairs. By utilizing the presence of multiple
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labeling oracles that can label samples simultaneously, but
provide imperfect annotations, this paper takes a step to-
wards filling in a gap between active learning and real-world
tasks, to make active learning reach practical applications.

Related Work

In this section, we present a brief survey of active learning
(AL) algorithms in general, followed by a survey of AL in
the presence of noisy oracles.

Active Learning: Active Learning is a well-studied prob-
lem in machine learning (Settles 2010). In a typical pool-
based setup, the learner is exposed to a pool of unlabeled
samples and it iteratively queries batches of informative
samples for manual annotation. The most common query
strategy in active learning is uncertainty sampling, where
unlabeled samples with the highest classification uncertain-
ties are queried for annotation. The uncertainty of an un-
labeled sample can be quantified by its Shannon’s entropy
(Holub, Perona, and Burl 2008), its distance from the deci-
sion boundary in the feature space for SVM classifiers (Tong
and Koller 2001), the disagreement among a committee of
classifiers about the label of the sample (Freund et al. 1997)
and also by combining multiple criteria such as uncertainty,
representativeness and diversity (Shen et al. 2004). The
Fisher information matrix has also been exploited to com-
pute classification uncertainty and to develop active learn-
ing algorithms (Hoi et al. 2008). Guo and Schuurmans (Guo
and Schuurmans 2007) proposed a discriminative AL strat-
egy where the active sampling criterion was based on the un-
certainty of the future learner. Guo further used a matrix par-
titioning approach to develop an AL algorithm independent
of the underlying classification model (Guo 2010). Adaptive
active learning schemes have been proposed where the goal
is to automatically compute the batch size based on the com-
plexity of a data stream (Chakraborty, Balasubramanian, and
Panchanathan 2015). Deep active learning is a recently re-
searched topic in this field, which bridges the ideas of deep
learning and active learning; the objective is to automatically
learn a discriminating feature set using deep neural networks
and simultaneously identify the salient unlabeled samples
for manual annotation (Ranganathan et al. 2017). Adversar-
ial techniques using GANs have also been used for active
learning (Zhu and Bento 2017) with promising results.

Active Learning with Imperfect Oracles: All the afore-
mentioned AL techniques assume that the labeling oracles
are infallible. A few research efforts have focused on the
development of active learning algorithms in the presence
of noisy annotators, where the goal is to select informative
samples, as well as annotators for labeling them. The algo-
rithms proposed in (Zhang and Chaudhuri 2015) (Donmez
and Carbonell 2008) assumed the presence of two labeling
oracles, one of which always returns the correct label and
the other returns incorrect annotations with a fixed probabil-
ity. Yan et al. (Yan, Chaudhuri, and Javidi 2016) proposed
an AL algorithm using a single oracle, which can provide
incorrect labels and can also abstain from labeling. These
algorithms assume a very simplistic setting and do not gen-
eralize to multiple oracles with diverse expertise.

In the presence of multiple noisy annotators, a common
strategy is to use relabeling, where an actively queried sam-
ple is relabeled multiple times using crowdsourcing and the
final label is obtained using majority voting (Zhao, Suk-
thankar, and Sukthankar 2011). Zheng et al. (Zheng, Scott,
and Deng 2010) addressed the problem of active learning
with multiple labelers, where each labeler has a different
(known) cost and a different (unknown) accuracy; the label
was obtained from a subset of labelers using majority vot-
ing. However, the labelers were globally selected for all in-
stances and not actively for every individual unlabeled sam-
ple. Along similar lines, (Ipeirotis et al. 2014) proposed a re-
peated labeling (re-labeling) strategy, together with majority
voting and uncertainty-preserving labeling to integrate the
information from multiple labels. Donmez et al. (Donmez,
Carbonell, and Schneider 2009) selected a subset of confi-
dent oracles (based on the proximity of their upper confi-
dence interval to the maximum upper confidence interval)
and used majority voting on the selected oracles to label
each queried sample. Ambati et al. (Ambati, Vogel, and Car-
bonell 2010) proposed the Active Crowd Translation (ACT)
framework for active learning using crowdsourcing to en-
able automatic translation for low-resource language pairs.
A common drawback in all these methods is that the same
unlabeled sample is labeled multiple times by different an-
notators (and the best label is selected using an aggregation
mechanism), which results in sub-optimal usage of available
resources. Fang et al. (Fang, Yin, and Tao 2014) proposed a
knowledge transfer mechanism from auxiliary domains for
computing labelers’ expertise. However, the framework ne-
cessitated access to a different source dataset, which may
not be readily available in real-world applications. Yan et al.
(Yan et al. 2011) (Yan et al. 2012) proposed a probabilistic
multi-labeler model to compute the accuracy of each labeler,
and select the most confident labeler for each queried unla-
beled sample. Huang et al. (Huang et al. 2017) proposed a
Cost Effective Active Learning (CEAL) framework for ac-
tive sample selection in the presence of multiple noisy ora-
cles. However, even though these algorithms considered the
presence of multiple noisy oracles, they queried only a sin-
gle unlabeled instance in each AL iteration. This results in
inefficient usage of labeling resources, as only a single anno-
tator is being utilized at any given point of time; myopically
extending the single instance selection to multi-instance se-
lection produces sub-optimal results (as evidenced by our
empirical studies).

