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Abstract

Recently, researches related to unsupervised disentanglement
learning with deep generative models have gained substantial
popularity. However, without introducing supervision, there
is no guarantee that the factors of interest can be successfully
recovered (Locatello et al. 2018). Motivated by a real-world
problem, we propose a setting where the user introduces weak
supervision by providing similarities between instances based
on a factor to be disentangled. The similarity is provided
as either a binary (yes/no) or real-valued label describing
whether a pair of instances are similar or not. We propose a
new method for weakly supervised disentanglement of latent
variables within the framework of Variational Autoencoder.
Experimental results demonstrate that utilizing weak supervi-
sion improves the performance of the disentanglement method
substantially.

Introduction

Disentanglement learning is a task of finding latent rep-
resentations that separate the explanatory factors of vari-
ations in the data (Bengio, Courville, and Vincent 2013).
In recent years, several methods (Higgins et al. 2017;
Kim and Mnih 2018; Chen et al. 2018; Lopez et al. 2018)
have been proposed to solve disentanglement learning un-
der the Variational Autoencoder (VAE) framework. However,
most of these existing methods are unsupervised. In this pa-
per, we focus on improving the disentangling performance by
utilizing weak supervisions in terms of pairwise similarities.

Locatello et al. (2018) showed that unsupervised disen-
tanglement learning is fundamentally impossible if no in-
ductive biases on models and datasets are provided. Ex-
isting unsupervised methods control the implicit induc-
tive biases by choosing the hyperparameters. However, the
factor of interest is not guaranteed to be successfully re-
covered by only tuning the hyper-parameters. Providing
strong supervisions with discrete or real-valued labels have
been previously suggested (Narayanaswamy et al. 2017;
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Kulkarni et al. 2015). However, such supervision can be
expensive to acquire.

Our method is motivated by a real-world problem. In this
problem, we want to understand how the Computer Tomog-
raphy (CT) images are related to the severity of Chronic Ob-
structive Pulmonary Disease (COPD), which is a devastating
disease related to cigarettes smoking. Since COPD mani-
fests itself as airflow limitation, its severity can be measured
via spirometry (meaning the measuring of breath). However,
the disease severity is usually measured by combining two
(Vestbo et al. 2013) or three (Quanjer et al. 2012) spirometric
measures. It is not obvious how we can represent disease
severity with one real value. Therefore, we represent disease
severity using real-valued pairwise similarities between sub-
jects, which are computed based on spirometric measures.
The available CT images and the pairwise similarities mo-
tivate us to develop a disentanglement method that utilizes
pairwise similarities when analyzing images.

In this paper, we assume that we are provided a measure
of similarity between instances based on a specific factor of
interest, in addition to the observations. The pairwise sim-
ilarity can be binary (yes/no) or real-valued and may only
be provided for a few pairs of instances. The goal is to learn
disentangled representations such that a subset of the latent
variables explain the factor of interest, but do not convey
information about other factors of variations. We propose to
achieve this goal by constructing a VAE model that generates
both the samples and the pairwise similarities based on latent
representations. We achieve disentanglement by letting the
pairwise similarities depend on a subset of the latent variables
but independent of the other latent variables, and penalizing
the information capacity of the dependent latent variables.
Our empirical evaluations on several benchmark datasets and
the COPD dataset show that providing pairwise similarities
improves the performance of the disentanglement method
substantially.
Contributions We make the following contributions in this
paper: (1) We design a latent variable model that enables a
user to provide similarities between instances in the desired
latent space. (2) The similarity can be a binary or real-valued
value provided for all or a subset of the pairs of instances.
We formulate the model with a VAE framework and propose
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an efficient algorithm to train the model. (3) We conduct ex-
tensive experiments on benchmark datasets and a real-world
dataset. Experimental results demonstrate that introducing
weak supervision improves the disentanglement performance
in different tasks.

