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Abstract

We study the problem of interpreting trained classification
models in the setting of linguistic data sets. Leveraging a parse
tree, we propose to assign least-squares-based importance
scores to each word of an instance by exploiting syntactic
constituency structure. We establish an axiomatic character-
ization of these importance scores by relating them to the
Banzhaf value in coalitional game theory. Based on these im-
portance scores, we develop a principled method for detecting
and quantifying interactions between words in a sentence. We
demonstrate that the proposed method can aid in interpretabil-
ity and diagnostics for several widely-used language models.

Introduction
Modern machine learning models can be difficult to probe
and understand after they have been trained. This is a major
problem for the field, with consequences for trustworthi-
ness, diagnostics, debugging, robustness, and a range of other
engineering and human interaction issues surrounding the
deployment of a model.

There have been several lines of attack on this problem.
One involves changing the model design or training process
so as to enhance interpretability. This can involve retreating
to simpler models and/or incorporating strong regularizers
that effectively simplify a complex model. In both cases,
however, there is a possible loss of prediction accuracy. Mod-
els can also be changed in more sophisticated ways to en-
hance interpretability; for example, attention-based meth-
ods have yielded deep models for vision and language tasks
that improve interpretability at no loss to prediction accu-
racy (Ba, Mnih, and Kavukcuoglu 2014; Xu et al. 2015;
Gregor et al. 2015; Chen et al. 2015; Yang et al. 2016;
Xu and Saenko 2016; Vaswani et al. 2017).

Another approach treats interpretability as a separate prob-
lem from prediction. Given a predictive model, an inter-
pretation method yields, for each instance to which the
model is applied, a vector of importance scores associated
with the underlying features. Within this general frame-
work, methods can be classified as being model-agnostic
or model-aware. Model-aware methods require additional
assumptions, or are specific to a certain class of models (Si-
monyan, Vedaldi, and Zisserman 2014; Bach et al. 2015;
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Shrikumar, Greenside, and Kundaje 2017; Karpathy, John-
son, and Fei-Fei 2016; Sundararajan, Taly, and Yan 2017;
Godin et al. 2018). Model-agnostic methods can be applied in
a black-box manner to arbitrary models (Ribeiro, Singh, and
Guestrin 2016; Baehrens et al. 2010; Lundberg and Lee 2017;
Štrumbelj and Kononenko 2010; Datta, Sen, and Zick 2016;
Li, Monroe, and Jurafsky 2016).

While the generality of the stand-alone approach to inter-
pretation is appealing, current methods provide little oppor-
tunity to leverage prior knowledge about what constitutes a
satisfying interpretation in a given domain. Such interpre-
tive capabilities are available most notably in the setting of
natural-language processing (NLP), where there is an ongo-
ing effort to incorporate linguistic structure (syntactic, se-
mantic and pragmatic) in machine learning models. Such
structure can be brought to bear in the model construction,
the interpretation of a model, or both. For example, Socher et
al. (2013) introduced a recursive deep model to understand
and leverage compositionality in tasks such as sentiment de-
tection. Lei, Barzilay, and Jaakkola (2016) proposed to use
a combination of two modular components, generator and
encoder, to explicitly generate rationales and make prediction
for NLP tasks.

Compositionality, expressed in the rules used to construct
a sentence from its constituent expressions, is an important
property of natural language. While current interpretation
methods fall short of quantifying compositionality directly,
there has been a growing interest in investigating the manner
in which existing deep models capture the interactions be-
tween constituent expressions that are critical for successful
prediction (Li et al. 2016; Lei, Barzilay, and Jaakkola 2016;
Li, Monroe, and Jurafsky 2016; Godin et al. 2018). How-
ever, existing approaches generally fall short of providing
a systematic, quantitative treatment of interactions, and the
generality to be applied to arbitrary models.

