
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Optimal Attack against Autoregressive Models by Manipulating the Environment

Yiding Chen, Xiaojin Zhu
Department of Computer Sciences, University of Wisconsin-Madison

{yiding, jerryzhu}@cs.wisc.edu

Abstract

We describe an optimal adversarial attack formulation against
autoregressive time series forecast using Linear Quadratic Reg-
ulator (LQR). In this threat model, the environment evolves
according to a dynamical system; an autoregressive model ob-
serves the current environment state and predicts its future val-
ues; an attacker has the ability to modify the environment state
in order to manipulate future autoregressive forecasts. The at-
tacker’s goal is to force autoregressive forecasts into tracking
a target trajectory while minimizing its attack expenditure. In
the white-box setting where the attacker knows the environ-
ment and forecast models, we present the optimal attack using
LQR for linear models, and Model Predictive Control (MPC)
for nonlinear models. In the black-box setting, we combine
system identification and MPC. Experiments demonstrate the
effectiveness of our attacks.

Introduction

Adversarial learning studies vulnerability in machine learn-
ing, see e.g. (Vorobeychik and Kantarcioglu 2018; Joseph
et al. 2018; Liu et al. 2017; Biggio and Roli 2017; Lowd
and Meek 2005). Understanding optimal attacks that might
be carried out by an adversary is important, as it prepares
us to manage the damage and helps us develop defenses.
Time series forecast, specifically autoregressive model, is
widely deployed in practice (Hamilton 1994; Box et al. 2015;
Fan and Yao 2008) but has not received the attention it de-
serves from adversarial learning researchers. Adversarial at-
tack in this context means an adversary can subtly perturb
a dynamical system at the current time, hence influencing
the forecasts about a future time. Prior work (Alfeld, Zhu,
and Barford 2016; 2017) did point out vulnerabilities in au-
toregressive models under very specific attack assumptions.
However, it was not clear how to formulate general attacks
against autoregressive models.

There are extensive studies on batch adversarial attacks
against machine learning algorithms. But there is much less
work on sequential attacks. We say an attack is batch if the
attacker performs one attack action at training or test time
(the attacker is allowed to change multiple data points); an

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attack is sequential if the attacker take actions over time.
There are batch attacks against support vector machine (Big-
gio, Nelson, and Laskov 2012; Biggio et al. 2014), deep
neural networks (Goodfellow, Shlens, and Szegedy 2014;
Nguyen, Yosinski, and Clune 2015), differentially-private
learners (Ma, Zhu, and Hsu 2019), contextual bandits (Ma et
al. 2018), recurrent neural networks (Papernot et al. 2016),
online learning (Wang and Chaudhuri 2018) and reinforce-
ment learning (Ma et al. 2019). Some of these victims are
sequential during deployment, but they can be trained from
batch offline data; hence they can be prone to batch attacks.
In contrast, (Jun et al. 2018) and (Zhang and Zhu 2019) study
sequential attacks against stochastic bandits and sequential
prediction. Our work studies sequential attack against autore-
gressive model, which is closer to these two papers. Mean-
while, control theory is receiving increasing attention from
the adversarial learning community (Recht 2018; Zhu 2018;
Lessard, Zhang, and Zhu 2018). Our work strengthens this
connection.

This paper makes three main contributions: (1) We present
an attack setting where the adversary must determine the at-
tack sequentially. This generalizes the setting of (Alfeld, Zhu,
and Barford 2016; 2017), where the adversary can decide the
attack after observing all environmental state values used for
forecast. (2) We formulate the attacks as an optimal control
problem. (3) When the attacker knows the environmental
dynamics and forecast model (white-box setting), we solve
the optimal attacks with Linear Quadratic Regulator (LQR)
for the linear case, or Model Predictive Control (MPC) and it-
erative LQR (iLQR) for the nonlinear case; when the attacker
does not know the environmental or forecaster(black-box
setting), we additionally perform system identification.