Background
β-VAE The β-VAE (Higgins et al. 2017) is base for many
disentanglement methods. It introduces the inductive bias
by increasing the weight of the KL divergence term in the
evidence lower bound (ELBO) objective function, defined as
Lβ−V AE =max

θ,φ
Exn∼pdata [Eqφ(zn|xn)[log pθ(xn|zn)]

− βDKL (qφ(zn|xn)||p(z))],
(1)

where X = {xn}Nn=1 and Z = {zn}Nn=1 denote the ob-
served samples and the corresponding latent variables respec-
tively, and N is the number of samples. We use pθ(xn|zn)
and qφ(zn|xn) to represent the decoder and encoder net-
works that are parameterized by θ and φ, respectively. We let
DKL(·||·) denote the KL divergence and p(z) denote prior
distribution for z. In this paper, we let p(z) be an isotropic
unit Gaussian distribution. In the equation, β ≥ 1 is a hy-
perparameter that controls the weight for the KL divergence
term.

Method
We assume that we have access to the noisy observations
of the similarities for pairs of instances. We use Y =
{yij}(i,j)∈J to represent the set of observed similarities,
where J ⊆ {(i, j)|i, j ∈ {1, . . . , N}}. Note that not all
pairwise similarity labels are necessarily observed. We allow
yij to be either binary (yij ∈ {0, 1}) or real-valued between
0 and 1, where a larger value of yij indicates a stronger simi-
larity between xi and xj .

In the following sections, we first explain the general
framework of our model. We then discuss how the pairwise
similarities can be incorporated into the model. Finally, we
introduce a regularization term that encourages disentangle-
ment.

The General Framework

We assume that both X and Y are noisy observations; hence,
we use a probabilistic approach to model uncertainty. We
adopt the VAE framework (Kingma and Welling 2013) such
that xn is reconstructed based on the latent variables zn. We
assume that the latent variable z is divided into two sub-
spaces, i.e., z = [z(u), z(v)], where z(u) (with d(u) dimen-
sions) accounts for the latent variables relevant to the factors
of interest, while z(v) (with d(v) dimensions) accounts for the
rest of information. Since yij represents pairwise similarity
based on the factors of interest, it is only dependent on the
coordinates of the latent variables of xi and xj in the z(u)

subspace; i.e., p(yij |zi, zj) = p(yij |z(u)i , z
(u)
j ). Therefore,

the joint distribution of the observed instances and similari-
ties has the following factorization,

pθ(X,Y|Z) = ∏N
n=1 pθ(xn|zn)

∏
(i,j)∈J p(yij |z(u)i , z

(u)
j ).

(2)

This model can be represented using a graphical model as
shown in Figure 1. In this equation, pθ(xn|zn) represents
the reconstruction model of the VAE framework. We explain
p(yij |z(u)i , z

(u)
j ) in the next section.

Modeling Pairwise Similarity

We view yij as the noisy observation of the similarity between
i’th and j’th instances, which can be either a binary or a real-
value measurement. We use the following function to model
conditional of yij for both cases,

p
(
yij |z(u)i , z

(u)
j

)
= 1

C
(
g(z

(u)
i , z

(u)
j )

)yij
(
1− g(z

(u)
i , z

(u)
j )

)1−yij

,

(3)
where C is the normalization constant and g(·, ·) is a function
encoding the strength of the similarity given the relevant
latent variables z

(u)
i and z

(u)
j . In Equation (3), when yij

is a binary variable, g can be viewed as probability that a
user labels yij as 1. Hence, we choose g to return a value
between 0 and 1 and C = 1. When yij is real-valued between
0 and 1, Equation (3) enables us to compute the normalization
constant in a closed form:

C =

∫ 1

0

(
g(z

(u)
i , z

(u)
j )

)yij
(
1− g(z

(u)
i , z

(u)
j )

)1−yij

dyij

=
2g(z

(u)
i , z

(u)
j )− 1

log
(
g(z

(u)
i , z

(u)
j )

)
− log

(
1− g(z

(u)
i , z

(u)
j )

) .
(4)

We adopt the following form for g:

g
(
z
(u)
i , z

(u)
j

)
= σ

(
η1

(
η2 − ||z(u)i − z

(u)
j ||22

))
,

(5)
where η1 and η2 are positive real hyperparameters controling
the “steepness” and “threshold” of the similarity, respec-
tively; and σ(·) is the sigmoid function. When η1 → ∞,
g(z

(u)
i , z

(u)
j ) can be regarded as a hard thresholding function

indicating whether or not ||z(u)i − z
(u)
j ||22 is smaller than η2.