In the current paper, we focus on the model-agnostic in-
terpretation of NLP models. Our approach quantifies the
importance of words by leveraging the syntactic structure of
linguistic data, as represented by constituency-based parse
trees. In particular, we develop the LS-Tree value, a procedure
that provides instance-wise importance scores for a model
by minimizing the sum-of-squared residuals at every node
of a parse tree for the sentence in consideration. We provide
theoretical support for this by relating it to the Banzhaf value
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Figure 1: An example parse tree. Top left shows how each
node corresponds to a word subset. Color indicates the direc-
tion and strength of interaction as assigned by Algorithm 1.
Red is used for the direction of positive class, and blue other-
wise.

in coalitional game theory (Banzhaf III 1964).
Our framework also provides a seedbed for studying com-

positionality in natural language. Based on the LS-Tree value,
we develop a novel method for quantifying interactions be-
tween sibling nodes on a parse tree captured by the target
model, by exploiting Cook’s distance in linear regression
(Cook 1977). We show that the proposed algorithm can be
used to analyze several aspects of widely-used NLP models,
including nonlinearity, the ability to capture adversative re-
lations, and overfitting. In particular, we carry out a series
of experiments studying four models—a linear model with
Bag-Of-Word features, a convolutional neural network (Kim
2014), an LSTM (Hochreiter and Schmidhuber 1997), and
the recently proposed BERT model (Devlin et al. 2018).

Least squares on parse trees

For simplicity, we restrict ourselves to classification. Assume
a model maps a sentence to a vector of class probabilities.
We use f to denote the function that maps an input sentence
x = (x1, . . . , xd) to the log-probability score of a selected
class. Let 2[d] denote the power set of [d] := {1, 2, . . . , d}.
The parse tree maps the sentence to a collection of subsets,
denoted as F ⊂ 2[d], where each subset S ∈ F contains
the indices of words corresponding to one node in the parse
tree. See Figure 1 for an example. By abuse of notation, we
use f(S) to denote the output of the model evaluated on the
words with indices S, with the rest of the words replaced
by zero paddings or some reference placeholder. We call
v : F → R defined by v(S) := f(S)− f(∅) a characteristic
function, which captures the importance of each word subset
to the prediction.

We seek the optimal linear function on the Boolean hyper-
cube to approximate the characteristic function on F , and use
the coefficients as importance scores assigned to each word.
Concretely, we solve the following least squares problem:

min
ψ∈Rd

∑
S∈F

[v(S)−
∑
i∈S

ψi]
2, (1)

where component ψi of the optimal ψ is the importance score
of the word with index i. We refer to the map from (F , v) to
the solution of Equation (1) as the LS-Tree value, because
it results from least squares (LS) on parse trees, and can be
considered as a value in coalitional game theory.

Connection to coalitional game theory

In this section, we give an interpretation of the LS-Tree value
from the perspective of coalitional game theory.

Model interpretation has been studied using tools from
coalitional game theory (Štrumbelj and Kononenko 2010;
Datta, Sen, and Zick 2016; Lundberg and Lee 2017; Chen et
al. 2019). We build on this line of research by considering a
restriction on coalitions induced by the syntactic structure of
the input.

Let F ⊂ 2[d] be the collection of word subsets constructed
from the parse tree. Taking each word as a player, we can
define a coalitional game between d words in a sentence
as a pair (F , v), where F ⊂ 2[d] enforces restrictions on
coalition among players and v : F → R with v(∅) = 0 is
the characteristic function defined by the model evaluated
on each coalition. A value is a mapping that associates a
d-dimensional payoff vector ψ(F , v) to each game (F , v),
each entry corresponding to a word. The value provides rules
which give allocations to each player for any game.

The problem of defining a fair value in the setting of
full coalition (when F = 2[d]) has been studied exten-
sively in coalitional game theory (Shapley 1953; Banzhaf III
1964). One popular value is the Banzhaf value introduced by
Banzhaf III (1964). For each i ∈ [d] it defines the value:

φi(2
[d], v) =

1

2d−1

∑
S⊂N\i

[v(S ∪ i)− v(S)].

The Banzhaf value can be characterized as the unique value
that satisfies the following four properties (Nowak 1997):

i) Symmetry: If v(S∪i) = v(S∪j) for all S ⊂ [d]\{i, j},
we have φi(2[d], v) = φj(2

[d], v).
ii) Dummy player property: If v(S ∪ i) = v(S) + v(i) for

all S ⊂ [d] \ i, we have φi(2[d], v) = v(i).
iii) Marginal contributions: For any two characteristic func-

tions v, w such that v(S ∪ i)− v(S) = w(S ∪ i)−w(S) for
any S ⊂ [d], we have φi(2[d], v) = φi(2

[d], w).
iv) 2-Efficiency: If i, j ∈ [d] merges into a new player p,

then φp(2[d]\{i,j}∪p, vij) = φi(2
[d], v) + φj(2

[d], v), where
vij(S) := v(S) if p /∈ S and vij(S) := v(S \ p ∪ i ∪ j)
otherwise, for any S ⊂ [d] \ {i, j} ∪ p.