The Attack Setting

Autoregressive Review

To fix notation, we briefly review time series forecasting
using autoregressive models. There are two separate entities:

1. The environment is a fixed dynamical system with
scalar-valued states xt ∈ R at time t. The environment has a
(potentially non-linear) q-th order dynamics f and is subject
to zero-mean noise wt ∈ R with V(wt) = σ2. Without
manipulations from the adversary, the environmental state

3545

evolves as

xt+1 = f(xt, . . . , xt−q+1, wt) (1)

for t = 0, 1, We take the convention that xi = 0 if i < 0.
We allow the dynamics f to be either linear or nonlinear.

2. The forecaster makes predictions of future environmen-
tal states, and will be the victim of the adversary attack. In this
paper we mainly focus on a fixed linear AR(p) autoregressive
forecaster, regardless of whether the environment dynamics
f is linear or not. Even though we allow the forecast model
to be nonlinear in black-box setting, we use linear function
to approximate the nonlinear autoregressive model. We also
allow the possibility p �= q. At time t, the forecaster observes
xt and uses the p most recent observations xt, . . . , xt−p+1

to forecast the future values of the environmental state. A
forecast is made at time t about a future time t′ > t, we use
the notation yt′|t to denote it.

Specifically, at time t the forecaster uses a standard AR(p)
model to predict. It initializes by setting yt+1−i|t = xt+1−i

for i = 1 . . . p. It then predicts the state at time t+ 1 by

yt+1|t = α̂0 +

p∑
i=1

α̂iyt+1−i|t, (2)

where α̂0, α̂1, . . . , α̂p are coefficients of the AR(p) model.
We allow the AR(p) model to be a nonlinear function in the
black-box setting. The AR(p) model may differ from the true
environment dynamics f even when f is linear: for example,
the forecaster may have only obtained an approximate model
from a previous learning phase. Once the forecaster predicts
yt+1|t, it can plug the predictive value in (2), shift time by
one, and predict yt+2|t, and so on. Note all these predictions
are made at time t. In the next iteration when the true environ-
ment state evolves to xt+1 and is observed by the forecaster,
the forecaster will make predictions yt+2|t+1, yt+3|t+1, and
so on.

The Attacker

We next introduce a third entity – an adversary (a.k.a. at-
tacker) – who wishes to control the forecaster’s predictions
for nefarious purposes. The threat model is characterized by
three aspects of the adversary:

(i) Knowledge: In the white-box setting, the attacker
knows everything above; in the black-box setting, neither
environmental dynamics nor forecaster model are known to
the attacker.

(ii) Goal: The adversary wants to force the forecaster’s pre-
dictions yt′|t to be close to some given adversarial reference
target y†t′|t (the dagger is a mnemonic for attack), for selected
pairs of (t, t′) of interest to the adversary. Furthermore, the
adversary wants to achieve this with “small attacks”. These
will be made precise below.

(iii) Action: At time t the adversary can add ut ∈ R (the
“control input”) to the noise wt. Together ut and wt enter the
environment dynamics via:

xt+1 = f(xt, . . . , xt−q+1, ut + wt). (3)

We call this the state attack because it changes the underlying
environmental states, see Figure 1.

xt−p+1 xt−p+2 xt xt+1

adversary

adversary

environment

forecaster

wt

ut

yt+1|t, yt+2|t, . . .

y†t+1|t, y
†
t+2|t, . . .

C

· · · · · · f · · ·

Figure 1: The state attack. The lowest layer depicts the attack
target, and the adversary compares it against the forecaster’s
predictions.

White-Box Attack as Optimal Control

We now present an optimal control formulation for the white-
box attack. Following control convention (Lee and Markus
1967; Kwakernaak and Sivan 1972), we rewrite several quan-
tities from the previous section in matrix form, so that we
can define the adversary’s state attack problem by the tuple
(F,C, {y†

t′|t}, {Qt′|t}, R, T). These quantities are defined
below.