We replace the hard thresholding function with a sigmoid
function σ(·) to make sure this function differentiable. The
Figure 3 shows that when ||z(u)i − z

(u)
j ||22 is small, it is more

likely to have a large yij and vice versa.

Disentanglement via Regularization

Our goal of disentanglement is to encode all information
about the factor of interest into z(u) and to prevent it from
containing irrelevant information. The general idea is to limit
the capacity of z(u); hence, its capacity can be used only for
the relevant factors. Similar to the β-VAE, we use a regular-
ized ELBO that increases the weight of the KL divergence
between the approximate posterior (i.e., qφ(z

(u)
n |xn)) and

the prior (i.e., p(z(u))), but we do not impose extra regular-
ization for z(v). The regularization term is defined as

R = − Exn∼pdata

[
βDKL

(
qφ(z

(u)
n |xn)||p(z(u))

)]
− Exn∼pdata

[
DKL

(
qφ(z

(v)
n |xn)||p(z(v))

)]
,

(6)
where β ≥ 1 is a real-valued hyperparameter that controls
the weight of KL divergence.
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Figure 1: The decoder model p(X,Y|Z).
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Figure 2: The encoder model q(Z|X).

Overall Model

The overall objective can be written as follows,

L =max
θ,φ

Exn∼pdata

[
Eqφ(zn|xn)[log pθ(xn|zn)]

]
+ E(i,j)∈J

[
Eqφ(zi,zj |xi,xj)

[
log p

(
yij |z(u)i , z

(u)
j

)]]
+R,

(7)
where p

(
yij |z(u)i , z

(u)
j

)
is defined in Equation (3) and R is

defined in Equation (6). We use the encoder q(·|·), to disen-
tangle the factors at test time. Since we only have access to
the weak labels Y at training time, the encoder can only take
xn as an argument. We use stochastic gradient descent (SGD)
to optimize for θ and φ.

Related Work

There have been several unsupervised methods for learning
disentangled representations with VAE, including β-VAE
(Higgins et al. 2017), factor VAE (Kim and Mnih 2018) ,
β-TCVAE (Chen et al. 2018) and HCV (Lopez et al. 2018).
These methods achieve disentanglement by encouraging la-
tent variables to be independent with each other. With these
methods, the users can impact the disentanglement results
only by tuning the hyperparameter. However, without explicit

Figure 3: Plot for p(yij |z(u)i , z
(u)
j ) for real-valued yij . We

fix the thresholding hyperparameter η2 = 2. When ||z(u)i −
z
(u)
j ||22 is small, it is more likely to have a large yij and vice

versa. The hyperparameter η1 controls the “steepness” of the
distribution.

supervision, it is difficult to control the correspondence be-
tween a learned latent variable and a semantic meaning, and
it is not guaranteed that the factor of interest can always be
successfully disentangled (Locatello et al. 2018). In contrast,
our proposed method utilizes the pairwise similarities as ex-
plicit supervision, which encourages the model to disentangle
the factor of interest.

There have been attempts to improve disentanglement per-
formance by introducing supervision. Narayanaswamy et al.
(2017) and Kulkarni et al. (2015) propose semi-supervised
VAE methods that learn disentangled representation, by mak-
ing use of partially observed class labels or real-value targets.
Bouchacourt, Tomioka, and Nowozin (2018) introduces su-
pervision via grouping the samples. Our proposed method
utilizes pairwise similarities.

Gaussian Process Prior VAE (GPPVAE) (Casale et al.
2018) assigns a Gaussian process prior to the latent variables.
It makes use of the pairwise similarities between instances,
by modeling the covariances between instances with a kernel
function. GPPVAE does not focus on learning disentangled
representation. Besides, GPPVAE requires the covariance ma-
trix to be positive semi-definite, and the complete covariance
matrix is observed without any missing values. In practice,
a user might fail to provide labels satisfying these require-
ments. Our proposed method allows unobserved similarities
and does not require the similarity matrix to be positive semi-
definite.