These properties are natural for allocation of importance
to prediction in model interpretation. Symmetry states that
two features have the same allocation if their marginal contri-
butions to feature subsets are the same. The dummy property
states that a feature is allocated the same amount as the con-
tribution of itself alone if its marginal contribution always
equals the model evaluation on its own. The linear model
yields such an example. Marginal contributions states that a
feature which has the same marginal contribution between
two models for any word subset has the same amount of
allocation. 2-Efficiency states that allocation of importance
is immune to artificial merging of two features.

To employ game-theoretic concepts such as the Banzhaf
value in the interpretation of NLP models, we need to rec-
ognize that arbitrary combinations of words are not likely to
be accepted as valid interpretations by humans. We might
wish to start with a set of combinations that are likely to be
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interpretable by humans, and can be obtained via human-
interpretable data, and then define the worth of other com-
binations of words via extrapolation. It turns out that the
LS-Tree value as defined in the previous section can be inter-
preted as exactly such an extrapolation, where each node of
the parse tree represents an interpretable word combination:
Theorem 1. Suppose a value ψ coincides with the Banzhaf
value φ for any game of full coalition, and for every game
(F , v) with restricted coalition, it is consistent under the
addition of an arbitrary subset S /∈ F:

ψ(F , v) = ψ(F ∪ {S}, v′), (2)

where v′ is defined as v′(T ) = v(T ) for T �= S and v′(S) =∑
i∈S ψi(F , v). Then ψ coincides with the LS-Tree value.

Proof. It was shown in Hammer and Holzman (1992) that
the Banzhaf value assigns to each player i the corresponding
coefficient in the best linear approximation of v. That is,

φ(2[d], v) = argmin
ψ∈Rd

∑
S⊂[d]

[v(S)−
∑
i∈S

ψi]
2.

Based on the proof of Theorem 3.3 in Katsev (2011),1 it
follows directly that ψ∗, as is defined by Equation (3), is the
unique value that coincides with v → ψ∗(2[d], v) with full
coalition and is consistent under the addition of an arbitrary
subset:

ψ∗(F , v) = argmin
ψ∈Rd

∑
S∈F

wS [v(S)−
∑
i∈S

ψi]
2. (3)

Taking wS ≡ 1, the theorem is established.

The Shapley value is another well-known concept of
value in cooperative game theory. The Banzhaf value dif-
fers from the Shapley value by replacing the axiom of
Efficiency in the definition of the Shapley value with 2-
Efficiency (Shapley 1953; Dubey and Shapley 1979). Both
values have been employed to capture notions of model
interpretation in previous work (Lundberg and Lee 2017;
Štrumbelj and Kononenko 2010; Datta, Sen, and Zick 2016;
Dubey and Shapley 1979). We prefer to build our framework
on the Banzhaf value instead of the Shapley value, because
the structure on the features imposed by the parse tree can be
more naturally incorporated into the former, as demonstrated
in Theorem 1.

Detecting interactions

We aim to detect and quantify interactions between words
in a sentence that have been captured by the target model.
While there are exponentially many possible interactions
between arbitrary words, we restrict ourselves to the ones
permitted by the structure of language. Concretely, we focus
on interactions between siblings, or nodes with a common
parent, in the parse tree. As an example, node 3 in Figure 1
represents interaction between “is,” “not” and “heartwarming
or entertaining.”

1The original theorem is established for the solution to Prob-
lem (3) with the efficiency constraint that

∑
i∈[d] xi = v([d]). But

the same proof follows for the unconstrained version.

We define interaction as deviation of composition from
linearity in a given sentence. As a result, all non-leaf nodes
in the tree are expected to admit zero interaction for a linear
model. The above definition suggests that interaction can
be quantified by studying how the inclusion of a common
parent representing the interaction affects the coefficients of
the linear approximation of the model.

Cook’s distance is a classic metric in linear regression
that captures the influence of a data point (Cook 1977). It
is defined as a constant multiple of the squared distance
between coefficients after a data point is moved, where the
distance metric is defined by the data matrix X ∈ R

n×d:

Di = Const. · (β̂(i) − β̂)TXTX(β̂(i) − β̂),

where β̂(i) and β̂ are the least-squares estimate with the ith
data point deleted and the original least-squares estimate
respectively. A larger Cook’s distance indicates a larger influ-
ence of the corresponding data point.