We introduce a vector-valued environment state represen-
tation (denoted by boldface) xt := (1, xt, . . . , xt−p+1)

� ∈
R

p+1. The first entry 1 serves as an offset for the con-
stant term α̂0 in (2). We let x0 be the known initial state.
It is straightforward to generalize to an initial distribution
over x0, which adds an expectation in (9). We rewrite
the environment dynamics under adversarial control (3)
as xt+1 = F (xt, ut, wt) := (1, f(xt, . . . , xt−p+1, ut +
wt), xt, . . . , xt−p+2)

�. If f is nonlinear, so is F .

In control language, the forecasts are essentially measure-
ments of the current state xt. In particular, we introduce a vec-
tor of p predictions made at time t about time t′−p+1, . . . , t′
as yt′|t := (1, yt′|t, yt′−1|t, . . . yt′−p+1|t)� ∈ R

p+1. (For
completeness, we let yt′|t = xt when t′ ≤ t.) The fore-
caster’s AR(p) forecast model specifies the (linear) mea-
surements as follows. We introduce the (p + 1) × (p + 1)
measurement (i.e. forecast) matrix 1 ,

1The forecaster usually only has an estimate of f . It is likely
that the forecaster’s AR(p) model has a different order p than the
environment dynamics’ order q. For simplicity, we will assume
p = q below, but explain how to handle p �= q in Appendix A.

3546

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
α̂0 α̂1 α̂2 · · · α̂p−1 α̂p

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4)

Then the measurements / forecasts are:
yt′|t = Ct′−txt, ∀t′ > t. (5)

There are cases that yt′|t does not depend on xt but has
been decided at time t̃ < t. In such cases, we can simply
redefine yt′|t to be yt′|t̃ and rewrite the prediction matrix. For
simplicity, we assume yt′|t always depends on xt in the rest
of the paper.

We also vectorize adversarial reference target: y†
t′|t :=

(1, y†t′|t, y
†
t′−1|t, . . . y

†
t′−p+1|t)

� ∈ R
p+1. We simply let

y†t′|t = 0 when t′ ≤ t: this is non-essential. In fact, for
(t, t′) pairs that are uninteresting to the adversary, the target
value y†t′|t can be undefined as they do not appear in the
control cost later.

The cost of the adversary consists of two parts: (1) how
closely the adversary can force the forecaster’s predictions to
match the adversarial reference targets; (2) how much control
ut the adversary has to exert. The (p+1)× (p+1) matrices
Qt′|t define the first part, namely the cost of the attacker
failing to achieve reference targets. In its simplest form, Qt′|t
is a (p+1)× (p+1) matrix with all zero entries except for a
scalar weight βt′|t ∈ [0, 1] at (2,2). In this case, Qt′|t simply
picks out the (t′ | t) element:

(yt′|t−y†
t′|t)

�Qt′|t(yt′|t−y†
t′|t) = βt′|t(yt′|t−y†t′|t)2. (6)

For simplicity, we use ‖yt′|t − y†
t′|t‖2Qt′|t

to denote (6). Crit-
ically, by setting the weights βt′|t the attacker can express
different patterns of attack. For example:
• If βT |t = 1 for all t = 0 . . . T − 1 and 0 otherwise, the

adversary cares about the forecasts made at all times about
the final time horizon T . In this case, it is plausible that
the adversarial target y†T |t := y†T is a constant w.r.t. t.

• If βt+1|t = 1 for all t and 0 otherwise, the adversary cares
about all the forecasts about “tomorrow.”

• if βt′|t = 1, ∀t, t′, the adversary cares about all predictions
made at all times.

Obviously, the adversary can express more complex temporal
attack patterns. The adversary can also choose βt′|t value in
between 0 and 1 to indicate weaker importance of certain
predictions.

