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Abstract

Endoscopic videos from multicentres often have different
imaging conditions, e.g., color and illumination, which make
the models trained on one domain usually fail to general-
ize well to another. Domain adaptation is one of the poten-
tial solutions to address the problem. However, few of ex-
isting works focused on the translation of video-based data.
In this work, we propose a novel generative adversarial net-
work (GAN), namely VideoGAN, to transfer the video-based
data across different domains. As the frames of a video may
have similar content and imaging conditions, the proposed
VideoGAN has an X-shape generator to preserve the intra-
video consistency during translation. Furthermore, a loss
function, namely color histogram loss, is proposed to tune the
color distribution of each translated frame. Two colonoscopic
datasets from different centres, i.e., CVC-Clinic and ETIS-
Larib, are adopted to evaluate the performance of domain
adaptation of our VideoGAN. Experimental results demon-
strate that the adapted colonoscopic video generated by our
VideoGAN can significantly boost the segmentation accu-
racy, i.e., an improvement of 5%, of colorectal polyps on mul-
ticentre datasets. As our VideoGAN is a general network ar-
chitecture, we also evaluate its performance with the CamVid
driving video dataset on the cloudy-to-sunny translation task.
Comprehensive experiments show that the domain gap could
be substantially narrowed down by our VideoGAN.

Introduction

The colorectal and stomach cancers are the leading causes of
worldwide cancer deaths in 2018, accounting for 9.2% and
8.2% of total cancer deaths, respectively (Bray et al. 2018).
The endoscopy is the primary imaging modality for screen-
ing and diagnosis of these cancers and over 100 million en-
doscopy exams are annually performed. However, the tradi-
tional screening approach requires specialized physicians to
visually analyze extensive endoscopic videos, which is ex-
tremely laborious and suffers from various problems, e.g.
inter-observer variations. With the recent development of
deep learning, an increasing number of studies tried to de-
velop computer-aid diagnosis (CAD) system for endoscopic
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Figure 1: Examples of colonoscopy videos from multicen-
tres. The colonoscopic images from CVC-Clinic and ETIS-
Larib databases have different distributions of color and il-
lumination.

images. For example, Zhang et al. (Zhang et al. 2018) pro-
posed a regression-based convolutional neural network (R-
CNN) pipeline for the automated detection of polyps dur-
ing colonoscopy. Yu et al. (Yu et al. 2017) developed an of-
fline and online 3D deep learning integration framework by
leveraging the 3D fully convolutional network (3D-FCN) to
tackle the problem of colorectal polyp detection. Although
the existing studies significantly improved the diagnosis per-
formance of CAD systems, the generality of the established
models was merely investigated as data from single source
domain was often used. The endoscopic images from mul-
ticentres usually have different imaging conditions such as
color distribution and illumination effects, because imaging
devices and imaging parameter settings are not well stan-
dardized. As shown in Fig. 1, the colonoscopic video frames
captured by the CVC-Clinic centre (Vázquez et al. 2017)
is warm-toned (higher red intensity) compared to the ones
from the ETIS-Larib centre (Silva et al. 2014). Such vari-
ations would make models trained on one domain fail on
another.

Domain adaptation is one of the potential solutions to ad-
dress the problem of variations of imaging conditions among
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multi-domains. Although the area of domain adaptation has
been extensively studied, most of the existing works focus
on the image-to-image domain adaptation (Isola et al. 2017;
Zhu et al. 2017), which may not be the optimal solution for
video-based endoscopic data. As shown in Fig. 1, the frames
in the same endoscopic video have similar color distribu-
tions. To this end, specific constraints on video data, i.e.,
intra-video color consistency, also need to be applied during
the domain adaptation process.

In this paper, we propose a novel generative adversarial
network, namely VideoGAN, for domain adaptation of mul-
ticentre endoscopic videos. Our VideoGAN addresses two
key problems that are overlooked by the current GAN-based
translation approaches: 1) video content distortions, and 2)
intra-video color inconsistency. To maintain the content and
intra-video color consistencies during the domain adaptation
process, the proposed VideoGAN model incorporates an X-
shape generator that simultaneously translates two frames,
i.e., the reference and source frames, to the same mode in
the target domain. The mode defined for video-to-video do-
main adaptation is a video clip containing similar contents,
which is totally different from that of the image-to-image
translation, i.e., a single image. Meanwhile, we also want
to preserve the relative shift in color distributions between
the source and reference frames, e.g., if the source frame
is brighter than the reference frame, this trend should be
preserved after translation. To this end, we propose a novel
color histogram loss that calculates the difference between
two histograms of source and reference frames.