In our setting, the data matrixX is a Boolean matrix where
each row corresponds to a node in the tree, and an entry is one
if and only if the word of the corresponding index lies in the
subtree of the node. To capture the interaction of a non-leaf
node i (corresponding to some S ∈ F), it does not suffice to
only delete the corresponding row, because all of its ancestor
nodes contain the segment represented by the node as well.
To deal with this issue, we compute the distance between
the least-squares estimate with the rows corresponding to the
node and all of its ancestors deleted, and the least-squares
estimate with only the rows corresponding to the ancestors
deleted: Di = d(β̂(≥i), β̂(>i)), (4)
where β̂(≥i), β̂(>i) denote the estimates with all ancestors,
including and excluding node i, deleted. Cook’s distance
d(a, b) = aTXTXb no longer has its statistical mean-
ing here, as the normality assumption of the linear model
no longer holds. A natural choice is the Euclidean dis-
tance d1(a, b) :=

√
aT b, which was also introduced by

Cook (1977). One drawback of the Euclidean distance is
that it is unable to capture the direction of interaction. When
this is an issue, we may use a signed distance: d2(a, b) :=∑
i(bi − ai), which sums up the influence of introducing the

extra row on every coefficient of the linear model. We call
the score defined by d1 and d2 absolute and signed LS-Tree
interaction scores respectively, as they are constructed from
the LS-Tree value.

We propose an iterative algorithm to efficiently compute
the interaction of each node on a tree with n := |F| nodes. As
a first step, nmodel evaluations are performed, one evaluation
for each node. For a node i, we denote as Ch(i) the set of
its children, X(≥i) and X(>i) the data matrices excluding
the ancestors of i, further excluding and including i itself
respectively, and xTj the row corresponding to node j. The
interaction score of each j ∈ Ch(i) is a function of β̂(>j) −
β̂(≥j). Denote Aj = XT

(≥j)X(≥j). For each non-leaf node
j, Aj is of full rank and thus invertible. We show how A−1

j

and β̂≥j can be computed from A−1
i and β̂≥i. In fact, with

an application of the Sherman-Morrison formula (Sherman
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Algorithm 1 LS-Tree Interaction Detection

Require: Model f .
Require: Sentence x.
Ensure: LS-Tree value; interaction score.

Find the parse tree T of x.
Find the collection of subsets F corr. to the parse tree.
for each node i in T do

Query the model at the corr. subset S to get v(S).
end for
Compute LS-Tree value β̂ for words via least squares.
Find the root r of T .
Recursion(v, F , r, (XTX)−1, β̂)

Algorithm 2 Recursion

Require: v,F , node j, A−1
i , β̂(≥i)

if j is not a leaf then

Compute A−1
j , β̂(≥j), Dj via Equation (7) and (6).

for each child c in of j do

Recursion(v, F , c, A−1
j , β̂(≥j))

end for
else

Assign Dj with v(j) or |v(j)|.
end if

and Morrison 1950), we have

β̂(>j) = (XT
(≥j)X(≥j) + xTj xj)

−1(XT
(≥j)Y(≥j) + xTj Yj)

= (I −
A−1
j xjx

T
j

1 + xTj A
−1
j xj

)β̂(≥j) +
A−1
j xjYj

1 + xTj A
−1
j xj

.

(5)

Rearranging the terms in Equation (5), we have

β̂(≥j) = β̂(>j) −A−1
j xj [Yj − xTj β̂(>j)]. (6)

With another application of the Sherman-Morrison formula,
we have

A−1
j = (XT

(≥i)X(≥i) − xjx
T
j )

−1

= A−1
i +

A−1
i xjx

T
j A

−1
i

1− xTj A
−1
i xj

. (7)

For leaf nodes, the entry of β̂(≥j) corresponding to j is set
to zero, with the remaining entries equal to those of β̂(>j).
This is a result of the minimal Euclidean norm solution of
Problem 1, obtained from the pseudoinverse of Aj . Conse-
quently, the (signed) interaction score of a leaf equals the
model evaluation on the leaf alone.