Dual Swap Disentangling (DSD) (Feng et al. 2018) and
Generative Multi-view Model (Chen, Denoyer, and Artières
2018) are VAE and GAN models that make use of binary
similarity labels, respectively. They both assume that the
latent variables z can be separated into subspaces z(u) and
z(v), which is similar to our proposed model. However, both
methods assume that similar instances share similar z(u), but
do not force dissimilar instances to be encoded differently in
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z(u). As shown in our experiments, DSD is likely to converge
into a trivial solution that all instances share similar z(u),
despite the similarity labels. In contrast, our proposed model
is able to make use of both binary and real-valued similarities
and it avoids this trivial solution by utilizing both similarity
and dissimilarity labels.

Experiments

In this section, we evaluate our method quantitatively and
qualitatively. We perform experiments for both binary and
real-value similarity values. Our method is compared against
a few competing methods qualitatively in terms of recovering
semantic factors for rotating object or identifying the labels
on benchmark datasets, where we evaluate our approach quan-
titatively on the recovery of the ground-truth factors. Then
we apply our method to analyze the real-world COPD dataset.
Finally, we study the robustness of our method for the choice
of hyperparameters, the proportion of the observed pairwise
similarity and the noisiness of the observed similarities.

In the following, we first introduce datasets used for our
experiments, followed by the discussion of the various quan-
titative metrics used in this paper. We then report the results
of the experiments.

Datasets and Competitive Methods

We evaluate our methods on five datasets: MNIST (LeCun
and Cortes 2010), Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017), Yale Faces (Georghiades, Belhumeur, and Kriegman
2001), 3D chairs (Aubry et al. 2014) and 3D cars (Krause
et al. 2013). The details of these datasets are summarized in
Table 1. For each dataset, we generate a subset of pairwise
similarities based on one ground-truth factor of variations,
as shown in the table. Unless specified otherwise, we let
the number of observed pairwise labels be 0.01% of the
number of all possible pairs. For the MNIST and fashion-
MNIST datasets, we define yij = 1(ti = tj) where ti and
tj are the ground-truth labels for the sample i and j, and
1 is the indicator function. For Yale faces, 3D chairs and
3D cars, we use the Gaussian RBF kernel to define the sim-
ilarities, i.e., yij = exp(−δ(ti, tj)

2/σ2). Since the ground-
truth factors in all three datasets involve azimuth angles, we
use δ to denote the difference between two azimuth angles,
e.g., δ(350◦, 20◦) = 30◦.

In addition to regular VAE (Kingma and Welling 2013),
we compare our proposed method with three disentangle-
ment approaches based on VAE, including β-VAE (Higgins
et al. 2017), factor VAE (Kim and Mnih 2018) , β-TCVAE
(Chen et al. 2018). As a supervised disentanglement method,
we compare our approach with Dual Swap Disentangling
(DSD) (Feng et al. 2018). The DSD is designed to analyze
binary similarities and cannot be applied to real-valued simi-
larities. To make all methods comparable, we use the same
encoder and decoder architectures for all the methods, which
include four convolutional layers and one fully connected
layer. To select the hyperparameters for our method, we use
5-fold cross validation on the training data. Since most of the
competing methods are unsupervised, we choose the hyperpa-
rameters for them that achieves the best performance on the

held-out data, which is advantageous for the competing meth-
ods resulting in an over-estimation of their performances.
We define the metrics for the performance in the following
section.

Quantitative Comparison

In this section, we perform two quantitative experiments. One
is computing the Mutual Information Gap (MIG), which is a
popular metric for evaluation of the disentanglement method,
and the second experiment is a prediction task.
Mutual Information Gap (MIG) We evaluate the disentan-
glement performance by computing the Mutual Information
Gap (MIG) as introduced in (Chen et al. 2018). Let t repre-
sent the ground-truth factor and I(·, ·) represent the mutual
information between two random variables (with 1 or more
dimensions). In our model, since we assume z(u) is relevant
to t, we expect I(z(u); t) to be large; while I(z(v)·d ; t) to be
small for each dimension d ∈ {1 . . . d(v)}. Therefore, we
can measure the disentanglement by computing the mutual
information gap, defined as

