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Abstract

Feature selection places an important role in improving the
performance of outlier detection, especially for noisy data.
Existing methods usually perform feature selection and out-
lier scoring separately, which would select feature subsets
that may not optimally serve for outlier detection, leading
to unsatisfying performance. In this paper, we propose an
outlier detection ensemble framework with embedded fea-
ture selection (ODEFS), to address this issue. Specifically,
for each random sub-sampling based learning component,
ODEFS unifies feature selection and outlier detection into a
pairwise ranking formulation to learn feature subsets that are
tailored for the outlier detection method. Moreover, we adopt
the thresholded self-paced learning to simultaneously opti-
mize feature selection and example selection, which is helpful
to improve the reliability of the training set. After that, we de-
sign an alternate algorithm with proved convergence to solve
the resultant optimization problem. In addition, we analyze
the generalization error bound of the proposed framework,
which provides theoretical guarantee on the method and in-
sightful practical guidance. Comprehensive experimental re-
sults on 12 real-world datasets from diverse domains validate
the superiority of the proposed ODEFS.

Introduction

Outlier detection has been intensively studied and widely
used in various applications, such as medical diagnosis
(Wang et al. 2019a), fraud detection (Wang et al. 2018;
2013), and information security (Kang et al. 2019a), to name
just a few. In such real-world applications, it is not uncom-
mon to see that there are many irrelevant or redundant fea-
tures among data when performing outlier detection (Kang
et al. 2019b; Liu and Motoda 2007). It has been shown that
the performance of outlier detection can be significantly im-
proved by only using the informative feature subsets (Pang
et al. 2018a; Keller, Muller, and Bohm 2012). Therefore,
feature/subspace selection, which can help to remove noisy
features, places an important role in improving the perfor-
mance of outlier detection, especially for noisy data.

Feature selection based outlier detection methods select
relevant feature subsets for the subsequent outlier detection
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method, with the aim to alleviate the negative effect brought
by noisy features. Many works on this regard have been de-
veloped. Early attempts often separate the feature searching
from the subsequent outlier scoring methods (Dang et al.
2014; Keller, Muller, and Bohm 2012; Noto, Brodley, and
Slonim 2012; Lazarevic and Kumar 2005). Consequently,
they may retain features that do not optimally serve for the
outlier scoring method and the performance of the subse-
quent outlier detection may be sufficiently biased. The re-
cent work in (Pang et al. 2018a) involves the outlier scoring
methods when searching the relevant feature subset. It builds
the sequential ensembles to refine feature selection and out-
lier scoring by iterative sparse modeling with outlier scores
as the pseudo target feature. Though demonstrating promis-
ing performance, we observe that the used outlier detector
and feature selection method are still performed in an iter-
ative manner, which may lead to a suboptimal solution. A
question naturally raised is that can we take a step forward
to integrate outlier detection and feature selection into a joint
framework?

To address the aforementioned issue, this paper intro-
duces a novel outlier detection ensemble framework with
embedded feature selection, termed ODEFS. Specifically,
ODEFS uses a given outlier scoring method to compute ini-
tial outlier scores of data objects, and then defines an out-
lier thresholding function to identify a set of outlier can-
didates. Considering that diverse outliers may have dif-
ferent discriminative feature subsets (Wang et al. 2019b;
Wang and Li 2006), ODEFS builds an ensemble framework
to obtain multiple feature subsets by bagging. It randomly
chooses examples from both outlier candidates and the unla-
beled objects. They are fed into the objective function which
embeds feature selection into outlier detection to learn cus-
tomized feature subsets for such outlier scoring methods.
The pairwise ranking loss is adopted in the objective to en-
courage outliers having higher ranks than the inliers.

Notice that outlier thresholding function may produce un-
reliable outlier candidates since the initial outlier scores are
computed using all the original features. To improve the re-
liability of the training set, we propose to adopt thresholded
self-paced learning to simultaneously implement example
selection and feature weighting. It selects ”easy” examples,
i.e., the ones with small loss values which are more likely
to be outliers, as the training set. After that, we design an
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alternate optimization algorithm with proved convergence
to obtain reliable and informative feature subsets. Finally,
ODEFS applies the same given outlier detector to the data
with the selected feature subsets in a weighted aggregating
manner to produce a reliable outlier scoring.

The pairwise ranking loss function involves a large num-
ber of interactive terms between the outlier examples and the
unlabeled examples, leading to a high computation complex-
ity. To reduce the number of interactive terms, we theoreti-
cally analyze the generalization error bound of the proposed
framework, which provides valuable insights into relation-
ships between some important parameters and the detection
performance. Those insights lead to some useful practical
guidance. For example, we find that the improvement on the
error bound is quite limited by increasing the number of un-
labeled examples when it is more than the number of outlier
examples. Based on this finding, we can significantly reduce
the time complexity by including a moderate number of ex-
amples without decreasing the detection performance.

The main contributions of this paper are three folds.

• We introduce the ODEFS framework for identifying out-
liers in noise data. Different from existing methods that
separate feature selection from subsequent outlier detec-
tors, ODEFS unifies the two tasks in a joint formulation.

• We derive a thresholded self-paced learning algorithm to
eliminate the negative effect of the unreliable outlier can-
didates. To solve the resultant optimization problem, we
design an alternate algorithm and prove its convergence.

• We theoretically analyze the generalization error bound of
the proposed framework, which provides valuable insight
into the theoretical performance of the method and helps
to reduce the computation complexity.