We summarize the derivation in Algorithm 1, which tra-
verses the parse tree from root to leaves in a top-down fashion
to compute the interaction scores of each node. As the num-
ber of nodes in a parse tree is linear in the number of words,
Algorithm 1 is of complexity O(d3), plus the complexity of
parsing the sentence, which is O(d) in our experiments, and
O(d) model evaluations. Figure 1 shows how Algorithm 1
assigns signed interaction scores to a given example.

Data Set Classes Train Size Test Size Avg. Len. BoW CNN LSTM BERT
SST 2 6,920 872 19.7 82% 85% 85% 93%

IMDB 2 25,000 25,000 325.6 94% 90% 88% 93%
Yelp 2 560,000 38,000 136.2 94% 95% 96% 97%

Table 1: Statistics of the three data sets, together with the test
accuracy of the four models.

Experiments

We carry out experiments to analyze the performance of four
different models: Bag of Words (BoW), Word-based Convo-
lutional Neural Network (CNN) (Kim 2014), bidirectional
Long Short-Term Memory network (LSTM) (Hochreiter and
Schmidhuber 1997), and Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al. 2018), across
three sentiment data sets of different sizes: Stanford Senti-
ment Treebank (SST) (Socher et al. 2013), IMDB Movie
reviews (Maas et al. 2011) and Yelp reviews Polarity (Zhang,
Zhao, and LeCun 2015). For an instance with multiple sen-
tences, we parse each sentence separately, and introduce an
extra node as the common parent of all roots. Interactions
between sentences are not considered in our experiments.
The code for replicating the experiments is available online
at https://github.com/Jianbo-Lab/LS-Tree.

BoW fits a linear model on the Bag-of-Words features.
Both CNN and LSTM use a 300-dimensional GloVe word
embedding (Pennington, Socher, and Manning 2014). The
CNN is composed of three 100-dimensional convolutional
1D layers with 3, 4 and 5 kernels respectively, concatenated
and fed into a max-pooling layer followed by a hidden dense
layer. The LSTM uses a bidirectional LSTM layer with 128
units for each direction. BERT pre-trains a deep bidirectional
Transformer (Vaswani et al. 2017) on a large corpus of text
by jointly conditioning on both left and right context in all
layers. It has achieved state-of-the-art performance on a large
suite of sentence-level and token-level tasks. See Table 1 for
a summary of data sets and the accuracies of the four models.

We use the Stanford constituency parser (Goldberg and
Nivre 2012; Sagae and Lavie 2005; Zhang and Clark 2009;
Zhu et al. 2013) for all the experiments. It is a transition-based
parser that is faster than chart-based parsers yet achieves
comparable accuracy, by employing a set of shift-reduce
operations and making use of non-local features.

Deviation from linearity

We quantify the deviation of three nonlinear models from a
linear model via the proposed LS-Tree value and interaction
scores, both for specific instances and on a data set.

The LS-Tree value can be interpreted as supplying the
coefficients of the best linear model used to approximate
the target model locally for each instance. The correlation
between the LS-Tree value and the global linear model with
Bag of Words (BoW) features can be used as a measure of
nonlinearity of the target model at the instance. Table 2a
shows three examples in SST, correctly classified by both
BERT and BoW. BERT has low and high correlations with
linear models at the first and second examples in Table 2a
respectively. In particular, the top keywords, as ranked by the
LS-Tree value, are different between two models.
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BERT BoW Category Correlation Depth

Even if you do n’t think kissinger’s any more guilty of criminal
activity than most contemporary statesmen, he’d sure make a
courtroom trial great fun to watch.

Even if you don’t think kissinger’s any more guilty of criminal
activity than most contemporary statesmen, he’d sure make a

courtroom trial great fun to watch.

Positive 0.173 11

The problem with this film is that it lacks focus. The problem with this film is that it lacks focus. Negative 0.939 1

Funny but perilously slight. Funny but perilously slight. Positive 0.938 4

(a) Correlation with linear coefficients and depth of the top node are listed. The top two words ranked by
the LS-Tree value, and by the linear coefficients, are colorized.

BoW CNN LSTM BERT
SST 1.000 0.591 0.580 0.465

IMDB 1.000 0.442 0.552 0.321

Yelp 1.000 0.683 0.684 0.476

(b) The average correlation is compa-
rable across different models on the
same data set.

Table 2: (a) Examples from SST with BERT and BoW. (b) Average correlation of the LS-Tree values with linear coefficients.