In this paper, we propose a novel algorithm to address this
challenging problem. Our framework queries a batch of in-
formative samples simultaneously and identifies the optimal
labeling oracle for each queried sample. Through its batch
selection strategy, the framework can leverage the presence
of multiple labeling oracles with varying degrees of imper-
fections - a situation commonly encountered in real-world
applications. We now describe our framework.

Proposed Framework
Consider an active learning problem, where we are given a
labeled training set L and an unlabeled set U (|L| � |U |).
Let w be the model trained on L and Z be the number of
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classes in the problem. We have access to k labeling oracles
{O1, O2, . . . Ok} with corresponding cost {C1, C2, . . . Ck},
denoting the price to be paid to get one unlabeled sample
labeled. The oracles are imperfect and may provide incor-
rect annotations to queried samples. We are further given a
labeling budget B. Our objective is to select a batch of un-
labeled samples together with a set of oracles to label each
sample, such that the total cost incurred equals the budget,
and the selected samples with the provided labels augment
maximal information to the classification model. To address
this problem, we propose to perform active selection of both
samples and oracles. These are detailed below.

Active Sample Selection

In order to identify the optimal set of samples to be queried,
we need a metric to quantify the utility score of a batch of
samples. In this research, we used the informativeness and
redundancy criteria to compute the utility score. A sample
selection framework driven by these two conditions ensures
that the selected samples are individually informative and
they have minimal redundancy (duplication) among them.
Such criteria has been used in previous active learning re-
search (Shen et al. 2004).

Computing informativeness: The informativeness of an
unlabeled sample xi was computed as the classification un-
certainty of xi using the model w. We used the Shannon’s
entropy to compute the uncertainty of an unlabeled sample
in this research:

E(xi) = −
Z∑

j=1

pij log pij (1)

where pij is the posterior probability of xi with respect to
class j, computed by the current model w. A high value of
entropy denotes high classification uncertainty, and thus a
more informative sample from an active learning perspec-
tive.

Computing redundancy: We also computed a redun-
dancy matrix R ∈ �|U |×|U |, where Rij denotes the redun-
dancy between samples xi and xj in the unlabeled set. This
is necessary to avoid selecting samples that are individu-
ally informative, but mutually redundant. We used the co-
sine similarity to quantify the redundancy between a pair of
samples, where a low value of the similarity denotes low
redundancy. We thresholded the similarity values at 0, so
that R contains only non-negative entries. The matrix R was
computed as follows:

R(i, j) = min(0, cos(xi, xj)) (2)

Active Oracle Selection

For a given unlabeled sample, we estimate the optimal label-
ing oracle based on two conditions: the error probability of
the oracle on the unlabeled sample; and the overall labeling
cost of the oracle. These are described below.