The proposed VideoGAN is evaluated on publicly avail-
able colonoscopic video datasets. The results illustrate that
our VideoGAN overcomes the distortion problem of stan-
dard CycleGAN and yields elegant adapted videos, which
significantly boosts the segmentation accuracy of colorec-
tal polyps. Furthermore, as our VideoGAN is a general net-
work architecture, we also evaluate its performance on nat-
ural video datasets. The experiments demonstrate that the
proposed VideoGAN is suitable for natural video adaptation
as well.

Related Work
Few existing works focus on domain adaptation of videos.
Two closely related areas to this work are image-to-image
translation and unsupervised domain adaptation. Hence, we
briefly summarize those two categories of works in this sec-
tion.

Image-to-image translation

Since firstly proposed by Goodfellow et al. (Goodfellow
et al. 2014), GAN attracts increasing attentions from the
community. Many tasks have been successfully tackled by
GAN and its variations (Chang et al. 2018; Chen, Lai,
and Liu 2018; Ma et al. 2018), such as image synthesis
(Wang et al. 2018b), super-resolution (Ledig et al. 2017)
and image translation (Isola et al. 2017; Zhu et al. 2017;
Chen, Lai, and Liu 2018; Ma et al. 2018). Image-to-image
translation aims at constructing a pixel-to-pixel mapping be-
tween two domains. A representative method is the con-
ditional GAN (Isola et al. 2017), which shows a strategy

to learn such translation mapping with a conditional set-
ting to capture structure information. However, it requires
paired cross-domain images as training data, which are of-
ten difficult to aquire. To perform unpaired image-to-image
translation, several works (Zhu et al. 2017; Kim et al. 2017;
Yi et al. 2017) have been recently proposed. Those works
introduce a cycle consistency loss to loose the confinement
of paired training images. The proposed VideoGAN adopts
the idea of cycle consistency and extends the framework for
unpaired video translation. We notice that there are some
studies on the topic of video synthesis (Chen et al. 2017;
Wang et al. 2018c). However, those works still require paired
training data to perform video-to-video translation.

Unsupervised domain adaptation

Apart from image-to-image translation, another area re-
lated to our work is the unsupervised domain adaptation
(UDA). The UDA aims to close the gap, such as the color
distribution, between the source and target domains with-
out target sample annotations. One common choice for do-
main adaptation is to establish a mapping in the feature
subspace between two different domains (Sun, Feng, and
Saenko 2016; Ganin et al. 2017). For example, Sun et
al. (Sun, Feng, and Saenko 2016) proposed the CORre-
lation Alignment (CORAL) method for unsupervised do-
main adaptation, which minimizes domain shift by align-
ing the second-order statistics of source and target distri-
butions. In more recent studies, researchers tried to adopt
GANs to seek an optimal feature space to build the map-
ping between two domains (Hoffman et al. 2018; Sankara-
narayanan et al. 2018; Huang et al. 2018; Chen et al. 2019).
Hoffman et al. (Hoffman et al. 2018) developed an approach,
called cycle-consistent adversarial domain adaptation (Cy-
CADA), to guide transfer between domains according to a
discriminatively trained network. The approach alleviated
the divergence problem by enforcing consistency of the rel-
evant semantics before and after adaptation. Recently, the
GAN-based domain adaptation is also widely used in the
area of person re-identification (re-ID) (Deng et al. 2018;
Wei et al. 2018) and medical image processing, e.g., the
color normalization of histopathological slices (Zanjani et
al. 2018), intensity standardization of magnetic resonance
images (Gao et al. in press 2018) and cross-modality adap-
tation (Zhang, Yang, and Zheng 2018). However, most of the
existing GAN-based domain adaptation approaches require
strong prior-knowledge, e.g., pixel-wise annotations (Zhang,
Yang, and Zheng 2018; Huang et al. 2018), which limits
their applications for general tasks. Our VideoGAN looses
the requirements of prior-knowledge and achieves domain
adaptation without any supervision signal.

Proposed Method

In this section, we introduce VideoGAN in details. We first
revisit the principle of CycleGAN and then introduce the
proposed X-shape generator, color validator and color his-
togram loss.
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Figure 2: The overview of our VideoGAN. The proposed VideoGAN translates endoscopic videos between the domain-A
(CVC-Clinic) and domain-B (ETIS-Larib). The generators (GAB and GBA) are supervised by a cycle-consistency loss, an
adversarial loss, an intra-video loss and a color histogram loss. To preserve the intra-video consistency, a reference frame is
sent with the source frame together as input to the X-shape generator.