Figure 2: Visualization of parse trees of examples in Table 2a. Nodes are colorized based on the signed interaction scores, red for
the direction of positive class, and blue otherwise.

(a) (b)
Figure 3: (a) Average depth of top nodes as the number of the selected top nodes varies. (b) The histogram of intersection scores
with train and test data for BERT on SST.

The average of correlation with BoW across instances can
be used as a measure of nonlinearity on a certain data set. The
average correlation of BoW, CNN, LSTM and BERT with a
linear model is shown in Table 2b, which indicates that BERT
is the most nonlinear model among the four. CNN is more
nonlinear than LSTM on IMDB but comparably nonlinear
on SST and Yelp.

Correlation alone may not suffice to capture the nonlinear-
ity of a model. For example, the third sentence in Table 2a
has a relatively high correlation, but the bottom left parse
tree in Figure 2 indicates that the top interaction ranked by
the signed interaction score is the node combining “funny”
with “but perilously slight.” This indicates the BERT model
has captured the adversative conjunction, which BoW is not
capable of. The ability to capture closer-to-the-top nodes in
a parse tree is an indication of nonlinearity of the model. To
quantify this ability, we define the depth of a node in the
parse tree as the maximum distance of the node from the
bottom:

Depth(i) =
{
1 + maxc∈Ch(i) Depth(c) if Ch(i) �= ∅,
1 otherwise.

For a linear model, all non-leaf nodes have zero interaction,
and thus the top-ranked nodes are of depth 1, until all leaves
with positive weights are enumerated. The higher the depth of
top-ranked nodes, the more nonlinear a model is at a specific

instance.
The average depths of top nodes ranked by interaction

scores across instances can be used as a measure of the non-
linearity of the model on that data set. Figure 3a compares
the average depths across BoW, CNN, LSTM and BERT on
the three data sets, with top k = 1, 2, . . . , 10 words selected.
BoW is used as a baseline whose non-leaf nodes have zero
interaction scores. We use the absolute interaction scores
here to capture all interactions, no matter whether they are
in the same or opposite direction of prediction. BERT is still
the most capable of capturing deeper interactions, followed
by CNN and LSTM. CNN turns out to be a more nonlin-
ear model than LSTM on Yelp, which was not captured by
correlation.

Adversative relations

Adversative words are those which express opposition or
contrast. They often play an important role in determining
the sentiment of an instance, by reversing the sentiment of a
preceding or succeeding word, phrase or statement. We focus
on four types of adversative words: negation that reverses
the sentiment of a phrase or word (e.g., “not”), adversative
coordinating conjunctions that express opposition or contrast
between two statements (e.g., “but” and “yet”), subordinat-
ing conjunctions indicating adversative relationship (e.g.,
“though,” “although,” “even though,” and “whereas”), prepo-
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Dataset Model Avg. Score not but yet though although even though whereas except despite in spite of

SST

BoW 0.153 0.000(6.318) 0.000(0.079) 0.000(2.005) 0.000(0.865) 0.000(2.222) 0.000(0.000) -(-) 0.000(4.280) 0.000(3.519) 0.000(0.000)
CNN 0.634 1.673(4.592) 1.694(1.444) 0.568(0.959) 0.213(0.735) 0.915(0.462) 0.626(0.407) -(-) 0.948(1.175) 1.452(4.270) 2.119(1.943)

LSTM 0.79 1.746(2.580) 1.502(0.453) 1.449(2.368) 1.153(1.094) 0.338(0.197) 1.794(0.998) -(-) 2.353(3.835) 1.256(1.818) 0.590(0.624)
BERT 1.238 1.714(4.383) 2.148(1.760) 1.669(3.120) 1.525(3.268) 1.741(3.256) 1.885(2.092) -(-) 1.156(3.331) 1.160(2.998) 0.864(2.352)

IMDB

BoW 0.038 0.000(2.683) 0.000(0.263) 0.000(2.210) 0.000(1.473) 0.000(1.710) 0.000(0.000) 0.000(3.604) 0.000(1.342) 0.000(0.132) -(-)
CNN 0.424 1.050(0.819) 3.442(0.021) 1.689(0.295) 0.922(0.085) 1.036(0.071) 1.175(0.467) 0.469(1.064) 1.590(4.067) 0.363(0.434) -(-)

