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Abstract

Deep neural networks are vulnerable to adversarial attacks.
More importantly, some adversarial examples crafted against
an ensemble of pre-trained source models can transfer to
other new target models, thus pose a security threat to black-
box applications (when the attackers have no access to the
target models). Despite adopting diverse architectures and pa-
rameters, source and target models often share similar de-
cision boundaries. Therefore, if an adversary is capable of
fooling several source models concurrently, it can poten-
tially capture intrinsic transferable adversarial information
that may allow it to fool a broad class of other black-box
target models. Current ensemble attacks, however, only con-
sider a limited number of source models to craft an adver-
sary, and obtain poor transferability. In this paper, we pro-
pose a novel black-box attack, dubbed Serial-Mini-Batch-
Ensemble-Attack (SMBEA). SMBEA divides a large number
of pre-trained source models into several mini-batches. For
each single batch, we design 3 new ensemble strategies to
improve the intra-batch transferability. Besides, we propose a
new algorithm that recursively accumulates the “long-term”
gradient memories of the previous batch to the following
batch. This way, the learned adversarial information can be
preserved and the inter-batch transferability can be improved.
Experiments indicate that our method outperforms state-of-
the-art ensemble attacks over multiple pixel-to-pixel vision
tasks including image translation and salient region predic-
tion. Our method successfully fools two online black-box
saliency prediction systems including DeepGaze-II (Kum-
merer 2017) and SALICON (Huang et al. 2017). Finally,
we also contribute a new repository to promote the research
on adversarial attack and defense over pixel-to-pixel tasks:
https://github.com/CZHQuality/AAA-Pix2pix.

Introduction

Deep neural networks, despite their great success in various
vision tasks, are susceptible to adversarial attacks (Szegedy
et al. 2014; Goodfellow et al. 2015). The adversarial attacks
add some quasi-imperceptible perturbations to the original
input, to significantly change the model output. More impor-
tantly, some well-designed adversarial examples can trans-
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Figure 1: The general idea of the proposed attack. Our at-
tack divides a large number of pre-trained source models
into several mini-batches. For each batch, we craft an ad-
versary that fools multiple intra-batch source models. We
also recursively accumulate the “long-term” gradient mem-
ories of previous batch to the following batch, in order to
preserve the learned adversarial information and to improve
inter-batch transferability. The red dashed lines denote that
the crafted adversarial example can fool the previous source
models, and also successfully fools the black-box target
models.

fer across different models. That is, the adversary crafted
against some pre-trained source models can transfer to other
new target models. Despite the source and target models
adopting diverse architectures and parameters, they may
share similar decision boundaries. Thus, if an adversary can
fool several source models, it can capture the intrinsic trans-
ferable adversarial information that allows it to fool a broad
class of other black-box target models. The transferability of
adversarial examples provides a potential chance to launch
black-box attacks without having access to the target model.
In contrary, white-box attacks require all information of tar-
get model, thus they are not practical in real world.

Particularly, adversarial attack serves as an efficient surro-
gate to evaluate the robustness of deep networks before they
are deployed in real world, especially for security-related
applications, e.g. autonomous driving (Yang and Hsu 2017;
Alletto et al. 2016) and face verification (Sharif et al. 2016;
Dong et al. 2019). Therefore, exploring adversarial attacks,
especially the transferable black-box ones, is critical to de-
mystifying the fragility of deep neural networks.
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Current approaches for crafting transferable adversarial
examples fall into two major categories: (1) Ensemble at-
tacks (Dong et al. 2018; Liu et al. 2017; Xie et al. 2017)
craft transferable adversarial examples via fooling multiple
white-box source models in parallel. (2) Generative methods
(Zhao, Dheeru, and Sameer 2018; Wei et al. 2019) rely on
an extra generative adversarial network (GAN). Specifically,
a generator is trained to produce the adversaries that aim to
fool the target model, while a discriminator is trained to dis-
tinguish the synthetic adversaries from original clean images
for minimizing the perceptibility.

However, current methods have some drawbacks: (1) Nor-
mal ensemble attacks only consider a limited number of
source models. To the best of our knowledge, the state-of-
the-art ensemble attacks (Liu et al. 2017; Dong et al. 2018)
adopt less than 8 source models to craft the adversaries. In
their implementations, all of the source models are com-
bined in parallel. As a result, the number of source models is
limited by the GPU memory. (2) Although the parallel com-
puting technique enables concurrent attacks against a large
number of models, it brings new optimization challenges,
because computing and back-propagating the gradients of
cost function w.r.t a large number of models become slow
and difficult. (3) Generative methods rely on an extra GAN
network which is not easy to train, and also require a lot of
training samples with expensive labels.