Revisit of CycleGAN

CycleGAN has two paired generator-discriminator modules,
which are capable of learning two mappings, i.e., from do-
main A to domain B {GAB , DB} and vice versa {GBA,
DA} . The generators (GAB , GBA) translate images be-
tween the source and target domains, while the discrimi-
nators (DA, DB) aim to distinguish the real and translated
data. Thereby, the generators and discriminators are gradu-
ally updated during this adversarial competition.

The original CycleGAN is supervised by two losses, i.e.,
adversarial loss (Ladv) and cycle-consistency loss (Lcyc).
The adversarial loss encourages local realism of the trans-
lated data. Taking the translation from domain B to domain
A as an example, the adversarial loss can be written as:

Ladv(GBA, DA) = ExA∼pxA

[
(DA(xA)− 1)2

]

+ExB∼pxB

[
(DA(GBA(xB)))

2
] (1)

where pxA
and pxB

denote the sample distributions of do-
main A and B, respectively; xA and xB are samples from
domain A and B, respectively.

The cycle-consistency loss (Lcyc) tackles the problem of
deficient paired training data. The idea behind the cycle-
consistency loss is that the translated data from the target
domain can be exactly converted back to the source domain,
which can be expressed as:

Lcyc(GBA, GAB) = ExA∼pxA

[‖GBA(GAB(xA))− xA‖1
]

+ExB∼pxB

[‖GAB(GBA(xB))− xB‖1
] (2)

where the L1 loss is adopted in Lcyc in our VideoGAN.
Problems of using CycleGAN in video-to-video do-

main adaptation: First, due to the intrinsic ambiguity with

respect to geometric transformations of CycleGAN (Zhang,
Yang, and Zheng 2018), content distortion may exist in the
translated results produced by CycleGAN. Second, as the
CycleGAN separately transfers each frame of the videos, the
frames may be mapped to different modes of the target do-
main. Such problems violate the intuition of domain adapta-
tion of videos, but they have not been addressed in existing
methods.

VideoGAN

We propose the VideoGAN to solve the aforementioned
problems of using CycleGAN in the video-to-video domain
adaptation. Fig. 2 illustrates the workflow of our VideoGAN.
The proposed VideoGAN shares a similar cyclic processing
procedure as CycleGAN. To preserve the intra-video consis-
tency and prevent the content distortion, however, we set a
reference frame with the source frame as a dual-input to the
generator, which also generates two corresponding frames in
the target domain. We name the generator as X-shape gen-
erator because the dual-in-dual-out and the encode-decode
properties formulate the network structure in an X-shape.
Beyond the regular discriminator that distinguishes real/fake
images, we develop another color validation module (re-
ferred as color validator for convenience) that tunes the color
distribution of the source frame according to the paired ref-
erence frame. Supervised by the proposed losses (adversar-
ial loss, cycle-consistency loss, color histogram loss and
intra-video loss), VideoGAN is trained in an end-to-end
fashion that follows the protocol proposed in (Zhu et al.
2017).

X-shape generator. In order to maintain the consistency,
i.e., content and color, of generated frames belonging to the
same video, the proposed X-shape generator simultaneously
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translates two images, i.e., source and reference frames,
from the source domain to the target domain. As there are
multiple modes in the target domain, to bring the generated
frames to a certain mode, the reference frame acts as an an-
chor to pull other source frames to be into the same mode.
Hence, the reference frame (anchor) should be invariant dur-
ing the translation of the whole video. In our experiments,
the first frame of each video1 is chosen as the reference
frame, which is paired with each remaining frame of the cor-
responding video and sent to the generator as the input. Con-
sequently, the reference frame appears multiple times during
training and gains more weights than other source frames,
which can help determine the marching direction of the rest
video frames. Furthermore, the extracted features of the ref-
erence and source frames are embeded into a new feature
space by a dense fusion block, where the fusion process can
be seen as adding mutual watermarks to both frames. The
content distortions caused by the bijective geometric trans-
formation and its inverse operation (Zhang, Yang, and Zheng
2018) can be prevented, since they may scramble the latent
watermarks and do not maintain the cycle consistency any
more.

Figure 3: The proposed X-shape generator. The source and
reference frames have separate encoder-decoder modules.
The size of source and reference frames is 256×256×3. The
extracted features from the two frames are fused in the fea-
ture space by a dense fusion block. The blue, green, orange,
red and purple rectangles represent the convolution layer,
max-pooling layer, residual block, dense fusion block and
upsampling layer, respectively.