Computing Oracle Error Probability: As mentioned
previously, in a real-world application labelers have varying
knowledge and expertise and may provide noisy annotations
to queried instances. However, even though the labelers are

noisy and have diverse expertise, it is reasonable to assume
that certain labelers may be good at labeling certain specific
instances. For instance, an infant labeler may not be able to
correctly label a large variety of images, but may label im-
ages of common animals accurately. In medical image clas-
sification, a novice resident may not provide accurate an-
notations to all samples, but may be able to correctly iden-
tify certain specific medical abnormalities. We therefore ex-
ploited a data-driven strategy to select the optimal oracle for
a given unlabeled sample. Each oracle was asked to label the
samples in the labeled set L. Since the ground truth labels in
L are known, the errors committed by each oracle on L can
be determined. A binary logistic regression (LR) classifier
was then trained for each oracle separately to model their er-
ror patterns; given a particular unlabeled sample, the trained
model returns the probability of committing a labeling er-
ror on the sample by the corresponding oracle. We denote
the error probability of unlabeled sample xi when labeled
by oracle Oj as qij .

Computing Oracle Cost: The cost of an oracle denotes
the price to be paid to purchase a label from that oracle. It is
important to consider the labeling cost of an oracle because,
if two oracles furnish approximately the same error proba-
bility on a particular unlabeled sample, the one with lower
cost should be preferred. The cost is directly proportional to
the reliability / accuracy of the oracle. The cost of oracle Oj

was computed as:

Cj = αAj (3)

where Aj is the accuracy of Oj on the labeled set L and α
is the constant of proportionality. Depending on the applica-
tion and domain knowledge, other strategies can be used to
compute these terms.

Active (Sample-Oracle) Selection

Given E(xi), qij and Cj , we compute a matrix P ∈ �k×|U |
(k is the number of labeling oracles), where each column
represents an unlabeled sample and each row represents an
oracle. Our objective is to select a batch of unlabeled sam-
ples which furnish high entropy values (high uncertainties),
and get them labeled by oracles which have low cost and
furnish low labeling error probabilities for the correspond-
ing samples. The matrix P is defined to capture all these
conditions:

P (j, i) =
qij ∗ Cj

E(xi)
, i = 1, . . . |U |, j = 1, . . . k (4)

Also, we would like to minimize the redundancy among
the selected samples, as given by the entries in the matrix R.
We define a binary matrix M ∈ {0, 1}|U |×k where each row
corresponds to an unlabeled sample and each column corre-
sponds to an oracle. A value of 1 in a row denotes that the
sample should be selected for annotation, and the position
of 1 in a particular row of M denotes the oracle that should
be used to label the sample. The active (sample-oracle) se-
lection is thus posed as the following optimization problem:
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min
M

trace(MP ) + λ(Me)�R(Me)

s.t. Mij ∈ {0, 1}, ∀i, j
Mi.e ≤ 1, ∀i
〈M,E〉 = B (5)

where λ is a weight factor governing the relative importance
of the two terms, e is a vector of length k with all entries
1, Mi denotes row i of matrix M , 〈·, ·〉 denotes the matrix
inner product operator, E is a matrix of the same dimension
as M (|U | × k) with the cost value Cj of oracle Oj in the
entire column j, and B is the labeling budget. The first term
in the objective function denotes that the selected samples
have high entropy, low cost and low labeling error probabil-
ity from the corresponding labeling oracles; the second term
ensures that the selected samples have minimal redundancy
among them. The first constraint denotes that M is a binary
matrix; the second constraint signifies the each row of M
can have at most one entry as 1, since each selected unla-
beled sample can be labeled by exactly one oracle; and the
third constraint denotes that the total cost incurred by label-
ing the selected samples equals the specified budget B. Such
a formulation enables us to utilize the presence of multiple
imperfect labeling oracles simultaneously (corroborating its
usefulness in real-world applications), contrary to the meth-
ods proposed in (Huang et al. 2017) (Yan et al. 2011), which
query only a single unlabeled sample and utilize a single
labeling oracle in each AL iteration. We now discuss an effi-
cient strategy to solve this optimization problem, as detailed
in the following theorem.
Theorem 1. The optimization problem defined in Equation
(5) can be expressed as an equivalent linear programming
(LP) problem.