1

H(t)

(
I(z(u); t)− max

d∈{1...d(v)}
I(z(v)·d ; t)

)
, (8)

where H(·) represents the entropy of a random variable. The
values of I(·, ·) and H(·) can be empirically estimated as
explained in (Chen et al. 2018). For each dataset, the dimen-
sionality of z(u), denoted by d(u), is shown in the Table 2.
Our method directly produces the z(u) and z(v) terms that
can be plugged into Equation (8). Since the competing meth-
ods are unsupervised, the choice of the indices for z(u) and
z(v) is not clear. For those methods, we first rank all latent
variables based on the mutual information with respect to the
ground-truth. Then, we pick the top d(u) random variables to
form z(u) and the remaining latent variables are assigned to
z(v). The MIG values are estimated on the held-out data.

The values in Table 2 report the MIG for various methods.
Our proposed method achieves substantially higher MIG val-
ues than other approaches. It outperforms the second-best
methods by more than 40% in all five datasets. The results
illustrate the importance of introducing supervision in dis-
entanglement tasks. Although DSD is a supervised method
that is formulated to incorporate binary pairwise similarities,
it fails to disentangle the ground-truth factor. We speculate
that the failure is due to convergence to a trivial solution, as
mentioned in the Related Work Section.
Prediction Task We use z(u) as an input to a regression or
classification method to predict the ground truth. We use the 5
Nearest Neighbour (5-NN) method for both classification and
regression. Table 3 reports the outcome for different datasets,
measured by Cohen’s kappa (κ) and R2 with respect to the
ground-truth. We measure Cohen’s kappa rather than classifi-
cation accuracy because it corrects for the possibility of the
agreement occurring by chance. For both measurements, a
higher value indicates a better performance. We observe that
our proposed method outperforms the competing methods in
all tasks. This implies that instances with similar ground-truth
factors are located near each other in the latent space z(u).
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Table 1: The Dataset

Name Training instances Held-out instances Image size The ground-truth factor

MNIST 60, 000 10, 000 28× 28× 1 discrete labels
Fashion-MNIST 60, 000 10, 000 28× 28× 1 discrete labels
Yale Faces 1, 903 513 64× 64× 1 azimuth lighting
3D chairs 69, 131 17, 237 64× 64× 3 azimuth rotations
3D cars 14, 016 3, 552 64× 64× 3 azimuth rotations

Table 2: MIG metrics on the held-out data

Dataset d(u) Proposed VAE β-VAE Factor-VAE TCVAE DSD

MNIST 2 0.68 0.01 0.03 0.33 0.04 0.01
Fashion-MNIST 2 0.52 0.11 0.28 0.36 0.19 0.01
Yale Faces 1 0.42 0.02 0.07 0.06 0.29 N/A
3D chairs 2 0.37 0.02 0.15 0.11 0.08 N/A
3D cars 2 0.41 0.02 0.22 0.15 0.16 N/A
DSD is designed for analyzing binary similarities, and cannot analyze real-valued similarities.

(a) Proposed (β = 10) (b) Factor-VAE (γ = 3)

Figure 4: Held-out instances in MNIST dataset.

(a) Proposed (β = 3) (b) β-VAE (β = 15)

Figure 5: Held-out instances in 3D-chairs dataset.

(a) Proposed (β = 10) (b) Factor-VAE (γ = 3)

Figure 6: Manipulating z(u) on MNIST dataset.

(a) Proposed (β = 3) (b) β-VAE (β = 15)

Figure 7: Manipulating z(u) on 3D-chairs dataset.

Qualitative Comparison

In this subsection, we illustrate the disentanglement perfor-
mance of the proposed method via qualitative comparison.
We use the results on the MNIST and 3D-chairs datasets as
examples (for more experimental results, see the supplemen-
tary materials 1 ).