Fig. 3 presents the network architecture of our X-shape
generator. The blue, green, orange, red and purple rectangles
represent the convolution layer, max-pooling layer, residual
block (RB) (He et al. 2016), dense fusion block and up-
sampling module (UM, consisting of a 3 × 3 convolution
layer and an upsampling layer), respectively. As shown in
Fig. 3, the source and reference frames are processed by in-
dependent encoders and decoders. The extracted high-level
features are fused by the dense fusion block to preserve the
intra-video consistency and alleviate the problem of content
distortion. The short-cut connection (Ronneberger, Fischer,
and Brox 2015) is employed to facilitate the feature infor-
mation flowing between the encoders and decoders.

1For a long video, we truncate it into a set of clips based on
scene changes. And, each video clip has a consistent scene setting.

Dense fusion block. The dense fusion block ensures that
the source frames are mapped to the same mode in the target
domain, and prevents content distortions by embedding con-
tent information of the reference frame to the source frames.
Fig. 4 shows the architecture of our dense fusion block.
The green, gray and yellow rectangles represent the aver-
age pooling, concatenation and resizing layers, respectively.
Naive fusion approaches, e.g., stacking two images as dif-
ferent input channels or fusing the feature maps generated at
the middle stages of encoders, suffer from the spatial infor-
mation interference between the paired frames. Hence, the
8×8 feature maps from the source and reference frames are
average-pooled to 1×1 size before the fusion. The symbol B
in Fig. 4 stands for the batchsize and 512 is the number of
feature maps. Inspired by the dense upsampling convolution
(Wang et al. 2018a), a 1×1 convolution with 512 × 8 × 8
channels is used to fuse the information of source and refer-
ence frames. The fused 32768× 1× 1 feature maps are then
resized back to size of 512× 8× 8 and sent to the decoders.

Figure 4: The proposed dense fusion block. It uses the av-
erage pooling layer (green rectangles) and 1×1 convolution
to fuse the high-level features of the source and reference
frames.

Color validator. Color validators2 (CA, CB) in our
VideoGAN perform two tasks. First, they regulate the color
variation trend of the translated frames with the color his-
togram loss. For example, suppose the source frame is
brighter than the reference frame, we want to maintain the
relationship after mapping the source frame to the target do-
main. Second, they act as secondary discriminators assess-
ing the real/fake identities of the paried frames with an intra-
video loss. In this setting, the actual samples input to the
color validators are any two frames of the same video from
target domain. Therefore, to trick such color validators, the
generators latently maintain the long-term intra-video con-
sistency. The color validator of our VideoGAN takes the two
translated frames as the input and yields a 1×15 (Chist) and
a 1×1 (Ci.v.) vector as predictions to calculate the color his-
togram loss and intra-video loss, respectively.

Color histogram loss. The reference frame in our
VideoGAN provides the identity information as well as the
relative color distribution, which can be used to tune the
color of source frames. Assuming the histogram of each of
RGB channels can be expressed as histc (c ∈ R,G,B), the

2Detailed information of color validator can be found in the full
version at arXiv.
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relative color distribution (histrcd) can be defined as:

histrcd = cat(histrefR , histrefG , histrefB )

−cat(histsrcR , histsrcG , histsrcB )
(3)

where the histsrc and histref refer to the histograms of
source and reference frames, respectively; cat(.) is the con-
catenation operation.

The translated frames are expected to maintain the in-
formation of relative color distribution after domain adap-
tation. Hence, we calculate a 5-bin histogram for each of
RGB channels and form a 15-bin histrcd as ground truth to
supervise the VideoGAN. The color histogram loss (Lhist)
can thereby be written as:

Lhist(GBA, C
hist
A ) =‖Chist

A (GBA(x
src
B ), GBA(x

ref
B ))

− histrcd(x
src
B , xref

B )‖1
(4)

where the L1 loss is adopted in Lhist in our VideoGAN; xsrc
B

and xref
B are the source and reference frames from domain

B, respectively.
Intra-video loss. The intra-video loss (Li.v.) enables

our VideoGAN to maintain the intra-video consistency for
lengthy videos, such as the ones in CamVid dataset.3 The
color validator distinguishes the translated paired frames
from the actual frames selected from the same video of
the target domain, which enforces the generator to consider
long-term intra-video consistency. The intra-video loss has
the same form as the adversarial loss (Ladv), which can be
denoted as Li.v.(GBA, C

i.v.
A ).

Discriminator. In consistent with the standard Cycle-
GAN, the proposed VideoGAN has discriminators (DA,
DB) to validate the quality of each translated frame. The
SegNet (Badrinarayanan, Kendall, and Cipolla 2017) is
adopted to provide pixel-wise prediction of real or fake,
rather than to classify the whole frame or sub-image. Such
an approach encourages the discriminators to take more in-
formation into account while making real/fake decisions.