Proof. The first term in the objective function can be ex-
pressed as a linear term: trace(MP ) =

∑
i,j Pij .Mji. The

second term can be simplified as follows:

(Me)�R(Me) =
∑

i,j

Rij(Me)i(Me)j =
∑

i,j

Rij〈Mi.e,Mj .e〉

=
∑

i,j

Rij〈Mi,Mj .ee
�〉 =

∑

i,j

Rij〈M�
j Mi, ee

�〉

=
∑

i,j

Rij

∑

a,b

Mia.Mjb =
∑

i,j

∑

a,b

RijMia.Mjb

=
∑

i,j

∑

a,b

RijVijab

where Vijab = Mia.Mjb (we use the algebra of inner prod-
uct operations and the fact that ee� is a matrix of all 1’s in
this derivation). Since M is a binary matrix with only 0 and 1
entries, Vijab will equal 1 when both Mia and Mjb are 1 and
will equal 0 otherwise. Due to the binary constraints on M ,
the quadratic equality Vijab = Mia.Mjb can be expressed as
the following equivalent linear inequality:

Mia +Mjb ≤ 1 + 2Vijab (6)

A simple observation reveals that when Mia and Mjb are
both 1, Vijab has to be equal to 1. When Mia and Mjb

are both 0 or, one of them is 0 and the other one is 1,
Vijab is free to be both 0 and 1. However, we are solv-
ing a minimization problem with a term

∑
i,j

∑
a,b RijVijab

in the objective function (R has only non-negative entries).
These conditions will force Vijab to be 0, as it will lead to
a better (lower) value of the objective function. Hence, the
quadratic equality Vijab = Mia.Mjb and the linear inequal-
ity Mia +Mjb ≤ 1 + 2Vijab produce the exact same values
of Vijab under all conditions. The optimization problem in
Equation (5) can thus be expressed as follows:

min
M,V

∑

i,j

Pij .Mji + λ
∑

i,j

∑

a,b

RijVijab

s.t. Mij , Vijab ∈ {0, 1}, ∀i, j, a, b
Mi.e ≤ 1, ∀i
〈M,E〉 = B

Mia +Mjb ≤ 1 + 2Vijab (7)

In this optimization problem, both the objective function
and the constraints are linear in the variables M and V . It is
thus a linear programming (LP) problem.

We vectorize the variables M and V , append them one
below the other and express the objective function and the
constraints in terms of this new variable. The integer con-
straints on M and V are then relaxed into continuous con-
straints and the problem is solved using an off-the-shelf LP
solver. After obtaining the continuous solution, we recover
the integer solution of our variable of interest M , using a
greedy approach where the highest entries in each row of M
are reconstructed as 1 and the other entries as 0, observing
the constraints.

Experiments and Results

We conducted an extensive set of experiments to study the
active learning performance of our framework against com-
peting baselines, the labeling accuracy and the effects of the
number of labeling oracles and query budgets. These are de-
tailed below.

Datasets and Experimental Setup

We used 9 challenging datasets (binary and multi-class)
from a variety of application domains (handwritten digits,
objects, face and emotion recognition, medical diagnosis
and spam filtering) to study the performance of our frame-
work: MNIST (LeCun et al. 1998), SVHN (Netzer et al.
2011), CIFAR-10 (Krizhevsky 2009), VidTIMIT (Sander-
son 2008), MindReading (El-Kaliouby and Robinson 2004),
MMI (Pantic et al. 2005), Spambase, Sensor and Breast Can-
cer (the last three from the UCI Machine Learning Reposi-
tory). Our objective was to test the performance of AL al-
gorithms and not to outperform the best error rates in these
datasets; we therefore did not follow the exact train / test
splits mentioned for some of these datasets.
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We simulated 5 labeling oracles (O1–O5) using 5
common classification models: k-nearest neighbors, naı̈ve
Bayes, SVM, Random Forest and Adaboost respectively.
When an unlabeled sample needed to be labeled using a par-
ticular oracle, it was passed as a test sample to the corre-
sponding classifier, and the predicted label was interpreted
as the label provided by the oracle in a real-world setup.

Each dataset was divided into 5 parts: (i) an oracle train-
ing set (25%); (ii) an oracle test set (5%); (iii) an initial
training set (10%); (iv) an unlabeled set (40%); and (v) a
test set (20%). The first two parts were used to train and
test the labeling oracles and the other three were used for
evaluating the active learning algorithms. Table 1 shows the
percentage accuracy of each of the oracles (on the oracle test
set) for each of the datasets. As evident from the table, the
accuracy of the oracles vary significantly for a given dataset,
which aptly captures a practical scenario. Similar to previ-
ous research (Huang et al. 2017), each oracle was assigned
an integer between 1 and 5 in increasing order of labeling
accuracy, which was interpreted as the labeling cost Cj of
oracle Oj for a given dataset, that is, the price to be paid
to get one unlabeled sample from the dataset labeled by the
particular oracle. This appropriately simulates a real-world
setting, where more reliable and experienced annotators are
more expensive.