1 Supplementary materials are available at https://arxiv.org/abs/
1906.01044

MNIST Figure 4(a) demonstrates z(u) of the held-out in-
stances from the MNIST dataset. Different colors represent
different class labels. Figure 4(b) shows a similar concept for
the competing method that achieves the highest MIG value
in Table 2. We observe that the proposed model is able to
learn z(u) such that it explains the ground-truth factor (i.e.,
the digit class). All ten classes are well separated in the latent
space with distinct centers, and instances from the same class
are located close to each other. As shown in Figure 4(b), the
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Table 3: Prediction Performance

Dataset Proposed VAE β-VAE Factor-VAE TCVAE DSD

κ
MNIST .969 .494 .326 .704 .260 .030
Fashion-MNIST .857 .389 .460 .613 .482 .003

R2
Yale Faces .968 .397 .760 .699 .692 N/A
3D chairs .912 .155 .357 .224 .196 N/A
3D cars .584 .391 .418 .177 .110 N/A

DSD is designed for analyzing binary similarities, and cannot analyze real-valued similarities.

Table 4: Prediction Performance in the COPD dataset

Proposed VAE β-VAE Factor-VAE TCVAE

R2
FEV1pp .431 .002 .013 .010 .040
Emphesyma% .441 .027 .252 .191 .081
GasTrap% .522 .104 .279 .067 .110

κ GOLD .236 .023 .089 .061 .088

factor-VAE is also able to learn a disentangled representa-
tion. However, regions of the instances of digit 4 and 9 are
overlapping in the latent space.

To illustrate the performance of the generative model, we
plot some images generated by the proposed and the com-
peting method in Figure 6(a) and 6(b), respectively. We first
randomly sample an image from the held-out data and en-
code it into z = [z(u), z(v)]. Then, we keep z(v) constant
and manipulate z(u). Using the new code, we generate new
images that are displayed at their corresponding locations. In
Figure 6(a), we find that the writing styles of ten digits are
similar. This implies that z(u) only contains the information
about the ground-truth factor and not the other factors of
variation. In contrast, we observe changes in writing styles
in Figure 6(b). The figure shows that the reconstructed digits
have different thicknesses, angles, widths.
3D-chairs We repeat the same plotting process for the 3D-
chairs dataset. The results are shown in Figures 5 and 7. Since
the ground truth ( i.e., azimuth ) is a cyclic value, the ideal
shape of the latent variable should look like a ring, which is
approximately captured by our method in Figure 5(a). For
some images, it is more challenging to determine which direc-
tion the chair faces (some chairs are almost centrosymmetric).
These images are encoded into the regions close to the ori-
gin. Without proper supervision, β-VAE is not able to fully
recover the complex underlying structure of the ground-truth
factor, as shown in Figure 5(b).

We manipulate z(u) and generate the images in Figure 7.
As shown in 7(a), we observe the images of chairs facing
various directions, located at the ring displayed in Figure 5(a).
In Figure 7(b), we observe that β-VAE can reconstruct the
chair images facing left and right, but other reconstructed
images are blurry.

COPD dataset

A real-world application of the proposed model is to ana-
lyze the COPD dataset. The purpose of this application is to
identify factors in the Computer Tomography (CT) images
of the chest that are related to disease severity. We applied

our method on a large-scale dataset (over 9K patients), where
all patients have CT images as well as spirometric measure-
ments. We use the spirometric measures to construct pairwise
real-value similarities using Radial Basis Function.

In the COPD dataset, a ground-truth measure for disease
severity is not available. Therefore, we use z(u) ∈ R learned
by our model to predict several clinical measurements of dis-
ease severity from different aspects, via a 5-nearest neighbor
regression and classification. The clinical measurements in-
clude (1) FEV1pp measuring how quickly one can exhale,
(2) Emphesyma% measuring the percentage of destructed
lung tissue, (3) GasTrap% indicating amount of gas trapped
in lung, and (4) GOLD score which is a six-categorical value
indicating the severity of airflow limitation. In Table 4, we
report R2 for the first three measurements and Cohen’s kappa
coefficient (κ) for the last measurement. The results suggest
that our method is better than the unsupervised approach in
disentangling the disease factor, as it outperforms them in
predicting various measures of disease severity.