The ODEFS framework is instantiated on one state-of-
the-art distance-based method LeSiNN (Pang, Kai, and Al-
brecht 2016). It is also worthy of mentioning that the pro-
posed framework can be easily extended to other formula-
tions. Extensive empirical results on 12 real-world data sets
show that ODEFS (i) reduces a large proportion of features
and improves the performance of the original bare method;
(ii) performs substantially better and more stably than the
state-of-the-art competitors; (iii) has much better resilience
to noisy features than its competitors; (iv) has linear time
complexity w.r.t. data size and feature size.

Related Work

Outlier Detection in Noisy Data

Subspace-based methods (Aggarwal and Philip 2005;
Müller, Schiffer, and Seidl 2011; Keller, Muller, and Bohm
2012; Dang et al. 2014) are popular solutions for out-
lier detection in noisy data. They search for a set of fea-
ture subspaces and use them in an ensemble framework to
avoid the negative effect of noise features, but the subspace
searching is often costly as it requires extensive search in
identifying the feature subspaces in high-dimensional data.
Random subspaces generation is a widely used solution to
address this efficiency issue (Lazarevic and Kumar 2005;

Nguyen, Ang, and Gopalkrishnan 2010), but it may include
many noisy features into subspaces.

Alternatively, feature selection-based methods aim to
identify optimal feature subset(s) that reveals the exceptional
behaviors of outliers. Although feature selection has been
well investigated in clustering and classification (Xu, Wang,
and Lai 2016; Li et al. 2018; Nie, Zhu, and Li 2016), there
exists limited work on outlier detection because it is chal-
lenging to define feature relevance to outlier detection given
its unsupervised nature. RegFS in (Paulheim and Meusel
2015; Noto, Brodley, and Slonim 2012) defines the rele-
vance of features by their correlation to the other features.
The assumption is that independent features are not useful in
capturing the violation in outliers. This assumption may be
invalid since some features can be strongly relevant to out-
lier detection but not correlated to other features. CINFO in
(Pang et al. 2018a) firstly generates outlier scores via a given
outlier detector, and then feed the scores into sparse learning
based supervised feature selection to choose relevant fea-
tures. These two steps are iteratively performed to build a
sequential ensemble outlier detection framework. Such an
iterative manner may result in feature subset(s) that are sub-
optimal to the outlier detectors.

Most of the above methods generate multiple feature sub-
sets and work in an ensemble framework. They combine the
results calculated on these feature subsets to obtain a reli-
able detection result. In recent years, there are also some
other outlier ensemble learning works that construct a set of
independent base models (Sugiyama and Borgwardt 2013;
Zhang et al. 2017; Rayana, Zhong, and Akoglu 2016). Since
they work on the full feature space, their performance is still
largely biased by noisy features. It is also worth noting that
there are some successful works on joint feature selection
and outlier detection for categorical data (Pang et al. 2017;
2016). Using popular unsupervised discretization methods
like equal-width and equal-frequency to adopt these meth-
ods to numeric data perform poorly (Pang et al. 2018a). We
therefore focus on comparing ODEFS with numeric data-
based methods in our experiments. There are also some
works on representation learning for outlier detection (Pang
et al. 2018b). Although feature selection can be viewed as an
approximate of representation learning, the method is cus-
tomized for a given outlier detection method only. Thus it is
not added to the competitors.

Self-paced Learning

Self-paced learning (Kumar, Packer, and Koller 2010)
is motivated by the procedure of human learning: from
easy to hard. In machine learning problems, the value
of loss function is used to measure ”easiness”. How
easy examples should be used for training is controlled
by a threshold λ. Formally, given training examples
{(x1,y1), (x2,y2), . . . , (xn,yn)} and learning model f ,
the self-paced learning problem is:

min
v,w

∑n

i=1
vifw(xi,yi)− λvi, s.t. vi ∈ {0, 1} (1)

where v = [v1, v2, . . . , vn] are binary parameters that de-
note the weights of examples, w is the learning parameters,
and −λvi is called self-paced regularization term.
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Figure 1: The framework of ODEFS. ODEFS builds a par-
allel ensemble framework which consists of l feature learn-
ing components. It defines an outlier thresholding function
to identify a set of outlier candidates X� (size n�) based
on the outlier scores computed by s. For each feature learn-
ing component, ODEFS randomly chooses m unlabeled ex-
amples (X̂ = {x̂1, x̂2, . . . , x̂m}) from X and m� outlier
examples (X̂� = {x̂�

1, x̂
�
2, . . . , x̂

�
m�}) from X� . These ex-

amples are fed into a pairwise ranking formulation that em-
beds feature selection into outlier detection. In the training
process, thresholded self-paced learning is proposed to si-
multaneously learn example weights v and feature weights
w. With the l groups of scores computed on the obtained
feature subsets, ODEFS finally performs a weighted aggre-
gating based on the learning loss to obtain the final outlier
scores.

When v is given, the minimization over w is a weighted
loss minimization problem. And when w is fixed, the opti-
mal vi is determined by the closed form:

vi =

{
1, Li < λ,
0, otherwise.

(2)

where Li is the loss of xi and λ increases at each iteration
by step δ. All examples will be added into the training set at
the end of training when λ is large enough.

Kumar et al. (Kumar, Packer, and Koller 2010) demon-
strate that self-paced learning algorithm outperforms the
state-of-the-art methods for learning a latent structural SVM
on several applications. To the best of our knowledge, self-
paced learning has not been used in unsupervised outlier de-
tection yet. Maybe this is because it is hard to define the loss
and set the hyper-parameters of self-paced learning for un-
supervised outlier detection. We fill this gap by introducing
a variant version of self-paced learning into outlier detection
to select reliable outlier examples.