For solving these problems, we propose a novel Serial-
Mini-Batch-Ensemble-Attack (SMBEA). Before elaborating
our method, we first introduce two empirical observations
that inspire our method: (1) Crafting an adversarial exam-
ple is analogous to training a model, and the transferability
of the adversarial example is analogous to the generaliz-
ability of the model (Dong et al. 2018). Thus, it is expected
to increase the transferability of adversary via fooling di-
verse source models as much as possible, (2) Compared to
the magnitude of the perturbation, the spatial structure of
the adversarial perturbation has stronger impact on the final
fooling ability (Xie et al. 2017). Thus, we focus on preserv-
ing the learned adversarial structure information to optimize
the fooling ability and transferability, while mitigating the
magnitude of perturbation to minimize the perceptibility.

Inspired by the aforementioned empirical observations,
our method mimics classical deep network training proce-
dures to craft transferable adversaries, as shown in Fig. 1.
Specifically, we divide a large number of pre-trained source
models into several mini-batches, and each single batch con-
tains K (K is the batch-size) individual source models. For
each batch, we introduce 3 new ensemble strategies to com-
bine these individual models, in order to improve intra-batch
transferability. For the inter-batch case, we propose a new
algorithm that recursively accumulates the “long-term” gra-
dient memories of previous batch to the following batch.
This way, the learned adversarial information can be pre-
served and the inter-batch transferability can be improved.
As shown in Fig. 1, we start from a clean image, then re-
cursively update the adversary across different batches, and
finally obtain an adversary that not only fools all previous
source models, but also fools new black-box target models.

We summarize our contributions as follows:

• A new black-box attack approach: We propose a novel
black-box attack, where we introduce 3 new ensemble
strategies for improving intra-batch transferability, and
propose a new algorithm that preserves “long-term” gra-
dient memories for improving inter-batch transferability.

• Generality: Our method can attack multiple pixel-to-
pixel vision tasks, e.g. image translation and saliency pre-
diction. Besides, our method successfully fools two online
black-box saliency prediction systems in the real world:
i.e. DeepGaze-II and SALICON.

• A new repository: We provide a software repository in-
cluding 13 common attack methods and our proposed at-
tack, and 16 pre-trained source models. This repository
aims to boost adversarial attack and defense research in
pixel-to-pixel tasks. It also serves as a complement to
CleverHans repository (Papernot et al. 2016a).

Related works

In 2014, Szegedy et al. verified the existence of adversarial
examples for the first time (Szegedy et al. 2014).

Goodfellow et al. (Goodfellow et al. 2015) introduced the
fast gradient sign method (FGSM) to craft white-box adver-
sarial examples by one-step gradient update along the direc-
tion of the sign of gradient at each pixel.

Kurakin et al. (Kurakin et al. 2016) proposed the basic
iterative version of FGSM, i.e. I-FGSM. I-FGSM utilizes a
small step to update adversarial example for multiple iter-
ations by vanilla Stochastic Gradient Descent (SGD) opti-
mization. However, SGD has some drawbacks, such as slow
convergence and always drops into poor local minima.

Papernot et al. (Papernot 2017) proposed a black-box at-
tack against image classifiers. Specifically, they trained a
surrogate model to mimic the target black-box model.

Dong et al. (Dong et al. 2018) introduced the Momentum
based Iterative Method (MIM), which utilizes Momentum
based Stochastic Gradient Descent (MSGD) (Qian 1999) op-
timizer to craft adversaries. MIM accumulates the 1st mo-
mentum in gradient descent direction to reduce poor local
minima and to avoid “over-fitting” one specific model, thus
demonstrating better transferability in black-box setting.

Madry et al. (Madry et al. 2018) proposed the Projective
Gradient Descent (PGD) attack, which extends the I-FGSM
method to a universal first-order adversary by introducing a
random start state. PGD also uses SGD to update the adver-
sary iteratively. It serves as a strong white-box attack.

Carlini et al. (Carlini and Wagner 2017) introduced an
efficient white-box attack, dubbed C&W’s attack, which
breaks defensive distillation (Papernot et al. 2016b). C&W’s
attack utilizes Adam optimization due to its fast convergence
and high fooling ability.

Liu et al. (Liu et al. 2017) proposed targeted and non-
targeted ensemble attacks that successfully fool black-box
classification system i.e. Clarifai.com. Wei et al. (Wei et al.
2019) also trained a generative network to craft transferable
adversaries against image and video detection models.