LSTM 0.126 0.960(3.087) 2.222(0.524) 1.500(0.238) 0.611(0.087) 0.492(1.270) 0.944(0.683) 1.222(3.865) 1.294(4.008) 0.286(0.508) -(-)
BERT 1.159 1.616(2.057) 3.390(1.800) 1.644(1.152) 1.371(2.061) 1.735(2.123) 1.457(1.557) 0.285(0.430) 1.421(2.060) 1.518(2.241) -(-)

Yelp

BoW 0.035 0.000(8.488) 0.000(1.015) 0.000(3.553) 0.000(1.664) 0.000(1.128) 0.000(0.000) 0.000(0.536) 0.000(0.367) 0.000(1.213) -(-)
CNN 0.161 2.287(3.467) 2.454(0.932) 0.516(0.043) 0.988(0.435) 0.889(0.075) 0.789(0.621) 0.286(0.671) 0.522(2.529) 0.423(0.889) -(-)

LSTM 0.224 2.173(5.950) 1.712(1.676) 0.988(2.065) 0.984(1.310) 0.706(1.194) 0.559(0.483) 1.395(1.793) 0.344(1.408) 0.514(1.153) -(-)
BERT 0.746 1.384(2.106) 2.448(0.658) 0.781(0.184) 1.336(0.953) 0.596(0.615) 1.019(0.880) 0.095(0.162) 0.331(0.074) 1.041(0.414) -(-)

Table 3: Scores with and without parentheses are for nodes containing adversative words alone and their parents where the
adversative relation takes place respectively.

Sentence Meaning BoW CNN LSTM BERT
... He said he couldn’t help. We had to walk while the snow blew
in our faces. When we were almost there, we saw the shuttle pull
out with the smoking shuttle driver in it, driving in the opposite
direction, away from us. I can not believe how rude they were.

during the time that 0.000(0.338) 0.781(0.300) 1.761(0.839) 0.062(0.092)

... I ordered a cappuccino. It tasted like milk and no coffee. I
was exceptionally disappointed. So while the place has a great
reputation, even they can screw it up if they don t pay attention
to detail, and at this level they should never screw it up. I had a
better cup at Martys Market for crying out loud!

whereas (indicating a contrast) 0.000(0.338) 1.142(0.300) 2.155(0.839) 2.167(0.092)

Usually asking the server what is her favorite dish gets you a
pretty good recommendation, but in this case, it was crap! The
smoked brisket had that discoloration that happens to meat when
it’s been sitting out for a while. And it wasn’t even tender!! Am
I asking for too much?

a period of time 0.000(0.338) 0.206(0.300) 0.465(0.839) 0.082 (0.092)

Table 4: The word “while” in different contexts. Scores with and without parentheses are for nodes containing “while” alone and
their parents respectively.

sitions that precede and govern nouns adversatively (e.g.,
“except,” “despite” and “in spite of”).

In most cases, adversative words only function if they in-
teract with their preceding or succeeding companion. In order
to verify whether models are able to capture the adversative
relationship, we examine the LS-Tree interaction scores of
the parent nodes of these words.

We extract all instances that contain any of the above
adversative words. Then for each word in an instance, we
compute the interaction score of the corresponding node
with the word alone, and that of its parent node. A high
interaction score on the node with the adversative word alone
indicates the model inappropriately attributes to the word
itself a negative or positive sentiment. A high interaction
score on the parent node indicates the model captures the
interaction of the adversative word with its preceding or
succeeding component. To compare across different models,
we further compute the average interaction score of a generic
node across all instances, and report the ratio of average
interaction scores of specific nodes to the average score of a
generic node for respective models.

Table 3 reports the results on three data sets. We observe
the ability of capturing adversative relation for different mod-
els varies across data sets. BERT takes the lead in capturing
adversative relations on SST and IMDB, perhaps with the
help of BERT’s pre-training process on a large corpus, but
CNN and LSTM catch up with BERT on Yelp, which has a
larger amount of training data. On the other hand, all models
assign a high score on nodes with adversative words alone.
This may result from the uneven distribution of adversative
words like “not” among the positive and negative classes. An
additional observation is that BERT has the highest score for
a generic node on average across three data sets, indicating
that BERT is the most sensitive to words and interactions on
average.

Some words have different meanings in different contexts.
It is interesting to investigate whether a model can distinguish
the same word under different contexts. The word “while”
is such an example. Table 4 shows three Yelp reviews that
include “while.” It can be observed that the scores of the
parent nodes of “while” is higher than average when “while”
contains an adversative meaning, but lower otherwise. This
observation holds across CNN, LSTM and BERT, with the
sharpest distinction on BERT.