Objective. Apart from the cycle-consistency, adversarial,
color histogram and intra-video losses defined above, we
also involve the identity constraint (Deng et al. 2018), i.e.,
Lidt, as an auxiliary loss. The target domain identity con-
straint regularizes the generator to be the identity matrix on
samples from target domain. Finally, our full objective func-
tion is summarized as:
L(GBA, GAB , DA, DB , CA, CB) = Ladv(GBA, DA)

+Ladv(GAB , DB) + Lhist(GBA, C
hist
A )

+Lhist(GAB , C
hist
B ) + Li.v.(GBA, C

i.v.
A )

+Li.v.(GAB , C
i.v.
B ) + Lcyc(GBA, GAB)

+Lidt(GBA, GAB)

(5)

The optimization of Lcyc and Ladv is in an alternative
manner following the protocol proposed in (Zhu et al. 2017).
The Lidt is updated at the same time of Lcyc, while the Lhist

and Li.v. are updated with the Ladv optimization.
3http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid

Experiments

This section evaluates and discusses the performance of our
VideoGAN. Suffering from the problem of multicentres,
the conditions of endoscopic videos often have wide vari-
ations, which dramatically degrade the generalization of a
computer-aid diagnosis system trained on a single domain.
In this section, we begin with tackling the multicentre prob-
lem for endoscopic videos using our VideoGAN. As the pro-
posed VideoGAN is a general network architecture, we then
evaluate its domain adaptation performance on the CamVid
video dataset.

Datasets. The publicly available colonoscopic video
datasets, i.e., CVC-Clinic4 (Vázquez et al. 2017) and ETIS-
Larib5 (Silva et al. 2014), are selected for our experiments.
The CVC-Clinic dataset is composed of 29 sequences with
a total of 612 images. The ETIS-Larib consists of 196 im-
ages, which can be manually separated to 29 seuqences as
well. Those short videos are extracted from the colonoscopy
videos captured by different centres using different endo-
scopic devices. All the frames of the short videos contain
polyps. The dataset providers annotate the pixel-wise ground
truth covering the polyps for data users. Sample frames of
the two datasets are shown in Fig. 1.

Training details. The proposed VideoGAN is imple-
mented using PyTorch. The Adam solver (Kingma and Ba
2014) with betas = (0.5, 0.999) is adopted for the optimiza-
tion of VideoGAN. The network is trained with a mini-
batch size of 1 on one GPU (Tesla P40 with 24 GB mem-
ory). The initial learning rate is set to 0.0002. The proposed
VideoGAN yields visually satisfactory translated frames af-
ter 200 training epochs.

Experiment settings. Given two datasets (A, B), our goal
is to narrow down the gap between them not only in terms of
visual perception i.e., elegant translated results, but also the
representation in feature space, i.e., improvement of the ro-
bustness of models. We present the video translation results
to evaluate the former factor. For the latter one, the learn-
ing via translation framework (Liu, Breuel, and Kautz 2017;
Deng et al. 2018) is adopted for the evaluation. The frame-
work consists of two steps, i.e., cross-domain image transla-
tion for training data creation, and supervised feature learn-
ing for a specific task, e.g., polyp segmentation. Accord-
ingly, we evaluate VideoGAN in two scenarios: transfer
learning (CVC-Clinic → ETIS-Larib) and data augmen-
tation (ETIS-Larib → CVC-Clinic), respectively. In trans-
fer learning, the target domain data has no labels. We use
the target domain data to train CycleGAN and VideoGAN
to translate the source domain data to the target domain.
The translated source domain data are then used to train a
segmentation network for the transfer learning on target do-
main. In data augmentation, the translated source domain
data are added to the labeled target domain data to train a
segmentation network.

4https://polyp.grand-challenge.org/CVCClinicDB/
5https://polyp.grand-challenge.org/EtisLarib/
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Evaluation criterion. The Dice coefficient, which mea-
sures the spatial overlap index between the segmentation re-
sult and ground truth, is adopted as the metric to assess the
accuracy of colorectal ployp segmentation.