Xie et al. (Xie et al. 2017) proposed Dense Adversary
Generation (DAG) to attack segmentation and object detec-
tion models. Mopuri et al. (Mopuri, Ganeshan, and Radhakr-
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ishnan 2018) introduced a general objective function that
produces image-agnostic adversaries from latent space.

Proposed method

In this section, we introduce a novel black-box adversar-
ial attack dubbed Serial-Mini-Batch-Ensemble-Attack (SM-
BEA). We first introduce the intra-batch algorithm, then we
elaborate the inter-batch algorithm.

Intra-batch ensemble strategies

In our implementation, each single mini-batch includes K=4
1 white-box source models that are pre-trained over the same
pixel-to-pixel task. Thus, these models have similar deci-
sion boundaries, despite adopting diverse architectures and
parameters. Similar decision boundaries across models in-
crease the chance of crafting an adversary that fools all these
models. At the same time the diversity across different mod-
els serves as the regularization and alleviates “over-fitting”
to a specific model, which in turn results in high intra-batch
transferability.

In this work, we only consider the targeted attack. The
non-targeted attack is a straightforward extension. We for-
mulate the targeted ensemble attack in pixel-to-pixel tasks
as a constrained optimization problem. For simplicity, we
first introduce a basic ensemble strategy, where multiple
models are fused in output space, i.e. the optimization objec-
tive is computed by an element-wise weighted summation of
the final predictions of multiple source models:

⎧⎨
⎩

min Lo = L1[
K∑

n=1
σn · Fn(I

∗), F(G)] + λ1 · L2(I, I∗),

s.t. L2(I, I∗) ≤ T1.
(1)

where I and I∗ are original clean image and adversarial
example, respectively. G represents the guide image, while
F(G) is the ground-truth output of G. For the targeted at-
tack, the goal is to change the models’ ensemble prediction
of I∗ towards the prediction of the guide image. Fn is the
nth source model within the mini-batch, and Fn(I

∗) repre-
sents the final prediction of the nth model on the crafted ad-
versary I∗. σn is ensemble weight,

∑K
n=1 σn = 1. L1 is the

loss function that is minimized when
∑K

n=1 σn · Fn(I
∗) =

F(G). L2 is the perceptual constraint, e.g. L0, L1, or L∞
norms, which is minimized to guarantee that the crafted ad-
versary I∗ looks (perceptually) similar to the original clean
image I . T1 is the maximum perceptual constraint for single
batch. λ1 is a hyper-parameter to balance the fooling ability
loss L1 and the perceptual constraint L2.

However, the basic ensemble strategy in Eq. 1 only fools
the final predictions in the output space. Here we further
dig into the feature space to explore other efficient ensemble
strategies. This is motivated by the consideration that com-
bining output space and feature space ensembles provides a
deep supervision for crafting strong adversary that not only

1Batch-size K is a tunable hyper-parameter. Here we adopt 4
as the batch-size because it achieves a good tradeoff between the
transferability and GPU memory cost.

fools the final predictions, but also fools the intermediate
feature maps. This way, the objective Lo,f is rewritten as:
⎧⎨
⎩

min Lo,f = Lo + λ2 · L3[
K∑

n=1

ωn · Dn(I∗),
K∑

n=1

ωn · Dn(G)],

s.t. L2(I, I∗) ≤ T1.
(2)

where Dn(I
∗) and Dn(G) represent the feature maps of

the nth source model on the crafted adversary I∗ and
guide image G. ωn is the feature space ensemble weight,∑K

n=1 ωn = 1. L3 is the loss function that aims to minimize
the feature space distance between I∗ and G. λ2 is a hyper-
parameter to balance feature space fooling loss L3, together
with output space fooling loss and perceptual constraint.

Different models utilize different network architectures,
so their feature maps have different resolutions and chan-
nels. For solving this, we introduce 3 different feature space
ensemble strategies, as shown in Fig. 2. More details re-
garding the feature layer selection are provided in the ex-
periments section. Here we focus on explaining ensemble
strategies.

The first ensemble strategy evenly samples p feature maps
from each model, and the sampling interval p̄n of the nth

model can be computed as p̄n = Pn/p, where Pn is the to-
tal number of feature channels of one selected feature layer
from the nth model. We set p and Pn as the powers of
2, to make sure that p̄n is an integer. This way, we obtain
the same number of feature maps (channels) from different
models. Next, we use bilinear interpolation to resize the se-
lected feature maps of different models to the same reso-
lution (i.e. height×weight). Then, we adopt softmax func-
tion to normalize these feature maps. Finally, we obtain the
feature-space ensemble result by an element-wise weighted
summation of different feature maps.