The Proposed Algorithm

We consider outlier detection problems defined over a set
of n data objects X = {x1,x2, . . . ,xn}, where each data
object is described as a d-dimensional real-valued vector
xi = {xi1, xi2, . . . , xid}. There is an unknown partition that
divides X into a set of outliers X+ = {x+

1 ,x
+
2 , . . . ,x

+
n+}

and a set of inliers X− = {x−
1 ,x

−
2 , . . . ,x

−
n−}, so that

X = X+ ∪ X−. n+ and n− are the number of outliers
and inliers, respectively. π = n+/n is the outlier percent-
age of the data set. Outlier detector s(·) : xi → R assigns
outlier scores to objects in X to yield an overall outlier rank-
ing, with the goal of having the outliers to be higher ranked
than the inliers. We will assume that the associated outlier
detector has a particular form that the feature weights can be
embedded into the scoring function: s(x) → s(x,w).

The framework of ODEFS is illustrated in Figure 1,
ODEFS tries to encourage s(x�,w) to be larger than
s(x−,w). Since the feature selection is guided by s, the cho-
sen features only attain the information that is the most im-
portant to distinguish outliers from inliers. The feature sub-
sets obtained by ODEFS are therefore tailored for the outlier
detector. It is a chicken-and-egg problem because we do not
know which part of the outlier candidates are true outliers
at the beginning. Fortunately, we can tackle this problem by
iteratively selecting reliable examples according to the learn-
ing loss value in thresholded self-paced learning. This learn-
ing strategy enables ODEFS to get more reliable discrimi-
native feature subsets. We detail the key steps of ODEFS in
the following.

Outlier Thresholding with Cantelli’s Inequality

The outlier thresholding function is to identify a set of most
likely outliers. We adopt the outlier thresholding function
proposed in (Pang et al. 2018a; 2018b) which is based on
Cantelli’s inequality to obtain the outlier candidates:

X� = {x|s(x)− μ− aσ > 0, x ∈ X} (3)

where μ and σ2 are the average value and variance of all
the initial outlier scores computed by s with all features, and
a ≥ 0 is user-defined thresholding rate based on a desired
false positive bound.

The reason we adopt Eq. (3) as initial outlier threshold is
two folds: (i) it provides an upper bound which can be used
to study the theoretical performances of the proposed model
(see our theoretical foundation); (ii) it is simple but useful as
shown in the experiments.

Pairwise Ranking Loss for Outlier Detection with
Embedded Feature Selection

Outlier scoring method s yields an overall outlier ranking,
with the goal of having the outliers to be higher ranked than
the inliers. It tries to maximize:

J(s) =
1

n+n−
∑n+

i=1

∑n−

j=1
φ(s(x+

i ) ≥ s(x−
j )) (4)

where φ is an indicator function that returns 1 if the condi-
tion satisfies and 0 otherwise.

Since ODEFS is an unsupervised framework, it is impos-
sible to directly obtain labels for both outliers and inliers.
Inspired by (Ren et al. 2018), we propose a relaxed pairwise
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ranking:

J ′(s) =
1

n+n

∑n+

i=1

∑n

j=1
φ(s(x+

i ) ≥ s(xj))

=
1

n+n
(
∑n+

i=1

∑n−

j=1
φ(s(x+

i ) ≥ s(x−
j ))+

∑n+

i=1

∑n+

j=1
φ(s(x+

i ) ≥ s(x+
j )))

=(1− π)J(s) +
n+ + 1

2n

(5)

here the whole unlabeled object set X is used instead of X−.
The above equation indicates that J ′(s) depends on J(s)
linearly. That is, maximizing J ′(s) essentially maximizes
J(s). We therefore consider J ′(s) in the objective function
rather than J(s). To approximate X+, we use outlier candi-
dates set X� in the objective function. Further, as ODEFS
is a random sub-sampling based ensemble framework, each
feature learning component feeds the randomly chosen ex-
amples (i.e., X̂ and X̂�) into the objective function:

max Ĵ�(s) =
1

m�m

∑m�

i=1

∑m

j=1
φ(s(x̂�

i ) ≥ s(x̂j)) (6)

To put feature selection in the objective function, we em-
bed feature weights w = {wi}di=1 in which wi denotes
the weight of ith feature and add sparsity constraints (i.e.,
l1−norm) on them. Since the indicator function φ(·) is not
continuous, the common treatment is to use convex and con-
tinuous surrogate function h to approximate it. There are
several loss functions that can be used here, such as sigmoid
loss, hinge loss and logistic loss function. Without loss of
generality, here, we focus on the logistic loss, which is de-
fined as: h(x) = 1

1+exp(−x) . Then we get the new objective
function:

min
w

1

m�

∑m�

i=1
Lw(x̂�

i ) + θl1(w) (7)

where Lw(x̂�
i ) = 1

m

∑m
j=1

1
1+exp(s(x̂�

i ,w)−s(x̂j ,w)) is the
loss of x̂�

i , θ = 10−4 is a small constant.

Thresholded Self-paced Learning

Since the scores in the outlier thresholding are calculated
using all the features, the outlier candidates may be not reli-
able. Here we use proposed thresholded self-paced learning
to select the most confident examples. We combine (1) into
(7) to get the final objective:

min
w,v

L =
1

m�

∑m�

i=1
(viLw(x̂�

i )− λvi) + θl1(w)

s.t. vi ∈ {0, 1}
(8)

where v = [v1, v2, . . . , vm� ]� are weights of training exam-
ples, and λ is the age parameter which controls the number
of selected examples.