The R matrix defines the second part of the adversary cost,
namely how much control expenditure ut the adversary has
to exert. In the simplest case, we let R be a scalar λ > 0:

‖ut‖2R := λu2
t . (7)

We use T to denote the prediction time horizon: T is the
last time index (expressed by t′) to be predicted by the fore-
caster. We define the adversary’s expected quadratic cost
J(u0:(T−1)) for action sequence u0, . . . , uT−1 by

Ew0:(T−1)

[
T−1∑
t=1

T∑
t′=t+1

‖yt′|t − y†
t′|t‖2Qt′|t+

T−1∑
t=0

‖ut‖2R
∣∣∣∣∣x0

]
.

Since the environment dynamics can be stochastic, the
adversary must seek attack policies φt : R

p+1 �→ R to map
the observed state xt to an attack action:

ut = φt(xt) ∀t. (8)

Given an adversarial state attack problem
(F,C, {y†

t′|t}, {Qt′|t}, R, T), we formulate the optimal state
attack as the following optimal control problem:

min
φ0,··· ,φT−1

J(u0:(T−1)) (9)

s.t.x0 given (10)
ut = φt(xt), t = 0, 1, · · · , T − 1 (11)
xt+1 = F (xt, ut, wt), t = 0, 1, · · · , T − 1 (12)

yt′|t = Ct′−txt, ∀t′ > t. (13)

We next propose solutions to this control problem for linear
F and nonlinear F , respectively. For illustrative purpose, we
focus on solving the problem when the attack target is to
change predictions for “tomorrows”. This implies βt′|t = 0
when t′ ≥ t+2. Under this assumption, J(u0:(T−1)) has the
following form:

Ew0:(T−1)

[
T−1∑
t=1

‖Cxt − y†
t+1|t‖2Qt+1|t +

T−1∑
t=0

‖ut‖2R
∣∣∣∣∣x0

]
.

More attack targets are studied in the experiment section.

Solving Attacks Under Linear F

When the environment dynamics f is linear, the scalar envi-
ronment state evolves as xt+1 = α0+

∑p
i=1 αixt+1−i+ut+

wt,where the coefficients α0, . . . , αp in general can be dif-
ferent from the forecaster’s AR(p) model (2). We introduce
the corresponding vector operation

xt+1 = F (xt, ut, wt) := Axt +B(ut + wt), (14)

where A has the same structure as C in (4) except each α̂ is
replaced by α, and B = (0, 1, 0, . . . , 0)�. The adversary’s
attack problem (9) reduces to stochastic Linear Quadratic
Regulator (LQR) with tracking, which is a fundamental prob-
lem in control theory (Kwakernaak and Sivan 1972). It is
well known that such problems have a closed-form solution,
though the specific solution for stochastic tracking is often
omitted from the literature. In addition, the presence of a fore-
caster in our case alters the form of the solution. Therefore,
for completeness we provide the solution in Algorithm 1.

The derivation is in Appendix. Once the adversarial con-
trol policies are computed, the optimal attack sequence is
given by: ut = φt(xt), t = 0, 1, · · · , T − 1. The astute
reader will notice that, uT−1 = φT−1(xT−1) = 0. This is
to be expected: uT−1 affects xT , but xT would only affect
forecasts after the prediction time horizon T , which the ad-
versary does not care. To minimize the control expenditure,
the adversary’s rational behavior is to set uT−1 = 0.

3547

Algorithm 1: LQR(F,C, {y†
t′|t}, {Qt′|t}, R, T)

Input :(F,C, {y†
t′|t}, {Qt′|t}, R, T)

1 PT = 0;
2 qT = 0;
3 for t = T − 1, T − 2, · · · , 1 do
4 Pt =

CA�Qt+1|tC +A�(I + 1
λPt+1BB�)−1Pt+1A;

5 qt = −2C�Qt+1|ty
†
t+1|t +A�qt+1 −

1
λ+B�Pt+1B

A�P�
t+1BB�qt+1;

6 end
7 for t = 0, 1, . . . , T − 1 do

8 φt(z) = −B�qt+1+2B�Pt+1Az
2(λ+B�Pt+1B)

9 end
Output :φ0(·), . . . , φT−1(·)

Solving Attacks Under Non-Linear F

When f is nonlinear the optimal control problem (9) in gen-
eral does not have a closed-form solution. Instead, we in-
troduce an algorithm that combines Model Predictive Con-
trol (MPC) (Garcia, Prett, and Morari 1989; Kouvaritakis
and Cannon 2015) as the outer loop and Iterative Linear
Quadratic Regulator (ILQR) (Li and Todorov 2004) as the
inner loop to find an approximately optimal attack. While
these techniques are standard in the control community, to
our knowledge our algorithm is a novel application of the
techniques to adversarial learning.