The other two ensembles have similar pipelines, except
for the first step, which is explained below. For each model,
the second ensemble computes the average pooling of the
Pn feature maps in the channel direction, and obtains a 2D
one-channel feature map from each model. The third ensem-
ble divides Pn feature maps into p groups, then computes
the channel direction average of each group, and obtains p
candidate feature maps from each model.

Intra-batch update rules

For solving the constrained optimization problem in Eq. 2,
we exhaustively test 5 common gradient descent optimiza-
tion methods, i.e. stochastic gradient descent (SGD), mo-
mentum based gradient descent (MSGD) (Qian 1999), Ada-
grad (Duchi, Hazan, and Singer 2011), RMSProp (Tieleman
and Hinton 2012), and Adam (Kingma and Ba 2015). The
major differences between these gradient descent methods
are two gradient momentums, explained below.

The 1st gradient momentum accumulates the gradients of
previous iterations to stabilize the gradient descent direction,
and helps to reduce poor local minima.

The 2nd gradient momentum adapts the learning rates to
different parameters. In pixel-to-pixel attacking tasks, we
aim to update the image pixels of the crafted adversarial ex-
ample. However, in the attacking process, a small fraction
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Figure 2: Visualizations of three ensemble strategies in feature space. The raw feature maps are processed by the batch normal-
ization and ReLU activation function. CU: Channel amount Unification, BI: Bilinear Interpolation, SN: Softmax Normalization,
APC: Average Pooling in Channel direction. ⊕ represents an elementwise weighted summation.

of pixels are frequently updated, while the remaining pixels
are occasionally updated. The intensities of frequent pixels
grow rapidly and reach the bound of perceptual constraint
quickly, while the infrequent pixels are far from convergence
at this moment. This issue limits the tradeoff between fool-
ing ability and perceptibility. For mitigating this limitation,
the 2nd gradient momentum was proposed, which assigns a
small update step-size for frequent pixels, while assigning a
big update step-size for infrequent pixels.

Algorithm 1 : Intra-batch update rules of SMBEA. This al-
gorithm is applicable to the first mini-batch. mt represents
the 1st gradient momentum vector, while vt represents the
2nd gradient momentum vector. � is an element-wise prod-
uct.
Require:

Original clean image I , guide image G (randomly se-
lected);
Intra-batch source models: F1, F2, ..., FK ;
Decay factors of short-term gradient momentums: μ1,
μ2;
Smoothing term: ε;
Maximum iterations X for single mini-batch;
Maximum perceptual constraint T1 for the first mini-
batch;
Step size of iterative gradient descent α;

Ensure:
An adversarial example I∗X ; The ultimate 1st momen-
tum mX , and the ultimate 2nd momentum vX .

1: Initialization: I∗0 ← I , m0 ← 0d, v0 ← 0d, t← 0
2: while (0 ≤ t < X and ‖I, I∗t ‖1 ≤ T1) do
3: t← t+ 1; (update the iteration epoch)
4: gt ← ∇I∗

t−1
Lo,f ; (Lo,f is defined in Eq. 2)

5: ĝt ← gt
‖gt‖1

; (gradient normalization)
6: mt ← μ1 ·mt−1 + (1− μ1) · ĝt; (update the mt)
7: vt ← μ2 · vt−1 + (1− μ2) · ĝt2; (update the vt)
8: m̂t ← mt/(1− μt

1); (bias correction)
9: v̂t ← vt/(1− μt

2); (bias correction)
10: I∗t ← Clip(I∗t−1 − α · 1√

v̂t+ε
� m̂t); (update the

adversary)
11: end while
12: return I∗X ← I∗t , mX ← mt, vX ← vt.

In our tasks, Adam achieves the best tradeoff between
transferability, perceptibility, and convergence speed. The
update rules of the intra-batch algorithm based on Adam op-
timizer are given in the Algorithm 1. Specifically, Adam op-
timizer utilizes the 1st momentum to avoid local poor min-
ima and to prevent “over-fitting”, thus improving transfer-
ability. Besides, it also uses the 2nd momentum to adapt the
learning rates for different pixels, thus enhancing the trade-
off between fooling ability and perceptibility.

In our implementation, the original image I and the guide
image G are normalized to be in the range [0, 1]. The de-
fault decay factors are set as μ1 = 0.9 and μ2 = 0.99.
ε = 1× 10−8 is a smoothing term to avoid division by zero.
The maximum number of iterations X for a single batch is
20. The iterative gradient descent step size α = 2 × 10−4.
We adopt L1 norm as the perceptual constraint. Finally, we
clip the crafted adversary I∗t into the range [0, 1] to make
sure I∗t is a valid image. This way, we obtain an adversary
I∗ that is able to fool multiple intra-batch source models.