Choice of Hyperparameters

To illustrate how the hyperparameter β affects the perfor-
mance of our proposed method, we first plot generated im-
ages with an improperly chosen β in Figure 8. In this figure,
we find all ten digits. However, unlike the results shown in
Figure 6(a), the writing styles (thicknesses, angles, widths,
sizes, etc.) of the generated digits change significantly. This
implies a failure of disentanglement, because z(u) explains
some factors of variations other than the one of interest (i.e.,
digit class).

To find a proper β for each dataset, we vary β and conduct
5-fold cross validation with the training instances. We plot the
mean log-likelihood ( log pθ(X,Y|Z) ) of five validations
sets in Figure 9. We observe that a maximum log likelihood is
achieved with choices of β between 2 to 10, but the optimal
β differs across datasets. We choose β that maximizes the
log-likelihood for each dataset.

We illustrate how the hyperparameters η1 and η2 affect the
disentanglement performance in Figure 10. In Figure 10(a),
we fix η2 = 2 and vary η1; while in Figure 10(b), we fix η1 =
1e3 and vary η2. Because the log-likelihood is a function of
η1 and η2, we report the MIG metrics for the held-out data,
instead. We observe that when η1 ≥ 1e3 and η2 ≥ 1., these
hyperparameters have limited effects on the MIG metrics. In
all other experiments, we choose η1 = 1e3 and η2 = 2.
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Figure 8: Generative re-
sults of the proposed re-
sult (β = 1) on MNIST.
With improperly chosen
β, z(u) might explain
other factors of variations
(thicknesses, angles, etc.)
other than the digit class.

Figure 9: The mean value
for the log-likelihood
with different β in 5-fold
cross validation. For
each dataset, we choose
β that maximizes the
log-likelihood.

(a) We fix η2 = 2 and vary η1.. (b) We fix η1 = 1e3 and vary
η2.

Figure 10: The Plot of MIG metrics versus η1 and η2.
When η1 ≥ 1e3 and η2 ≥ 1., these hyperparameters
have limited effect on the MIG metrics for all datasets.
In other experiments, we fix η1 = 1e3 and η2 = 2.

Number of Pairwise Labels

We investigate how the number of pairwise labels affects the
performance of our proposed model. In Figure 11, we plot
the MIG metrics for the held-out data versus the proportion
of observed pairwise labels in training. We observe that in
general, with more pairwise labels provided, the disentan-
glement performance improves. However, as the proportion
approaches 1e − 4, the rate of improvement tapers. In all
other experiments, we fix the proportion to be 1e− 4.

Noisy Similarity Labels

In all previous experiments, we do not introduce noise to the
pairwise similarity labels. In this section, we introduce noise
controlled by the noise level γ. For binary labels, we flip the
labels with probability γ. For real-valued similarities, we let
γ be the variance of the Gaussian noise, i.e., we add Gaussian
noise ε ∼ N (0, γ) and clip the results. We observe Figure 12
that the performance of our proposed method deteriorates as
the noise level increases. Our proposed method is sensitive

Figure 11: The plot of
MIG metrics versus the
proportion of pairwise
labels observed. In general,
with more pairwise labels
observed, the disentan-
glement performance im-
proves. In the experiments,
we choose the proportion
to be 1e− 4(0.01%).

Figure 12: The plot of
MIG metrics versus noise
level γ. The performance
of our proposed method
deteriorates as the noise
level increases. Our pro-
posed method is sensitive
to noisy labels.

to noisy labels. By comparing the results to values in Table
2, we conclude that when γ ≤ 0.1, our proposed method
gives better or comparable MIG metrics than the competing
methods.

Conclusion

In this paper, we investigate the disentanglement learning
problem, assuming a user introduces weak supervision by
providing similarities between instances based on a factor to
be disentangled. The similarity is provided as either a dis-
crete (yes/no) or real-valued label between 0 and 1, where
a larger value indicates a stronger similarity. We propose a
new formulation for weakly supervised disentanglement of
latent variables within the Variational Auto-Encoder (VAE)
framework. Experimental results on both benchmark and
real-world datasets demonstrate that utilizing weak supervi-
sion improves the performance of VAE in disentanglement
learning tasks.
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