The outer loop performs MPC, a common heuristic in non-
linear control. At each time τ = 0, 1, . . ., MPC performs
planning by starting at xτ , looking ahead l steps and finding
a good control sequence {φt}τ+l−1

t=τ . However, MPC then car-
ries out only the first control action u∗

τ . This action, together
with the actual noise instantiation wτ , drives the environment
state to xτ+1 = F (xτ , u

∗
τ , wτ). Then, MPC performs the l-

step planning again but starting at xτ+1, and again carries out
the first control action u∗

τ+1. This process repeats. Formally,
MPC iterates two steps: at time τ

1. Solve

min
φτ:L(τ)

E

L(τ)+1∑
t=τ+1

‖Cxt − y†
t+1|t‖2Qt+1|t +

L(τ)∑
t=τ

‖φt(xt)‖2R

s.t.xτ given
xt+1 = F (xt, φt(ut), wt), t = τ, · · · , L(τ), (15)

The expectation is over wτ , · · · , wL(τ). Denote the solu-
tion by {φt}L(τ)

t=τ .
2. Apply u∗

τ = φτ (xτ) to the F system.
L(τ) = min(τ+l−1, T−2), which indicates that the size

of the optimization in step 1 will decrease as τ approaches T .
The repeated re-planning allows MPC to adjust to new inputs,
and provides some leeway if {φt}L(τ)

t=τ cannot be exactly
solved, which is the case for our nonlinear F .

We now turn to the inner loop to approximately solve (15).
There are two issues that make the problem hard: the ex-

pectation over noises Ewτ ,··· ,wL(τ)
, and the nonlinear F . To

address the first issue, we adopt an approximation technique
known as “nominal cost” in (Kouvaritakis and Cannon 2015).
For planning we simply replace the random variables w with
their mean, which is zero in our case. This heuristic removes
the expectation, and we are left with the following determin-
istic system as an approximation to (15):

min
uτ ,··· ,uL(τ)

L(τ)+1∑
t=τ+1

‖Cxt − y†
t+1|t‖2Qt+1|t +

L(τ)∑
t=τ

‖ut‖2R

s.t.xτ given
xt+1 = F (xt, ut, 0), t = τ, · · · , L(τ). (16)

To address the second issue, we adopt ILQR (Li and
Todorov 2004) in order to solve (16). The idea of ILQR
is to linearize the system around a trajectory, and compute
an improvement to the control sequence using LQR itera-
tively. We show the details in Appendix. We summarize the
MPC+ILQR attack in Algorithm 2 and 3.

Algorithm 2: MPC

Input :F,C, {y†
t′|t}, {Qt′|t}, R, T, l,maxiter, tol

1 for t = 0, 1, . . . , T − 2 do
Input :xt

2 ut:min(t+l−1,T−2) ←
ILQR(xt, F, C, {y†

t′|t}, {Qt′|t}, R,min(t+ l +

1, T),maxiter, tol);
Output :ut

3 end

A Greedy Control Policy as the Baseline State
Attack Strategy

The optimal state attack objective (9) can be rewritten as a
running sum of instantaneous costs. At time t = 0, 1, . . . the
instantaneous cost involves the adversary’s control expendi-
ture u2

t , the attack’s immediate effect on the environment state
xt+1 (see Figure 1), and consequently on all the forecaster’s
predictions made at time t+1 about time t+2, . . . , T . Specif-
ically, the expected instantaneous cost gt(xt, ut) at time t is
defined as:

Ewt
‖CF (xt, ut, wt)− y†

t+2|t+1‖2Qt+2|t+1
+ ‖ut‖2R. (17)

This allows us to define a greedy control policy φG, which is
easy to compute and will serve as a baseline for state attacks.
In particular, the greedy control policy at time t minimizes
the instantaneous cost:

φG
t (xt) ∈ argminugt(xt, u).