Dataset O1 O2 O3 O4 O5

MNIST 81.33 87.33 82.33 85.00 81.33
SVHN 66.66 71.66 63.33 66.33 59.00
CIFAR 40.60 48.00 36.80 41.60 31.00

VidTIMIT 83.00 88.00 69.00 86.66 50.66
MindReading 55.00 67.00 63.00 65.00 59.50

MMI 65.00 88.50 81.00 82.00 74.00
Spambase 71.00 91.00 70.40 95.00 74.00

Sensor 97 83.6 93.4 98.8 82.6
Breast Cancer 62.2 93.2 62.2 94.4 62.2

Table 1: Accuracy (in percentage) of the Oracles on the
Datasets used

In each AL iteration, a query budget B was imposed; each
algorithm queried a batch of unlabeled samples and their la-
bels were obtained from the selected oracles, such that the
total cost of purchasing the labels from the oracles equalled
the budget B. The selected samples, together with the labels
predicted by the respective oracles, were then appended to
the training set; the model was updated and tested on the
test set. The process was continued iteratively until a stop-
ping condition was satisfied (taken as 25 iterations in this
work). The objective was to study the improvement in per-
formance on the test set with increasing sizes of the training
set. The query budget B in each AL iteration was set as 100.
All the results were averaged over 5 runs (with different ini-
tial training, unlabeled and test sets) to rule out the effects
of randomness. The parameter λ was taken as 0.3 (based
on preliminary experiments). Logistic Regression (LR) was
used as the classification model in our experiments.

Comparison Baselines

We compared the proposed algorithm against the following
baselines: Cost Effective Active Learning (CEAL) proposed
by Huang et al. (Huang et al. 2017); Multi-Labeler Active
Learning (MLAL) proposed by Yan et al. (Yan et al. 2011).
These two are the best-performing algorithms for this prob-
lem (Huang et al. 2017) and were hence selected as com-
parison baselines. In addition, we also compared the perfor-
mance against Random sampling (where a batch of unla-
beled samples was selected at random) together with three
oracle selection strategies: Random, Best and Worst (de-
fined by their accuracies in Table 1). This gave us 3 more
baselines: RR, RB and RW. For instance, RB will select an
unlabeled sample at random and always use the best oracle
to get its label.

Active Learning Performance

The AL performance results are depicted in Figure 1. In each
graph, the x-axis denotes the iteration number and the y-
axis denotes the accuracy on the test set. The CEAL method
depicts competitive performance in the SVHN and Sensor
datasets; but it is not consistent across datasets in its perfor-
mance (such as MMI, Spambase and Breast Cancer). The
same holds for the MLAL algorithm which also depicts in-
consistent performance across the datasets. As mentioned
earlier, both these algorithms query only a single unlabeled
sample in each AL iteration; thus, myopically extending
the single query framework to multiple queries produces
sub-optimal results. Random sampling using the best ora-
cle (RB) can sometimes produce impressive performance, as
in CIFAR-10 and Breast Cancer; however, its performance
in the other datasets is much worse. Thus, always query-
ing the best oracle does not necessarily produce optimal re-
sults. The RW method shows a consistent degradation in ac-
curacy due to the addition of noisy data to the training set.
The RR method depicts performance in between RB and RW.
Our framework consistently depicts impressive performance
across all the datasets. It shows a consistent upward trend in
the accuracy, even in the presence of imperfect labeling or-
acles. At any given iteration number in any dataset, the pro-
posed algorithm furnishes the highest, or very close to the
highest accuracy value, compared to all the baselines. This
shows that our framework is efficiently identifying the most
informative unlabeled samples and the optimal annotators to
get them labeled, in order to induce a robust model with min-
imal human effort. The results unanimously corroborate the
potential of our method for real-world active learning appli-
cations in the presence of multiple noisy labeling oracles.