Inter-batch update rules

The intra-batch algorithm only guarantees that the crafted
adversary can fool a limited number of source models. For
breaking this limitation, we propose a novel inter-batch algo-
rithm that recursively accumulates the “long-term” gradient
memories of the previous batches to the following batches.
These “long-term” gradient memories preserve the learned
adversarial information, and also serve as the regularization
to prevent “over-fitting” on a specific batch, thus increasing
the inter-batch transferability.

The proposed inter-batch update rules are presented in the
Algorithm 2. The main differences between the two algo-
rithms are the initialization and the bias corrections.

We first introduce the initialization. We adopt four vari-
ables of the previous batch to recursively initialize the vari-
ables of the following batch, explained below.

• I
∗ (i)
0 ← I

∗ (i−1)
X : we adopt the adversarial example of

the previous batch I
∗ (i−1)
X as the initial state of the cur-

rent batch, because I
∗ (i−1)
X has learned some adversarial

information against multiple models of previous batch.

• m
(i)
0 ← β1 ·m(i−1)

X and v
(i)
0 ← β2 · v(i−1)

X : we utilize the
1st and 2nd momentums of the previous batch to initialize
the momentums of the current batch. These “long-term”
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Algorithm 2 : Inter-batch update rules of SMBEA. This al-
gorithm is applicable to all mini-batches, except for the first
one, i.e. i > 1. Notice that the superscript in brackets de-
notes the batch number, e.g. I∗ (i)

X is the adversary of the ith
batch, while the superscript w/o brackets denotes the pow,
e.g. βi

3 denotes the β3 to the power i.

Require:

The adversarial example of the previous batch I
∗ (i−1)
X ,

the guide image G;
The 1st gradient momentum of the previous batch
m

(i−1)
X ;

The 2nd gradient momentum of the previous batch
v
(i−1)
X ;

Maximum perceptual constraint T (i−1)
1 of the previous

batch;
Maximum perceptual constraint T (1)

1 of the first batch;
Maximum batch number N ;
Intra-batch models of the current batch: F(i)

1 , F(i)
2 , ...,

F
(i)
K ;

Decay factors of short-term gradient momentums: μ1,
μ2;
Weights of long-term gradient momentums: β1, β2 ∈
[0, 1];
Decay factor of perceptual constraint: β3 ∈ [0, 1];

Ensure:
An adversarial example of current batch I

∗ (i)
X ; The

ultimate 1st momentum m
(i)
X , and ultimate 2nd mo-

mentum v
(i)
X of the current batch.

1: Initialization: I∗ (i)
0 ← I

∗ (i−1)
X , m

(i)
0 ← β1 ·m(i−1)

X ,
v
(i)
0 ← β2 · v(i−1)

X , T (i)
1 ← T (i−1)

1 + βi
3 · T

(1)
1 ,

t← 0
2: while (i ≤ N and 0 ≤ t < X and ‖I, I∗t ‖1 ≤ T

(i)
1 )

do
3: do Step.3 - Step.7 of the Algorithm. 1.

4: m̂t
(i) ← m

(i)
t

(1−μt
1)

+ β1 ·m(i−1)
X ; (bias correction)

5: v̂t
(i) ← v

(i)
t

(1−μt
2)

+ β2 · v(i−1)
X ; (bias correction)

6: I
∗ (i)
t ← Clip(I∗ (i)

t−1 − α · 1√
v̂
(i)
t +ε

� m̂
(i)
t );

7: end while
8: return I

∗ (i)
X ← I

∗ (i)
t , m(i)

X ← m
(i)
t , v(i)X ← v

(i)
t ,

i← i+ 1.

gradient momentums preserve the learned adversarial in-
formation, and also serve as the regularization to prevent
“over-fitting” on the following batch, thus boosting the
inter-batch generalizability of the crafted adversary.

• T (i)
1 ← T (i−1)

1 +βi
3·T

(1)
1 : we recursively update the max-

imum perceptual constraint of the current batch (i.e. T (i)
1 )

by adding a loose factor βi
3 · T

(1)
1 to the perceptual con-

straint of the previous batch (i.e. T (i−1)
1 ), in order to pre-

vent premature convergence that causes “under-fitting”.