When F is linear, φG
t (·) can be obtained in closed-form. We

show the solution in Appendix D.
When f is nonlinear, we let noise wt = 0 and solve the

following nonlinear problem using numerical solvers:

min
ut

‖CF (xt, ut, 0)− y†
t+2|t+1‖2Qt+2|t+1

+ ‖ut‖2R. (18)

3548

Algorithm 3: ILQR

Input :x0, F, C, {y†
t′|t}, {Qt′|t}, R, T,maxiter, tol

1 Initialize u0:T−2;
2 for i = 0, 1, . . . ,maxiter do
3 for t = 0 : T − 2 do
4 xt+1 = F (xt, ut, 0);
5 DuFt = DuF (xt, ut, 0);
6 DxFt = DxF (xt, ut, 0)
7 end

8 PT−1 = C�QT |T−1C;
9 qT−1 = 2C�QT |T−1(CxT−1 − y†

T |T−1);
10 for s = T − 2, . . . , 1 do

11 Ps = C�Qs+1|sC +DxF
�
s (I +

1
λPs+1DuFsDuF

�
s)−1Ps+1DxF

�
s ;

12 qs =

2C�Qs+1|s(Cxs − y†
s+1|s) +DxF

�
s qs+1 −

(DuF
�
s Ps+1DxFs)

�(DuF
�
s qs+1+2λus)

λ+DuF�
s Ps+1DuFs

13 end
14 for s = 0, T − 2 do

15 δus = − 2DuF
�
s Ps+1DxFsδxs+DuF

�
s qs+1+2λus

2(λ+DuF�
s Ps+1DuFs)

;
16 δxs+1 = DxFsδxs +DuFsδus

17 end

18 if ‖δu0:T−2‖2/(T − 1) < tol then
19 Break;
20 end
21 u0:T−2 ← u0:T−2 + δu0:T−2;
22 end

Output :u0:T−2

Black-Box Attack via System Identification

We now consider black-box attack setting where the envi-
ronment dynamics f and forecaster’s model C are no longer
known to the attacker. Both the environment forecast models
are allowed to be nonlinear. The attacker will perform system
identification (Dean et al. 2017), and solve LQR as an inner
loop and MPC as an outer loop.

The attacks picks an estimation model order p for both the
environment and forecaster. It also picks a buffer length b. In
the first b+ p− 1 iterations, the attacker does no attack but
collects observations on the free-evolving environment and
the forecasts. Then, in each subsequent iteration the attacker
estimates a linear environmental model â and linear forecast
model ĉ using a rolling buffer of previous b+p−1 iterations.
The buffer produces b data points for the attacker to use MLE
to solve p+ 1 unknowns in environment model.The attacker
then uses MPC and LQR to design an attack action.

The attacker use linear models to estimate both the
environmental dynamics and forecast model. At time t,
he environmental dynamics is estimated over the environ-
mental state value xt−b−p+1, . . . , xt and action sequences

ut−b, . . . , ut−1:

min
a0:p

t−1∑
t=t−b

(a0 +

p∑
i=1

aixt+1−i + ut − xt+1)
2, (19)

we use â(t, b), a p+ 1-dimensional column vector to denote
the minimum point of (19). Due to the nature of attacking
autoregressive models, B = (0, 1, 0, . . . , 0)� ∈ R

(p+1)×1 is
always known to the attacker.