In traditional self-paced learning, there are two hyper-
parameters: the age parameter λ for controlling the learning
pace and step size δ for increasing λ. λ increases by a step δ
every several iterations. All examples should be added to the

training set at the end of training when λ is large enough. But
in our problem, not all the outlier candidates are reliable. Ac-
cording to the definition of the loss function, the examples
with lower losses value are more likely to be true outliers
than the ones with higher losses. Therefore we shall prevent
the self-paced learning from selecting examples with high
loss values, even at the end of the training.

We propose to constrain λ according to the statistics of
losses during the training:

λt =

{
μ(Lwt−1) + σ(Lwt−1), t = 1,
max{λt−1, μ(Lwt−1) + σ(Lwt−1)}, t > 1.

(9)

where Lwt−1 denotes losses for all examples in the (t−1)th
iteration, μ(·) and σ2(·) are average value and variance of
losses.
λ now is thresholded by the changing losses of examples

(i.e., λ ≤ max
t

μ(Lwt) + σ(Lwt)), while it keeps a non-
decreasing trend as the traditional version. Examples with
high loss are filtered by this setting. Besides, this setting also
ensures that at least half example are fed into the training
process according to the Cantelli’s inequality.

Final Outlier Scoring

Using a single component may produce high detection er-
rors when diverse outliers may have diverse discriminative
feature subsets. We therefore further aggregate a set of sub-
sampling based detection results to address this issue.

With the l groups of sub-samples involved in the
training, we obtain a set of l feature weight vec-
tors {w1,w2, . . . ,wl}, and their associated loss
{loss1, loss2, . . . , lossl} as defined in Eq. (8).
We follow the literature (Nie, Zhu, and Li 2016;
Guo and Zhu 2018) to select the features with weights
larger than a given threshold:

F j = {fi|fi ∈ F,
wj

i

max(wj)
> ε} (10)

where ε = 0.05 is a small constant, and max(wj) denotes
the maximum value in wj .

After that, we borrow the idea of boosting (Freund and
Schapire 1997) to combine the outlier score vectors with as-
sociated loss as weights, and define the final outlier score for
each data object in the ensemble as follows:

final score(x) =
∑l

i=1
uiτ(s(x, F i)) (11)

where ui is a normalized weight by ui = exp(−lossi)∑l
j=1 exp(−lossi)

,

s(x, F i) denotes outlier scoring with F i, and τ(s(x, F i)) =
s(x,F i)∑n

j=1 s(xj ,F i) is a vector normalization function that normal-
izes the vector into an unit norm to address the heterogeneity
of the outlier scores from heterogeneous feature subsets.

Optimization and Convergence Analysis

There are two parameters in Eq. (8), w, v, correspond-
ing to feature learning and reliable examples selection, re-
spectively. Motivated by the literatures (Kumar, Packer, and
Koller 2010; Wang et al. 2017; Wang and Ma 2014), we use
an alternative search strategy to optimize v and w.
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Update v with w fixed With w fixed, we first compute
λ by Eq. (9). Then the optimal v can be easily obtained in
closed form:

vi =

{
1, Lw(x̂�

i ) < λ,
0, otherwise.

(12)

Update w with v fixed With v fixed, Eq. (8) is simplified
to

min
w

1

m�

∑m�

i=1
viLw(x̂�

i ) + θl1(w) (13)

which is consistent with l1-norm optimization problem.
Thus we can resort to SGD.

Our algorithm requires an initial parameter w0. Following
the literature (Kumar, Packer, and Koller 2010), we obtained
an estimate of w0 by initially setting vi = 1 for all outlier
examples. Then it goes to the normal 1st iteration.

Convergence analysis In t−th(t ≥ 1) iteration, we first
update λ to get Lt

1:

Lt
1 =

1

m�

∑m�

i=1
vt−1
i Lwt−1(x̂�

i )− λtvt−1
i + θl1(w

t−1)

(14)
thus Lt

1 < Lt−1 as λt ≥ λt−1.
Then we update v to compute Lt

2:

Lt
2 =

1

m�

∑m�

i=1
vtiLwt−1(x̂�

i )− λtvti + θl1(w
t−1) (15)

we have:

Lt
2 −Lt

1 =
1

m�

∑m�

i=1
(vti − vt−1

i )(Lwt−1(x̂�
i )− λt) (16)

According the computation of v in Eq. (12): (i) if vti = 1,
we have vti − vt−1

i ≥ 0 and Lwt−1(x̂�
i ) − λt < 0; (ii) if

vti = 0, we have vti − vt−1
i ≤ 0 and Lwt−1(x̂�

i ) − λt ≥ 0.
Thus, Lt

2 − Lt
1 ≤ 0.

Lastly, when we update the feature weights w, we have a
closed form solution. The objective function is guaranteed to
decrease, that is Lt < Lt

2. Then we have Lt < Lt
2 ≤ Lt

1 ≤
Lt−1. And L = 1

m�

∑m�

i=1(viLw(x̂�
i ) − λvi) + θl1(w) >

−λ ≥ −(maxt μ(Lwt) + σ(Lwt)) ≥ −2, thus the conver-
gence of the optimization is proved.