Baselines overview. Based on the experiment settings,
several unpaired image-to-image translation frameworks,
i.e., G(.), are taken as baselines for the performance eval-
uation, including CycleGAN (Zhu et al. 2017), UNIT (Liu,
Breuel, and Kautz 2017) and DRIT (Lee et al. 2018). We
also compare VideoGAN with a direct transfer approach,
which directly takes the source domain data for training
without any adaptation. Note that the recent proposed GANs
for image-based domain adaptation, e.g., SPGAN (Deng et
al. 2018), PTGAN (Wei et al. 2018) and AugGAN (Huang
et al. 2018), are not involved for comparison, due to the
strong prior-knowledge used in those approaches. SPGAN
used the prior-knowledge that the ID sets of different re-
ID domains used in their experiments are totally differ-
ent from each others. PTGAN required coarse segmenta-
tion results to distinguish foreground and background areas.
AugGAN added a segmentation subtask to the CycleGAN-
based framework, which required pixel-wise annotations.
The use of prior-knowledge degrades the generalization of
those GANs, which are only suitable for the domains fulfill-
ing the specific requirements.

Visualization of domain adaptation results

The domain adaptation results between CVC-Clinic and
ETIS-Larib domains are shown in Fig. 5, which illustrates
two main problems of existing image-to-image translation
approaches (UNIT (Liu, Breuel, and Kautz 2017), DRIT
(Lee et al. 2018) and CycleGAN (Zhu et al. 2017)), i.e., the
content distortion and random color variation. The Cycle-
GAN taking the source and reference frames as two input
channels is also adopted for comparison. Due to the interfer-
ence of spatial information of source and reference frames,
the CycleGAN with stacked input fails to generate meaning-
ful translation results. As Fig. 5 shows, our VideoGAN can
simutaneously maintain the video contents and the trend of
color variation throughout the video.

Quantitative analysis of content distortions. To quanti-
tatively evaluate the content distortion degrees, we invite an
experienced senior physician to annotate the polyps in the
original ETIS-Larib videos and the ones translated by Cycle-
GAN and our VideoGAN, respectively. To evaluate the gap
between the physician and the ETIS-Larib experts, the Dice
coefficient between new annotations on the original ETIS-
Larib videos and the ground truths is measured.

As Table 1 lists, due to inter-observer variability, the
physician achieves a Dice coefficient of 82.73% on the orig-
inal ETIS-Larib dataset. The annotation accuracy of physi-
cian on translated videos should thereby be close to 82.73%,
if the contents are preserved through the translation. How-
ever, the Dice coefficient drops to 41.39% while the physi-
cian annotating the video translated by CycleGAN. Due to
content distortion, a polyp may totally disappear or move
to a different location in some translated images of Cycle-
GAN, resulting in zero Dice coefficient, which deteriorates
the overall Dice coefficient significantly. On the contrary,

(a)

(b)

(c)

(d)

(e)

(f)

ETIS- ETIS-

Figure 5: The domain adaptation videos cross CVC-Clinic
and ETIS-Larib domains. (a) The original videos in source
domains. (b)-(e) are the domain adaptation videos produced
by UNIT, DRIT, CycleGAN, and CycleGAN with stacked
input, respectively. (f) The domain adaptation videos pro-
duced by VideoGAN.

since the proposed VideoGAN well maintains video con-
tents before and after the video translation, the physician
achieves a 80.37% Dice coefficient on the videos translated
by our VideoGAN.

Table 1: Dice coefficients between new annotations on dif-
ferent ETIS-Larib videos and the ground truth.

Original CycleGAN VideoGAN

Dice (%) 82.73 41.39 80.37

Evaluation of learning via translation

As aforementoined, we conduct experiments to evaluate the
proposed VideoGAN from two aspects, i.e., transfer learning
and data augmentation.

Transfer learning. The size of ETIS-Larib dataset is ex-
tremely small (196 frames), which is insufficient to train a
deep learning network. A common solution to this problem
is the transfer learning, i.e., using additional related dataset,
e.g. CVC-Clinic, as the training set for model learning. We
evaluate the segmentation performance of FCNs, trained
with CVC-Clinic videos translated by different GANs, on
the ETIS-Larib dataset. ResUNet-50 (He et al. 2016; Ron-
neberger, Fischer, and Brox 2015) is chosen as the backbone
for FCNs because it shows excellent performance on many
segmentation tasks. Table 2 lists the polyp segmentation ac-
curacies of FCNs trained with different training sets.

The training sets translated by UNIT, DRIT and Cycle-
GAN decrease the segmentation accuracy of polyps, i.e.,
−44.96%, −31.50% and −2.26%, respectively, compared
to that of direct transfer approach. Since no target do-
main data are used for training, the content distortion in
the translated source domain data deteriorates the accu-
racy. Oppositely, our VideoGAN can achieve high-quality
domain adaptation while maintaining the video contents,
which leads to a significant improvement for the Dice co-
efficient, i.e., +5.12%.
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Table 2: Comparison of Dice coefficients of polyp segmen-
tation yielded by different domain adaptation methods on
ETIS-Larib. The best result is in bold.