We use ĉ0, ĉ1, . . . , ĉp to denote the estimation of forecast
model and let

C(ĉ0:p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
ĉ0 ĉ1 ĉ2 · · · ĉp−1 ĉp
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (20)

to denote the corresponding forecast matrix. Let Λ(t1, t2)
denote the set of prediction indices which are visible
to the attacker: Λ(t1, t2) = {(t, t′) | t1 ≤ t ≤
t2, yt′|t is visible to the attacker}. At time t, the forecast
model is estimated over the visible forecasts: yt′|t, (t, t′) ∈
Λ(t− b, t):

min
c0:p

∑
(t,t′)∈Λ(t−b,t)

(B�Ct′−txt − yt′|t)2, (21)

we use ĉ(t, b), a p+ 1-dimensional column vector to denote
the minimum point of (21). If the attacker only observes suf-
ficient predictions for “tomorrows”, i.e. Λ(t1, t2) = {(t, t′) |
t1 ≤ t ≤ t2, t

′ = t + 1}, then ĉ0, ĉ1, . . . , ĉp is the OLS
solution to (21). However, for more complex prediction pat-
tern, (21) might involve polynomials of c0, c1, . . . , cp.

We can summarize the proposed black-box attack method
in Algorithm 4.

Algorithm 4: System identification attack
Input :model order p, buffer size b, time step of MPC l

1 for t = 0, 1, . . . , b+ p− 2 do
Input :xt, yt′|t
Output :ut = 0

2 end
3 for t = b+ p− 1, . . . , T − 1 do
4 update â(t, b) by (19);
5 update ĉ(t, b) by (21);
6 φ0:min(t+l,T)−1 ←

LQR({â(t, b), B}, C(ĉ(t, b)), {y†
t′|t}, {Qt′|t}, R,

min(t+ l + 1, T)− t);
Output :ut ← φ0(xt)
Input :xt+1, yt′|t

7 end

Experiments

We now demonstrate the effectiveness of control-based white-
box attacks on time series forecast problems. We compare the

3549

optimal attacks computed by LQR (for linear f), MPC+iLQR
(for nonlinear f), black-box attack, greedy attacks, and the
no-attack baseline. While the attack actions were optimized
under an expectation over random noise w (c.f. (9)), in the
experiments we report the actual realized cost based on the
noise instantiation that the algorithm experienced:

T−1∑
t=1

T∑
t′=t+1

‖Ct′−txt − y†
t′|t‖2Qt′|t +

T−1∑
t=0

‖ut‖2R (22)

where the noise sequence {wt}T−2
t=0 is incorporated im-

plicitly in xt, together with the actual attack sequence
{ut}T−1

t=0 . To make the balance between attack effect (the
quadratic terms involving Q) and control expenditure (the
term involving R) more interpretable, we let R := λ =

λ̃
∑T−1

t=1

∑T
t′=t+1 βt′|t/T

The Effect of Qt′|t on Attack

In our first synthetic example we demonstrate the adver-
sary’s ability to target different parts of the forecasts via
Q, the quadratic coefficient in cost function. Figure 2 illus-
trates three choices of attack targets Q: attack “tomorrow”,
“last day” and “all predictions”.

0 5 10
-2

-1

0

1

2

3

0 5 10
-2

-1

0

1

2

3

0 5 10
-2

-1

0

1

2

3

0 5 10
-2

-1

0

1

2

3

Figure 2: LQR solution on three attack patterns Q. y-axis
shows the value of x and u. Each blue forecast curve begin-
ning at time t shows the sequence {yt′|t−1}Tt′=t. The pattern
of attack defined by the corresponding Q is highlighted with
∗ on the forecast curves.

For simplicity, we let all adversarial reference targets y†t′|t
be the constant 1. We let the environment evolve according to
an AR(1) model: xt+1 = 1 + 0.5xt + wt. We let the noise
wt ∼ N(0, 0.12) and the initial state x0 = 0. We simulate

the case where the forecaster has only an approximation of
the environment dynamics, and let the forecaster’s model be
xt+1 = 0.9 + 0.6xt which is close to, but different from,
the environment dynamics. For illustrative purpose, we set
the prediction time horizon T = 10. Recall that the attacker
can change the environment state by adding perturbation ut:
xt+1 = 1 + 0.5xt + ut + wt. We set λ̃ = 0.1.