Time Complexity Analysis

The whole algorithm is summarized in Algorithm 1. In each
learning component, the main computation cost involves the
alternative optimization process in which optimization of w
is the most complex part. Therefore we focus on calculat-
ing the complexity of optimizing w. The pairwise ranking
loss function involves a huge number of interactive terms
between outlier examples and unlabeled examples. Specifi-
cally, the computation complexity of l learning components
can be represented as O(lmm�d). Fortunately, from the pro-
posed Theorem 1 in the following section, we can see that
when the number of outlier examples (i.e., m�) is fixed, the
marginal gain by including more unlabeled examples (i.e.,
increasing m) is decreasing. Thus we set m = 6m� accord-
ing to the theoretical analysis and empirical validation. Then
the total time complexity is O(l(m�)2d). m� is a given pa-
rameter, the ensemble size l = 2� n�

m� � tries to involve at

Algorithm 1 ODEFS
Input: Data objects X
Output: Outlier scores final score(x) for each x

1: Calculate the outlier scores for X with s(·);
2: Obtain the outlier candidates set by Eq. (3);
3: for i = 1 → l do
4: Randomly select m� objects X�;
5: Randomly select m objects from X;
6: Initialize w0 by optimizing Eq. (13) with v = 1;
7: repeat
8: Update λ by Eq. (9);
9: Update v by Eq. (12);

10: Update w by optimizing Eq. (13);
11: until convergence
12: Select the features by Eq. (10);
13: end for
14: return Outlier scores calculated by Eq. (11).

least equal number of outlier candidates into training, so the
overall time complexity can also be represented as O(dn�).
Since n� is linear to n, the proposed ODEFS is linear w.r.t.
data size and feature size.

Theoretical Foundation
In this section, we study the theoretical performances of the
proposed ODEFS, which provides practical guidance of pa-
rameters setting.

Theorem 1. Assume that all data objects in X are i.i.d.
samples, with probability at least 1 − δ we get the upper
error bound of ODEFS with:

Ĵ� − E(Ĵ�) ≤ O(

√
κm

m
+

√
κm�

m�
)

a2

1 + a2
E(J ′) +

1− π

2(1 + a2)
≤ E(Ĵ�) ≤ E(J ′)

(17)

where Ĵ�, E(Ĵ�) and E(J ′) are respectively the adopted em-
pirical loss, thresholding based expected loss, and ideal ex-
pected loss, and κm′ is defined as κm′ = d′ log(dm′/d′) +
log 1

δ in which d′ is the number of selected features.

Proof. To give a detailed proof, we first give a brief intro-
duction of two lemmas that come from the references.
lemma 1. The outlier thresholding function ϕ(s,x) =
s(x) − μ − aσ has a false positive upper bound of 1

(1+a2)

(Pang et al. 2018b).
The above lemma is a variant of Cantelli’s inequality,

which implies that the probability that we could wrongly
identify inliers as outliers is up to 1

1+a2 when we define the
threshold as μ+ aσ.
lemma 2. Assume that all data objects in X are i.i.d. samples,
with probability at least 1− δ we have (Ren et al. 2018):

B̂AUC(s)− BAUC(s) ≤ O(

√
κn

n
+

√
κn+

n+
) (18)

where B̂AUC and BAUC are defined as:

B̂AUC(s) =
1

n+n

∑n+

i=1

∑n

j=1
φ(s(x+

i ) ≥ s(xj)) (19)
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BAUC(s) = Ex+∈D+Ex∈Dφ(s(x+) ≥ s(x)) (20)
here D+ and D are respectively the distribution of outliers
and the whole dataset. And κn′ is defined as

κn′ = d′ log(dn′/d′) + log
1

δ

where d′ is the number of selected features.
Based on these two lemmas, we give below that ODEFS

can obtain an upper error bound for its learning process as
follows.

We can take the expectation of Ĵ� from its definition

E(Ĵ�) =E(
1

m�m

∑m�

i=1

∑m

j=1
φ(s(x̂�

i ) ≥ s(x̂j)))

=
1

m�m
E(

∑m�

i=1

∑m

j=1
φ(s(x̂�

i ) ≥ s(x̂j)))

=
1

m�m
(
∑m�

i=1

∑m

j=1
Ex�∈D̂�Ex∈D̂φ(s(x�) ≥ s(x)))

=Ex�∈D̂�Ex∈D̂φ(s(x�) ≥ s(x))

(21)

where D̂� and D̂ are respectively the distribution of outlier
examples and unlabeled examples.

Since the objects in X are i.i.d. samples, then the objects
in X̂ and X̂� are also i.i.d. samples. Based on lemma 1, we
can easily have

Ĵ� − E(Ĵ�) ≤ O(

√
κm

m
+

√
κm�

m�
) (22)

holds with probability at least 1− δ.
Then we come to the second inequation in the theorem.

As X̂ and X̂� are respectively randomly sampled from X

and X�, we have D̂ = D and D̂� = D�. Thus

E(Ĵ�) =Ex�∈D̂�Ex∈D̂φ(s(x�) ≥ s(x))

=Ex�∈D�Ex∈Dφ(s(x�) ≥ s(x))
(23)

where D� and D denote the distributions for outlier candi-
dates and the whole dataset, respectively.

Suppose the outlier candidate set is composed of outlier
set X�

+ and inlier set X�
−, that is, X� = X�

+ ∪X�
−. n�

+ and
n�
− are respectively the number of outliers and inliers in X�.