Study of Labeling Accuracy

In this experiment, we studied the correctness of the labels
returned by the labeling oracles for all the methods. Table 2
reports the percentage accuracy in labeling the queried un-
labeled instances by all the methods for all the datasets. The
proposed method achieves the highest labeling accuracy in
7 out of the 9 datasets. This shows that, besides identifying
the exemplar unlabeled samples to be queried, our algorithm
also identifies the optimal oracles to annotate each sample.
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(a) MNIST (b) SVHN (c) CIFAR

(d) VidTIMIT (e) MindReading (f) MMI

(g) Spambase (h) Sensor (i) Breast Cancer

Figure 1: Active Learning performance comparison. RR selects samples at random and queries oracles at random; RB selects
samples at random and always queries the best oracle; RW selects samples at random and always queries the worst oracle.
MLAL denotes the multiple labeler active learning algorithm (Yan et al. 2011); CEAL denotes the cost effective active learning
algorithm (Huang et al. 2017). Best viewed in color.

Dataset RW RR RB MLAL CEAL Proposed

MNIST 62.12 70.83 67.72 83.33 83.40 84.09

SVHN 49.00 55.69 53.70 63.63 75.92 71.66
CIFAR 28.75 40.40 38.50 29.83 42.20 49.00

VidTIMIT 46.18 45.61 65.45 67.43 76.53 82.90

MindReading 46.03 53.77 61.33 62.22 61.63 70.13

MMI 60.71 60.86 66.81 72.00 80.63 85.18

Spambase 65.84 69.64 84.28 79.64 77.14 91.42

Sensor 81.66 91.62 95.50 88.88 98.50 97.91
Breast Cancer 64.72 75.77 94.85 83.55 70.65 96.57

Table 2: Accuracy (in percentage) in labeling the queried
unlabeled instances. Best results are shown in bold.

Thus, using a binary LR, our framework can accurately iden-
tify error patterns in labeling among the oracles and can thus
obtain high quality labels, which accounts for its superior
performance in Figure 1.

Effect of Number of Labeling Oracles

The goal of this experiment was to study the effect of the
number of labeling oracles on the active learning perfor-
mance. Besides the default setting with 5 oracles, we stud-
ied the performance with 3 oracles (SVM, Random Forest
and Adaboost) and 7 oracles (k-NN, naı̈ve Bayes, SVM,
Random Forest, Adaboost, discriminant analysis and deci-
sion trees). The results on the Spambase dataset are shown
in Figure 2. The proposed method once again depicts the
fastest accuracy growth with increasing number of iterations
compared to all the baselines, for all three experiments. This
shows the robustness of our framework to varying number
of oracles and its capability to find the optimal labeling or-
acle for a given unlabeled sample, regardless of the number
of oracles.
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(a) 3 Oracles (b) 5 Oracles (c) 7 Oracles

Figure 2: Effect of the number of labeling oracles on the Spambase dataset. Best viewed in color.

(a) Budget 50 (b) Budget 75 (c) Budget 100

(d) Budget 125 (e) Budget 150

Figure 3: Effect of varying query budgets on the Spambase dataset. Best viewed in color.

Effect of Query Budgets

In this experiment, we studied the effect of varying query
budgets B. The results on the Spambase dataset for query
budgets 50, 75, 100, 125 and 150 are depicted in Figure
3. The number of labeling oracles was fixed at 5. The re-
sults follow a similar pattern as Figure 2, with the proposed
method outperforming the baselines. Our algorithm thus de-
picts impressive performance across varying query budgets.
This corroborates its potential for real-world applications,
where the budget is governed by the time and available re-
sources of an application.

Conclusion and Future Work

In this paper, we studied the problem of batch mode active
learning in the presence of multiple imperfect labeling ora-
cles. This captures a practical real-world setting and is con-
trary to most existing active learning algorithms, where the
oracles are assumed to be infallible or, which utilize only a

single oracle at any given point of time. We proposed a novel
framework to simultaneously select a batch of informative
unlabeled samples, together with the best annotator to label
each sample. The active sample-oracle selection was posed
as a constrained optimization problem, based on the confi-
dence, redundancy, labeling cost and oracle error probability
criteria, and was shown to be equivalent to a linear program-
ming problem. Our extensive empirical studies on 9 chal-
lenging datasets from different application domains demon-
strated the merit of our algorithm over competing baselines,
in terms of active learning performance, labeling accuracy,
number of labeling oracles and query budgets. As part of
future research, we plan to study the performance of our
framework on other problems, such as multi-label learning.
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