Detecting overfitting

Overfitting happens when a model captures sampling noise
in training data, while failing to capture underlying relation-
ships between the inputs and outputs. Overfitting can be a
problem in modern machine learning models like deep neural
networks, due to their expressive nature. To mitigate over-
fitting, one often splits the initial training set into a training
and a validation set, and uses the latter to obtain an estimate
of the generalization performance (Larson 1931). This leads
to a waste of training data, depriving the model of potential
opportunities to learn from the labelled validation data. We
observe that the LS-Tree interaction scores can be used to
construct a diagnostic for overfitting, one which is solely
computed with unlabelled data.

Figure 3b shows the histograms of absolute interaction
scores on small subsets of training and test data of SST, for
an overfitted BERT model. The scores are more spread out on
test data than those on training data. In fact, we have observed
that this phenomenon holds true on average across instances
for a overfitted model. In particular, interaction scores of test
instances have a larger variance on average than those of
training instances when the model is overfitted, but compa-
rable otherwise. The observation can also be generalized to
other types of neural networks, including CNN and LSTM.
We show in Figure 4 the average variance on training and
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Figure 4: The three figures in Line 1 plot training and test loss of CNN, LSTM, BERT respectively. The figures in Line 2 plot the
corresponding average variance of interaction scores across instances over training and test sets. The figures in Line 3 show
p-values of permutation tests of 50, 000 iterations with 300 randomly selected instances in training and test sets respectively.

test sets for CNN, LSTM and BERT models against training
epochs, together with the loss curves. We observe that over-
fitting occurs when the variances between training and test
sets differ.

The observation suggests we may use the difference of
average variances of interaction scores between training and
test sets as a diagnostic for overfitting. In particular, a per-
mutation test can be carried out under the null hypothesis
of equal average variance. The resulting p-values are plot-
ted against the number of training epochs in the third line
of Figure 4. It can be observed that p-values fall below the
significance level of 0.05 when overfitting occurs, which sug-
gests the rejection of the null hypothesis as an early stopping
criterion in training.

Discussion

We have proposed the LS-Tree value as a fundamental quan-
tity for interpreting NLP models. This value leverages a
constituency-based parser so that syntactic structure can play
a role in determining interpretations. We have also presented
an algorithm based on the LS-Tree value for detecting inter-
actions between siblings of a parse tree. To the best of our
knowledge, this is the first model-interpretation algorithm
to quantify the interaction between words for arbitrary NLP
models. We have applied the proposed algorithm to the prob-
lem of assessing the nonlinearity of common neural network

models and the effect of adversative relations on the models.
We have presented a permutation test based on the LS-Tree
interaction scores as a diagnostic for overfitting.

One limitation of LS-Tree is that it is only applicable to
interpreting interactions permitted by the syntax of natural
language. Further interactions, including semantic interac-
tions, can potentially be incorporated via decoration of the
syntactic trees.
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Štrumbelj, E., and Kononenko, I. 2010. An efficient explanation of
individual classifications using game theory. Journal of Machine
Learning Research 11:1–18.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic attribu-
tion for deep networks. In International Conference on Machine
Learning, 3319–3328.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in Neural Information Processing
Systems, 5998–6008.
Xu, H., and Saenko, K. 2016. Ask, attend and answer: Exploring
question-guided spatial attention for visual question answering. In
European Conference on Computer Vision, 451–466. Springer.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.;
Zemel, R.; and Bengio, Y. 2015. Show, attend and tell: Neural
image caption generation with visual attention. In International
Conference on Machine Learning, 2048–2057.
Yang, Z.; He, X.; Gao, J.; Deng, L.; and Smola, A. 2016. Stacked
attention networks for image question answering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
21–29.
Zhang, Y., and Clark, S. 2009. Transition-based parsing of the
Chinese treebank using a global discriminative model. In Proceed-
ings of the 11th International Conference on Parsing Technologies,
162–171. ACL.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level con-
volutional networks for text classification. In Advances in Neural
Information Processing Systems, 649–657.
Zhu, M.; Zhang, Y.; Chen, W.; Zhang, M.; and Zhu, J. 2013. Fast and
accurate shift-reduce constituent parsing. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, 434–443.

3461