Ex�∈D�Ex∈Dφ(s(x�) ≥ s(x))

=Ex�∈D�
+,x�∈D�

−Ex∈Dφ(s(x�) ≥ s(x))

=pEx�
+∈D�

+
Ex∈Dφ(s(x�

+) ≥ s(x))+

(1− p)Ex�
−∈D�

−Ex∈Dφ(s(x�
−) ≥ s(x))+

=pEx�
+∈D�

+
Ex∈Dφ(s(x�

+) ≥ s(x))+

(1− p)(1− π)Ex�
−∈D�

−Ex−∈D−φ(s(x�
−) ≥ s(x−))+

(1− p)πEx�
−∈D�

−Ex+∈D+φ(s(x�
−) ≥ s(x+))

(24)

where D+ and D− denote the distributions for the outliers
and inliers, respectively. D�

+ and D�
− denote the distribu-

tions for the outliers and inliers in outlier candidates, respec-
tively. p = n�

+/n
� is the outlier percentage in X�. The term

Ex�
−∈D�

−Ex−∈D−φ(s(x�
−) ≥ s(x−)) is a constant, because

the probability that a randomly chosen inlier is ranked higher
than another randomly chosen inlier should always be 1

2 . So
we have

E(Ĵ�) = pE(J ′) +
(1− p)(1− π)

2
+ (1− p)πΔ (25)

where Δ = Ex�
−∈D�

−Ex+∈D+φ(s(x�
−) ≥ s(x+))

It is reasonable to assume: (i) E(J ′) ≥ 1
2 , this is because

the probability that a chosen outlier is ranked higher than a
chosen unlabeled object should be larger than 1

2 ; (ii) 0 ≤
Δ ≤ 1

2 , this is because the probability that a chosen inlier is
ranked higher than a chosen outlier should be smaller than
1
2 . Based on lemma 1, we have a2/(1 + a2) ≤ p ≤ 1. Thus
we get:

E(Ĵ�) =
1

2
+ (E(J ′)− 1

2
)p− π

2
+

pπ

2
+ (1− p)πΔ

≥1

2
+ (E(J ′)− 1

2
) ∗ a2/(1 + a2)− π

2
+

πa2

2(1 + a2)

=
a2

1 + a2
E(J ′) +

1− π

2(1 + a2)
(26)

and

E(Ĵ�) ≤pE(J ′) +
(1− p)(1− π)

2
+

(1− p)π

2

≤pE(J ′) +
1− p

2
≤pE(J ′) + (1− p)E(J ′)

=E(J ′)

(27)

The proof is completed.
This theorem provides the upper bound of the difference

between Ĵ� and the ideal expected E(J ′). It contains three
parameters: the thresholding rate a, the number of sampled
outliers m� and the number of sampled unlabeled objects m.
This leads to the following interesting observations:

(i) On one hand, E(Ĵ�) gets close to E(J ′) when a in-
creases; on the other hand, increasing a will decrease n�,
thus the number of outlier candidates is limited;

(ii) When m� is fixed, the improvement on this bound by
increasing m is quite limited. Thus it is not necessary to set
a large value for m.

According to these observations, we therefore set the pa-
rameters a = 2 (i.e., E(Ĵ�) > 0.8E(J ′) ) and m = 6m� in
our experiments. The experimental results in the following
section have demonstrated the effectiveness of the parame-
ters settings.

Experimental Evaluation

Experiment Setup

Application to Distance-based Outlier Detection There
are a number of outlier detectors, where different criterions
are used in different algorithms. Here we choose one state-
of-the-art distance-based outlier detector LeSiNN (Pang,
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Table 1: The details of 12 used datasets, the performance of bare LeSiNN (denoted by AUC, p@k) and ODEFS-enabled LeSiNN
(denoted by AUC’, p@k’). d’ is the average number of features retained by ODEFS-enabled LeSiNN.

Data n d on or domain AUC p@k d’ AUC’ p@k’
Advertisements 3279 1555 454 0.138 medical 0.722 0.445 48 0.906 0.674

AID362 4279 114 60 0.014 medical 0.662 0.017 32 0.671 0.050
aPascal 12695 64 176 0.014 medical 0.750 0.000 14 0.889 0.000
Bank 41188 53 4640 0.113 social 0.597 0.190 18 0.641 0.275
Probe 64759 67 4166 0.064 security 0.958 0.775 10 0.965 0.879
U2R 60821 40 228 0.004 security 0.988 0.592 9 0.991 0.618

Arrhythmia 452 256 66 0.146 nature 0.781 0.500 15 0.814 0.515
Mnist 7603 100 700 0.092 nature 0.854 0.407 20 0.904 0.494
Musk 3062 166 97 0.032 nature 1.000 1.000 24 1.000 1.000

Optdigits 5216 64 150 0.029 nature 0.712 0.040 20 0.818 0.047
Speech 3686 400 61 0.017 nature 0.468 0.016 58 0.482 0.049
Census 299285 503 18568 0.062 social 0.602 0.054 60 0.701 0.075

Kai, and Albrecht 2016) as representative to motivate our
model. It is worthy mentioning that we also get similar
results on another tree-based outlier detector iForest (Liu,
Ting, and Zhou 2012).

Given a dataset X of vector-valued objects, LeSiNN an-
alyzes X to construct a set of random subsets. The outlier
score of an object x is assigned as the average value of its
nearest distances to the subsets.

s(x) =
1

c

∑c

i=1
nn disti(x) (28)

where c is the number of subsets and nn disti(x) returns
the nearest neighbor distance of x to the ith subset.