Besides, by increasing the number of batches, the adver-
sarial example tends to be converged, so we reduce the
loose factor via a decay rate βi

3, where βi
3 denotes the

β3 ∈ [0, 1] to the power i (i is the batch number).
The proposed inter-batch algorithm inherits the good

properties of the classical Adam method, explained below.
Property 1: The effective step-size of inter-batch update

rules is invariant to the scale transform of the gradient.
Proof 1: As shown in Step.6 of Algorithm. 2, assuming

ε = 0, the effective step-size of the adversarial example at
iteration t is Δ(i)

t = α · 1√
v̂
(i)
t

�m̂
(i)
t . The effective step-size

Δ
(i)
t is invariant to the scale transform of gradient, because

scaling raw gradient gt with factor c will be normalized by
L1 norm, i.e. gt

‖gt‖1
= c·gt

‖c·gt‖1
. Thus, m̂t

(i), v̂t(i), Δ
(i)
t are

invariant to the scale transform of the gradient.
Property 2: The proposed inter-batch bias corrections

can correct for the discrepancy between the expected value
of the exponential moving averages (i.e. E[m(i)

t ] or E[v(i)t ])
and the true expected gradients (i.e. E[ĝt] or E[ĝt

2]).
Proof 2: The proposed inter-batch bias corrections are

shown in Steps.4-5 of the Algorithm. 2. Here, we derive
the bias correction for the 2nd momentum estimate, and the
derivation for the 1st momentum is completely analogous.

Let ĝt be the normalized gradient at iteration t, and we
wish to estimate its 2nd momentum v̂

(i)
t using an exponential

moving average of the true squared gradient. In the inter-
batch case, the raw 2nd momentum is initialized as v

(i)
0 ←

β2 ·v(i−1)
X . The recursive update equation of raw momentum

v
(i)
t = μ2 · v(i)t−1 + (1− μ2) · ĝt2 can be rewritten as:

v
(i)
t = μt

2 · v
(i)
0 + (1− μ2)

t∑
k=1

μt−k
2 · ĝk2, (3)

We wish to know how E[v
(i)
t ], the expected value of the

exponential moving average at iteration t, relates to the true
expected squared gradient E[ĝt2], so we can correct for the
discrepancy between them. We take expectations of the left
and right sides of Eq. 3
⎧⎪⎨
⎪⎩

E[v
(i)
t ] = E[μt

2 · v
(i)
0 ] + E[(1− μ2)

∑t
k=1 μ

t−k
2 · ĝk2]

= μt
2 · v

(i)
0 + E[ĝt

2] · (1− μ2)
∑t

k=1 μ
t−k
2 + ζ

= μt
2 · v

(i)
0 + E[ĝt

2] · (1− μt
2) + ζ,

(4)
where ζ = 0 if the true 2nd momentum E[ĝt

2] is station-
ary, according to Adam (Kingma and Ba 2015). We suppose
E[ĝt

2] is stationary, and divide the left and right sides of
Eq. 4 by (1− μt

2):

E[v
(i)
t ]

1− μt
2

=
μt
2 · v

(i)
0

1− μt
2

+ E[ĝt
2], (5)

where μt
2·v(i)

0

1−μt
2

=
μt
2

1−μt
2
· β2 · v(i−1)

X (v(i)0 is initialized as

β2 · v(i−1)
X ) is the “long-term” momentum from the previ-

ous batch. This “long-term” momentum decreases rapidly
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Table 1: Comparison under black-box setting. Fooling ability is measured by performance drop: CC↑ for LSUN’17, MSE↓ for
other datasets.

Datasets (original performance) Cityspaces (MSE=0.0139) Facades (MSE=0.0521) Google Satellite (MSE=0.0255) LSUN’17 (CC=0.7748)
Target black-box model pix2pix U-Net Global pix2pixHD Local pix2pixHD SALICON
Number of mini-batches 1 3 5 1 3 5 1 3 5 1 3 5
Percep. cons. (L1 norm) 1.0e−2 2.0e−2 2.4e−2 1.2e−2 2.4e−2 2.8e−2 1.0e−2 2.0e−2 2.4e−2 3.4e−2 6.6e−2 7.8e−2

Random noise +0.0002 +0.0008 +0.0011 +0.0003 +0.0010 +0.0013 +0.0002 +0.0006 +0.0011 -0.0002 -0.0002 -0.0003
Ensemble Attack using PGD +0.0108 +0.0169 +0.0174 +0.0104 +0.0133 +0.0166 +0.0074 +0.0083 +0.0099 -0.0022 -0.0264 -0.0511
Ensemble Attack using C&W +0.0113 +0.0170 +0.0173 +0.0097 +0.0131 +0.0168 +0.0068 +0.0087 +0.0096 -0.0763 -0.2117 -0.2452
Ensemble Attack using MIM +0.0116 +0.0193 +0.0227 +0.0125 +0.0162 +0.0178 +0.0093 +0.0099 +0.0113 -0.0771 -0.2417 -0.2880
Liu’s Ensemble Attack +0.0118 +0.0194 +0.0230 +0.0129 +0.0165 +0.0184 +0.0098 +0.0105 +0.0116 -0.0780 -0.2533 -0.2941
Proposed SMBEA +0.0148 +0.0213 +0.0264 +0.0155 +0.0230 +0.0275 +0.0108 +0.0137 +0.0145 -0.0871 -0.3017 -0.4180