Dice (%)

Direct Transfer 71.57
UNIT (Liu, Breuel, and Kautz 2017) 26.61
DRIT (Lee et al. 2018) 40.07
CycleGAN (Zhu et al. 2017) 69.31
VideoGAN 76.69

Data augmentation. In this experiment, we translate the
ETIS-Larib videos to CVC-Clinic domain for data augmen-
tation. ResUnet-50 (He et al. 2016; Ronneberger, Fischer,
and Brox 2015) is adopted as the FCN as well. The FCNs
trained with different training sets are evaluated on the addi-
tional CVC-Clinic-2018 dataset, consisting of 300 colono-
scopic frames6 (Vázquez et al. 2017). The polyp segmen-
tation accuracies of FCNs with different domain adaptation
methods are listed in Table 3.

Table 3: Comparison of Dice coefficients of polyp segmen-
tation yielded by different domain adaptation methods on
CVC-Clinic-2018. The best result is in bold.

Dice (%)

No Augmentation 79.22
Mixing with Original ETIS-Larib 79.98
UNIT (Liu, Breuel, and Kautz 2017) 76.07
DRIT (Lee et al. 2018) 76.05
CycleGAN (Zhu et al. 2017) 81.14
VideoGAN 83.50

The FCN trained with the set directly mixing the CVC-
Clinic training set and ETIS-Larib videos generates a
marginal improvement, i.e., +0.76%, compared to that of
baseline, i.e., no augmentation. UNIT and DRIT deteriorate
the accuracy due to severe content distortions. Surprisingly,
CycleGAN achieves a marginal improvement of +1.92%,
probably, because in this data augmentation setting, target
domain data outnumbers the translated source domain data
and a small amount of distorted source data is ignored by the
segmentation network. The proposed VideoGAN yields the
highest improvement of Dice coefficient, i.e., +4.28%, com-
pared to the one without augmentations, which remarkably
boosts the accuracy of polyp segmentation.

It is worthwhile to mention that the polyp segmentation
is a new task announced in GIANA 2018 challenge, which
uses the CVC-Clinic-2018 and CVC-Clinic datasets as the
training and test set, respectively. As the challenge orga-
nizers only announced the team ranking rather than the top
segmentation accuracies, we can not directly compare the
performance of our approach with state-of-the-art on this
dataset.

Ablation study. To evaluate the improvement yielded by
each component of VideoGAN, an ablation study is con-

6https://giana.grand-challenge.org/PolypSegmentation/

Table 4: Ablation study of VideoGAN for the transfer learn-
ing (TF) and data augmentation (DA) tasks (Dice (%)).

Setup TF DA

A Original CycleGAN 69.31 81.14
B A + X-G 74.30 82.27
C B + Lhist 75.86 82.91
D C + Li.v. 76.69 83.50
E A + weight-sharing X-G 68.24 79.20

ducted on the transfer learning (TF) and data augmenta-
tion (DA) tasks. The results of ablation study are presented
in Table. 4. The result shows that all of our components
can improve the segmentation accuracy – X-shape generator
(X-G) (+4.99% and +1.13%), color histogram loss (Lhist)
(+1.56% and +0.64%) and intra-video loss (Li.v.) (+0.83%
and +0.59%) – for the TF and DA tasks, respectively.

Furthermore, a variant of X-G, i.e., weight-sharing X-
shape generator (X-G), is involved for comparison. The
weight-sharing X-G shares weights of the last resiudal block
and the first upsampling module – as same as (Liu, Breuel,
and Kautz 2017) – for the source and reference frames in-
stead of using dense fusion block. As the weight-sharing
X-G easily suffers from the spatial information interference
between the paired frames, which may result in the content
distortions, degradations of segmentation accuracy (−1.07%
and −1.94%) are respectively observed for the TF and DA
tasks, compared to the original CycleGAN.

Comparison of translated results on CamVid. We also
evaluate domain adaptation performance of the proposed
VideoGAN on the CamVid dataset. The experimental results
are presented in Appendix.7

Conclusion and Future Work

In this paper, we present a framework, namely VideoGAN,
for the domain adaptation of video-based data. To our best
knowledge, this is the first work to address the problem of
video-to-video domain adaptation. We evaluate the domain
adaptation performance of our VideoGAN on the endo-
scopic and natural videos. The experimental results demon-
strate that our VideoGAN can significantly narrow down the
gap between different domains.