In particular, the weight of each feature in the distance
calculation is 1 (constant). It is easy to embed the fea-
ture weight into the distance calculation. Take Squared Eu-
clidean Distance as an example, the weighted distance is:
dist(xi,xj ,w) =

∑d
k=1 wk ∗ (xik − xjk)

2. Thus, we can
get the weighted version of LeSiNN by substituting this for-
mulation into Eq. (28).

Datasets As shown in Table 1, 12 real-world datasets are
used, which cover diverse domains, i.e., medical, social, se-
curity and nature1. They are described with four data factors,
i.e., n - the number of objects, d - the number of features, on
- the number of outliers and or - the outlier percentage. Some
datasets like AD, AID362, Probe, and U2R contain seman-
tically real outliers. For the other datasets, we follow the lit-
erature (Pang et al. 2018b; Paulheim and Meusel 2015) to
treat rare classes as outliers and the largest class as the nor-
mal class.

Parameters setting ODEFS and its competitors are im-
plemented in Python 3.4. All the experiments are executed
at a PC in a 3.6GHz CPU with 16GB memory. In our ex-
periments, ODEFS uses m� = 32 for small datasets (i.e.,
n ≤ 104) and m� = 64 for large datasets (i.e., n > 104).
Other parameters setting, i.e., a = 2, m = 6m�, l = 2� n�

m� �,

1They are available at http://archive.ics.uci.edu/ml/index.php,
http://odds.cs.stonybrook.edu/, http://vision.cs.uiuc.edu/attributes/

has been explained in the above sections. The parameters of
LeSiNN are set as the recommended settings.

Evaluation Methods Following the literature (Campos et
al. 2016; Cheng, Wang, and Ma 2019), we evaluate the out-
lier detection performance by AUC and p@k. Their values
range from 0 to 1 and higher value indicates better feature
subset. The Wilcoxon signed rank test is used to examine the
significance of the performance of ODEFS against its com-
petitors. We repeat each experiment 20 times and average
the results to get a convincing evaluation.

Empirical Validation of Theorem 1

Experimental setting This section conducts empirical ex-
periments to study how the number of unlabeled examples
affects AUC. We follow the literature (Zimek, Schubert, and
Kriegel 2012) to create a 100-dimensional synthetic dataset
of size 10000 with 20 relevant features. Inliers are from a
Gaussian distribution N (1, 0.2), while outliers are from an-
other Gaussian distribution N (1.2, 0.2) in relevant features,
and the other features are from a same Gaussian distribution
N (1, 0.2) and used as noisy features. The number of outlier
examples is fixed as m� = 32. We gradually increase the
number of unlabeled examples from m = m� to m = 12m�

by a step m�.
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Figure 2: The trends of AUC and runtime regarding different
sizes of the unlabeled examples. After m/m� is larger than
6, AUC stays stable.
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Table 2: The performance of ODEFS and its competitors. The best results are in bold. AVG is the averaged performance of a
method over all datasets. p-value of Wilcoxon signed rank test is reported in the bottom.

AUC p@k
Data RandFS DisFS RegFS CINFO ODEFS∗ ODEFS RandFS DisFS RegFS CINFO ODEFS∗ ODEFS

Advertisements 0.735 0.742 0.747 0.856 0.832 0.906 0.511 0.522 0.535 0.604 0.588 0.674

AID362 0.654 0.648 0.652 0.663 0.649 0.671 0.017 0.017 0.017 0.033 0.017 0.050

aPascal 0.742 0.736 0.752 0.834 0.835 0.889 0.000 0.000 0.000 0.000 0.000 0.000

Bank 0.592 0.604 0.605 0.607 0.601 0.641 0.189 0.192 0.202 0.228 0.247 0.275

Probe 0.960 0.951 0.958 0.958 0.965 0.965 0.774 0.776 0.768 0.773 0.776 0.879

U2R 0.995 0.972 0.975 0.989 0.992 0.991 0.627 0.592 0.592 0.610 0.605 0.618
Arrhythmia 0.792 0.765 0.732 0.796 0.801 0.814 0.500 0.470 0.439 0.455 0.470 0.515

Mnist 0.865 0.865 0.842 0.875 0.882 0.904 0.416 0.419 0.409 0.427 0.446 0.494

Musk 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Optdigits 0.722 0.721 0.731 0.681 0.712 0.818 0.047 0.047 0.033 0.027 0.033 0.047

Speech 0.472 0.465 0.481 0.485 0.480 0.482 0.033 0.033 0.033 0.049 0.033 0.049

Census 0.638 0.642 0.635 0.642 0.651 0.701 0.059 0.059 0.061 0.067 0.068 0.075

Average 0.764 0.759 0.759 0.782 0.783 0.815 0.348 0.344 0.341 0.356 0.357 0.390

p-value 0.004 0.003 0.003 0.006 0.007 0.011 0.008 0.005 0.008 0.005

Results According to the experimental results shown in
Figure 2, it is observed that: It indicates that when the num-
ber of unlabeled examples is more than 6 times of the num-
ber of outlier examples, the improvement on AUC becomes
quite minor. In the meanwhile, the runtime grows linearly
w.r.t the size of the examples. This observation is consistent
with our analysis in Theorem 1. It essentially suggests that
it is not necessary to include all the unlabeled examples in
the training process when the unlabeled data points are sub-
stantially more than the outlier examples.

Improvement to The Bare Method

Experimental Setting We compare the ODEFS-enabled
LeSiNN with its bare version to evaluate whether ODEFS
can remove noisy features and improve the performance.

Results Table 1 shows the feature reduction and detec-
tion performance of ODEFS-enabled LeSiNN, compared to
LeSiNN performing in the original feature space. ODEFS-
enabled LeSiNN works with only 5% (e.g., on Advertise-
ments) to less than 50% (e.g., on Optdigits) of the original
features, while its performance is substantially better than,
or roughly the same as, its bare version. ODEFS enables
LeSiNN to gain more than 7% and 16% improvement on
average in terms of AUC and p@k, respectively. Our signif-
icance test shows that ODEFS enables LeSiNN to achieve
significantly better performance at the 95% confidence level.