Figure 3: Attacking real-world applications. With the increase of batch number, our attack fools two online black-box saliency
prediction systems, i.e. DeepGaze-II and SALICON. However, normal ensemble attack based on PGD (Madry et al. 2018) fails
to fool these models.

with the increase of iteration t due to the decay rate μt
2

1−μt
2

.
However, in our tasks, we wish to assign a smooth decay
rate to the “long-term” momentum in subsequent iterations,
in order to preserve the learned adversarial information as
much as possible. Thus, we modify the decay weight as

1
1−μt

2
, which obtains a slower decay rate than μt

2

1−μt
2

. We first

subtract μt
2·v(i)

0

1−μt
2

, then add 1·v(i)
0

1−μt
2

to the left and right sides of
Eq. 5

E[v
(i)
t ]

(1− μt
2)
− μt

2 · v
(i)
0

1− μt
2

+
1 · v(i)0

1− μt
2

=
1 · v(i)0

1− μt
2

+ E[ĝt
2], (6)

Next, we plug v
(i)
0 = β2 · v(i−1)

X into Eq. 6, and obtain

E[v
(i)
t ]

(1− μt
2)

+β2 ·v(i−1)
X =

1

1− μt
2

·β2 ·v(i−1)
X +E[ĝt

2]. (7)

This way, we obtain the corrected 2nd momentum, as shown
in Step.5 of Algorithm. 2 (left side of Eq.7), which is com-
posed of two parts (right side of Eq.7): the “long-term” gra-
dient momentum with a smooth decay rate 1

1−μt
2
·β2 ·v(i−1)

X ,

and the true expected squared gradient E[ĝt2].
We utilize 3 new hyper-parameters in the inter-batch al-

gorithm, i.e. β1, β2, and β3, where β1 and β2 control the
weights of “long-term” momentums from previous batches,
and β3 decides the decay rate of the perceptual constraint.

In our implementation, the default settings are β1 = 0.10,
β2 = 0.01, β3 = 0.60. For selecting the good settings, we
test these hyper-parameters by line-searching on 2 validation
datasets, i.e. Cityspaces and LSUN’17.

Experiments

The selection of loss functions

In Eqs.1-2, we provide a general paradigm for computing
objective cost functions. For different tasks, we select dif-
ferent task-specific loss metrics to reach a better attack per-
formance. Specifically, for image-translation, we use a lin-
ear combination of Mean Absolute Error (MAE), negative
Pearson’s Linear Correlation Coefficient (CC), and VGG
loss (Dosovitskiy and Brox 2016) as the output space fool-
ing ability loss L1. For saliency prediction, we use a lin-
ear combination of Kullback-Leibler divergence (KL), MAE,

Table 2: Evading defense: attack performance compari-
son against the adversarially trained black-box models.
LSUN’17 is the test set.

Target model Attack No. of Batch: 3 No. of Batch: 5 No. of Batch: 7
GazeGAN I-FGSM -0.0125 -0.0177 -0.0206
GazeGAN MIM -0.1315 -0.1582 -0.2063
GazeGAN SMBEA -0.2190 -0.2731 -0.3255

SAM-ResNet I-FGSM -0.0164 -0.0238 -0.0295
SAM-ResNet MIM -0.1622 -0.1900 -0.2258
SAM-ResNet SMBEA -0.2317 -0.2996 -0.3484
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Figure 4: Qualitative results of black-box MIM (Dong et al. 2018) ensemble attack and our attack over multiple pixel-to-pixel
vision tasks.

and negative CC as L1. We use KL as feature-space fool-
ing ability loss L3, because the intermediate feature maps
of source models are normalized by softmax as the distribu-
tions. The averaged L1 norm serves as perceptual loss L2.

Datasets and evaluation protocol

To explore the generalization ability of SMBEA, we conduct
experiments on 4 pixel-to-pixel vision datasets, i.e. Citys-
paces (Cordts and Omran 2016), Facades (Tylecek 2013),
Google Satellites, and LSUN’17 (Jiang et al. 2015). For
Cityspaces, we select 1000 “Semantic label & Real photo”
pairs as test set. For Facades, we select 400 “Architectural
label & Real photo” pairs. For Google Satellites, we select
1000 “Google Map & Satellite Image” pairs. For LSUN’17,
we select 1000 “Real Photo & Saliency Map” pairs.