We plan to improve the performance of our VideoGAN
from two aspects. First, the RGB color space is currently
used to calculate the color histogram loss. However, we no-
tice that there are some other choices, e.g. CIELab color
space, that can provide more accurate color representations
compared to RGB color space. Furthermore, the 3D color
histogram is also a potential choice for the color histogram
loss, replacing the 15-bin histogram. Second, the recurrent
neural network (RNN) may be a better solution for the do-
main adaptation of lengthy videos. However, the whole net-
work may be difficult to train while integrating RNN to
GAN, due to its complicated architecture. We will make our
best effort to address this problem in the future work.

7Appendix can be found in the full version at arXiv.

3468



Acknowledgements
The work was supported by the Natural Science Foundation
of China (No. 61702339) and the Key Area Research and
Development Program of Guangdong Province, China (No.
2018B010111001).

References
Badrinarayanan, V.; Kendall, A.; and Cipolla, R. 2017. SegNet:
A deep convolutional encoder-decoder architecture for image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39(12):2481–2495.
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegeland, R. L.; Torre-
and, L. A.; and Jemal, A. 2018. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: A Cancer Journal for Clinicians
68(6):394–424.
Chang, H.; Lu, J.; Yu, F.; and Finkelstein, A. 2018. PairedCy-
cleGAN: Asymmetric style transfer for applying and removing
makeup. In CVPR.
Chen, D.; Liao, J.; Yuan, L.; Yu, N.; and Hua, G. 2017. Coherent
online video style transfer. In ICCV.
Chen, M. H.; Kira, Z.; AlRegib, G.; Woo, J.; Chen, R.; and Zheng,
J. 2019. Temporal attentive alignment for large-scale video domain
adaptation. In ICCV.
Chen, Y.; Lai, Y.; and Liu, Y. 2018. CartoonGAN: Generative
adversarial networks for photo cartoonization. In CVPR.
Deng, W.; Zheng, L.; Ye, Q.; Kang, G.; Yang, Y.; and Jiao, J. 2018.
Image-image domain adaptation with preserved self-similarity and
domain-dissimilarity for person re-identification. In CVPR.
Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.;
Laviolette, F.; Marchand, M.; and Lempitsky, V. S. 2017. Domain
adversarial training of neural networks. Journal of Machine Learn-
ing Research 17(1).
Gao, Y.; Liu, Y.; Wang, Y.; Shi, Z.; and Yu, J. in press, 2018.
A universal intensity standardization method based on a many-to-
one weak-paired cycle generative adversarial network for magnetic
resonance images. IEEE Transactions on Medical Imaging.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Gen-
erative adversarial nets. In NeurIPS.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In CVPR.
Hoffman, J.; Tzeng, E.; Park, T.; and Zhu., J.-Y. 2018. CyCADA:
Cycle-consistent adversarial domain adaptation. In ICML.
Huang, S.; Lin, C.; Chen, S.; Wu, Y.; Hsu, P.; and Lai, S. 2018.
AugGAN: Cross domain adaptation with GAN-based data aug-
mentation. In ECCV.
Isola, P.; Zhu, J. Y.; Zhou, T.; and Efros, A. A. 2017. Image-to-
image translation with conditional adversarial networks. In CVPR.
Kim, T.; Cha, M.; Kim, H.; Lee, J.; and Kim, J. 2017. Learn-
ing to discover cross-domain relations with generative adversarial
networks. In ICML.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; and Shi, W. 2017.
Photo-realistic single image super-resolution using a generative ad-
versarial network. In CVPR.
Lee, H. Y.; Tseng, H. Y.; andM. K. Singh, J. B. H.; and Yang, M. H.
2018. Diverse image-to-image translation via disentangled repre-
sentations. In ECCV.

Liu, M. Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised image-
to-image translation networks. In NeurIPS.
Ma, S.; Fu, J.; Chen, C. W.; and Mei, T. 2018. DA-GAN: Instance-
level image translation by deep attention generative adversarial net-
works. In CVPR.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net: Convolu-
tional networks for biomedical image segmentation. In MICCAI.
Sankaranarayanan, S.; Balaji, Y.; Castillo, C. D.; and Chellappa,
R. 2018. Generate to adapt: Aligning domains using generative
adversarial networks. In CVPR.
Silva, J.; Histace, A.; Romain, O.; Dray, X.; and Granado, B. 2014.
Toward embedded detection of polyps in WCE images for early
diagnosis of colorectal cancer. International Journal of Computer
Assisted Radiology and Surgery 9(2):283–293.
Sun, B.; Feng, J.; and Saenko, K. 2016. Return of frustratingly
easy domain adaptation. In AAAI.
Vázquez, D.; Bernal, J.; Sánchez, F. J.; Fernández-Esparrach, G.;
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