ODEFS embeds feature learning into outlier scoring by
a joint framework, which enables ODEFS to safely re-
move noisy features in these datasets. As a result, ODEFS-
enabled LeSiNN works on much cleaner datasets and thus
can achieve significant performance improvement.

Comparing to State-of-the-art Methods

Experimental Settings Four state-of-the-art methods are
used as competitors, they are: RandFS (Lazarevic and Ku-
mar 2005), RegFS (Paulheim and Meusel 2015), DisFS
(Dang et al. 2014), and CINFO (Pang et al. 2018a) from
four different but relevant researches. Besides, one variant

of ODEFS (named ODEFS∗) is also evaluated to show the
contribution of self-paced learning.

• RandFS: RandFS is a random subspace-based method in
which the features are randomly selected;

• RegFS: RegFS is a relevance analysis based method
which returns a feature relevance ranking and selects the
top-ranked features;

• DisFS: DisFS is chosen as a representative subspace-
based algorithm that uncovers outliers in subspaces of
reduced dimensionality in which they are well discrimi-
nated from regular objects;

• CINFO: CINFO is a representative of feature-selection
method that performs lasso-based sparse regression by
treating the outlier scores as the targets to obtain feature
subsets. It iteratively refines their performance by sequen-
tial ensemble;

• ODEFS∗: ODEFS∗ is a variant of ODEFS in which self-
paced learning is removed. It feeds all the outlier exam-
ples into the training process.

Results Table 2 shows the performance of LeSiNN with
each method over all datasets. According to the experimen-
tal results, ODEFS gets the best performance on ten and
eleven of twelve datasets in terms of AUC and p@k respec-
tively, while the performance on the other ones is close to
the best. ODEFS averagely performs better than four com-
petitors RandFS, RegFS, DisFS, CINFO and ODEFS∗ by
4% − 7% in term of AUC. And in term of p@k, the aver-
age improvements are 9%− 15%. The small p-values show
that the improvement is significant at a high confidence level
(i.e., 95%).

Different from RandFS, RegFS and DisFS that ignore the
outlier scoring methods when they perform feature selec-
tion, ODEFS couples these two tasks in a joint formula-
tion. This enables ODEFS to substantially reduce its detec-
tion errors and obtain significant AUC improvement, espe-
cially in noisy datasets like Advertisements, aPascal, and
Census, which likely contain a large proportion of noisy
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features. Since there is no thresholded self-paced learning
in ODEFS∗, the quality of the training set may be reduced,
leading to worse detection performance.

ODEFS and CINFO are two different feature selection
based methods. CINFO iteratively performs lasso-based
sparse regression by treating the outlier scores as the target
and the original features as the predictors on the outlier can-
didates to obtain a few feature subsets. The outlier scoring
method and lasso-based feature selection are still in a se-
quential order. And it adopts all the outlier candidates which
may contain inliers, leading to a poor feature learning perfor-
mance. In contrast, ODEFS works in a unified framework,
which embeds feature selection into outlier scoring method.
Besides, thresholded self-paced learning is proposed to im-
prove the quality of the training set. Thus ODEFS has better
performance than CINFO.

Capability of Handling Noisy Features

Experimental settings We create a few 100-dimensional
synthetic datasets with different percentages of relevant fea-
tures (or noisy features). Inliers are from a Gaussian distri-
bution N (1, 0.2), while outliers are from another Gaussian
distribution N (1.2, 0.2) in relevant features, and the other
features are from a same Gaussian distribution N (1, 0.2)
and used as noisy features.
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Figure 3: Detection performance on datasets with differ-
ent levels of relevant features. ODEFS persistently performs
better than its competitors. All the methods obtain AUC of
nearly one with more than 35% relevant features.

Results The performance on the synthetic datasets is
shown in Figure 3. ODEFS-enabled LeSiNN performs con-
sistently better than five other versions in a wide range of
noise levels. The better performance of the ODEFS-enabled
LeSiNN over the competitors shows its stronger capability
of handling noisy features.

Scalability

Experimental settings We follow the literature (Pang et
al. 2018a) to generate datasets by varying the feature size
w.r.t. to a fixed data size (i.e., 1000), as well as varying the
data size while fixing the feature size (i.e., 100), respectively.

Results The runtime of the six versions of LeSiNN is
shown in Figure 4. ODEFS has time complexity linear w.r.t.
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Figure 4: Scalability test w.r.t. data size and feature size on
ODEFS and its competitors.

both data size and feature size, which justifies our com-
plexity analysis. In the left sub-figure, ODEFS is compara-
bly fast to RegFS, CINFO and DisFS. These four methods
are slower than RandFS and the bare LeSiNN, since they
incorporate more sophisticated components to enhance the
performance of LeSiNN. In the right sub-figure, RegFS is
the slowest one since it has quadratic complexity while the
other methods have linear time complexity. The runtime of
subspace-based method DisFS grows very fast because the
subspace searching is often costly in high-dimensional data.

Conclusion

In this paper, we propose an outlier detection ensemble
framework, called ODEFS, which directly embeds feature
selection into outlier detection. We propose thresholded self-
paced learning to improve the reliability of the training
set and design an alternative algorithm to address the opti-
mization problem. Experimental results on various datasets
demonstrate the effectiveness of ODEFS.
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