For fair comparison, we adopt the performance drop to
measure the fooling ability, i.e. the difference between the
performances on clean images and on adversarial examples.
The stronger the attack, the bigger the performance drop.
For image translation tasks, we use the Mean Squared Error
(MSE) to measure the performance drop. For the saliency
prediction task, we use the Pearson’s Linear Correlation Co-
efficient (CC) to measure the performance drop. For measur-
ing the perceptibility, we use the averaged L1 norm. In this
paper, the images are normalized to be in the range [0, 1],
and the L1 norm is averaged by the number of pixels.

Source models

For the saliency prediction task, we adopt 16 state-of-the-
art deep saliency models as the raw source models. How-
ever, we wish to use additional source models to explore the
upper-bound of our attack. Thus, we design an augmenta-
tion strategy to enlarge the number of models. Specifically,
we replace the standard convolution (adopted in most of the
current CNN models) in the original architecture with two
new convolutions, i.e. deformable convolution kernel (Dai
et al. 2017) and dilated convolution kernel (Yu and Koltun
2016). By doing so, for each raw source model, we obtain
two new variants that have diverse architectures, without

Figure 5: The relationship between fooling ability (against
the source models) and the depth of feature layers. We
compare different ensemble strategies when fusing 4 source
models including GazeGAN (Che et al. 2019), Glob-
alpix2pix (Wang et al. 2018), SAM-ResNet (Cornia et al.
2018), and SalGAN (Pan et al. 2017).

causing obvious performance drop. This way, we obtain 48
source models in total. We use the same model augmentation
strategy for other tasks.

Comparison

In Table. 1, we compare our method with other ensemble at-
tacks in the black-box setting. These ensemble attacks adopt
state-of-the-art gradient back-propagation attack algorithms.
For fair comparison, we use the same perceptual constraint
for different competing methods. We can see that our attack
achieves the best performance over different datasets.

It was verified that injecting adversarial examples into
training set will increase the robustness of deep networks
against attacks (Goodfellow et al. 2015). Currently, this
adversarial training strategy is the most efficient defense
method. In Table. 2, we compare our method with other
attacks against the adversarially trained black-box models.
Specifically, we keep two adversarially trained models as
the hold-out target models, and use the rest source models
to craft the adversarial examples. We can see that the adver-
sarially trained models can not defend our attack effectively.

We further compare our attack with the normal ensem-
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Figure 6: Ablation study of our attack. We use the online
black-box SALICON model as the target model. With the
increase of batch number, the perceptual constraint increases
(as shown in Step.1 of Algorithm.2). For fair comparison, in
the same batch, different competing attacks adopt the same
perceptual constraint.

ble attack based on PGD (Madry et al. 2018) algorithm
against two online black-box saliency prediction models, as
shown in Fig. 3. We notice that, by increasing the number
of batches, our method misleads the model prediction to-
wards the guide image, while the normal attack fails to fool
these models. Besides, we also compare our method with
the black-box ensemble attack based on MIM (Dong et al.
2018) algorithm from a qualitative perspective, as shown in
Fig. 4. For fair comparison, we apply the same perceptual
constraint to different competing methods. We observe that,
the outputs of our attack are more similar to the outputs of
the guide images, demonstrating better fooling ability.

Ablation studies

In Fig. 5, we explore the relationship between the fooling
ability and the depth of feature layers. We introduce 3 new
feature space ensemble strategies, as shown in Fig. 2. Here
we explain how to select good feature layers to conduct an
efficient attack. Experiments indicate that the deeper layers
obtain better fooling ability. Besides, the proposed feature
space ensemble strategies further improve the performance,
and the 3rd ensemble strategy obtains the best performance.

Next, we explore the contributions of intra-batch momen-
tums and inter-batch “long-term” momentums, as shown in
Fig. 6. We notice that, both intra-batch “short-term” mo-
mentums and inter-batch “long-term” gradient memories in-
crease the transferability in the black-box setting.

Conclusion

In this paper, we propose a novel black-box attack. Our at-
tack divides a large number of pre-trained source models
into several batches. For each batch, we introduce 3 feature-
space ensemble strategies for improving intra-batch trans-
ferability. Besides, we propose a new algorithm that utilizes
the “long-term” gradient memories. The long-term gradient
memories preserve the learned adversarial information and
improve inter-batch transferability. Our attack achieves the
best performance over multiple pixel-to-pixel datasets, and
fools two online black-box applications in the real world. We
share our code with the community to promote the research
on adversarial attack and defense over pixel-to-pixel tasks.
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