We run LQR and compute the optimal attack sequences
u under each Q scenario. They are visualized in Figure 2.
Each attack is effective: the blue *’s are closer to the green
target line on average, compared to where they would be in
the upper-left no-attack panel. Different target selection Q
will affect the optimal attack sequence.

Comparing LQR vs. Greedy Attack Policies

We now show the LQR attack policy is better than the
greedy attack policy. We let the environment evolves by
an AR(3) model: xt+1 = f(xt, xt−1, xt−2, wt) = 0.4xt −
0.3xt−1−0.7xt−2+wt , wt ∼ N(0, 0.12). The initial values
are x0 = 10, x−1 = x−2 = 0, prediction horizon T = 15.
This environment dynamic is oscillating around 0.

We let the forecaster’s model be: xt+1 = 0.41xt −
0.29xt−1− 0.68xt−2. Q is ”tomorrows”. The attacker wants
the forecaster to predict a sequence oscillating with smaller
amplitude. y†t+1|t is set as following: we simulate xt+1 =

f(xt, xt−1, xt−2, 0), then, let the attack reference target be
y†t|t−1 = 0.5xt, t = 2, · · · , T . We set λ̃ = 0.1.

0 5 10 15
-10

-5

0

5

10

0 5 10 15
-10

-5

0

5

10

0 5 10 15
-50

0

50

Figure 3: LQR vs. Greedy attacks. The black horizontal lines
in the right plot mark the vertical axis range of the middle
plot.

We run LQR and Greedy, respectively, to solve this at-
tacking problem. We generate 50 trials with different noise
sequences, see Figure 3. Interestingly, LQR drives the pre-
dictions close to the attack target, while Greedy diverges.
The mean actual realized cost of no attack, LQR attack and
Greedy attack are 133.9, 11.5, 1492, respectively. The stan-
dard errors are 1.20, 0.02, 12.99. We perform a paired t-test
on LQR vs. Greedy. The null hypothesis of equal mean is
rejected with p = 4 × 10−61. This clearly demonstrate the
myopic failure of the greedy policy.

MPC+ILQR attack on US Real GNP

This real world data (Tiao and Tsay 1994) models the growth
rate of quarterly US real GNP from the first quarter of 1947
to the first quarter of 1991. We use the GNP data to evaluate
MPC+iLQR and Greedy, which attack the “last day.” The
environment’s nonlinear threshold model dynamics is:

3550

xt+1 =⎧⎪⎪⎨
⎪⎪⎩
−0.015− 1.076xt + w1,t (xt, xt−1) ∈ X1

−0.006 + 0.630xt − 0.756xt−1 + w2,t (xt, xt−1) ∈ X2

0.006 + 0.438xt + w3,t (xt, xt−1) ∈ X3

0.004 + 0.443xt + w4,t (xt, xt−1) ∈ X4,

where X1 = {(xt, xt−1) | xt ≤ xt−1 ≤ 0}, X2 =
{(xt, xt−1) | xt > xt−1, xt−1 ≤ 0}, X3 = {(xt, xt−1) |
xt ≤ xt−1, xt−1 > 0}, X4 = {(xt, xt−1) | xt > xt−1 >
0}, w1,t ∼ N(0, 0.00622), w2,t ∼ N(0, 0.01322), w3,t ∼
N(0, 0.00942), w4,t ∼ N(0, 0.00822). We let T = 10,
x0 = 0.0065 (according to (Tiao and Tsay 1994)), x−1 = 0.
The forecaster’s model is xt+1 = 0.0041+0.33xt+0.13xt−1

(according to (Tiao and Tsay 1994)). The attacker can change
state value by adding perturbation. The attack target is to
drive forecaster’s predictions yT |t, t = 1, · · · , T − 1 to be
close to 0.01. We let λ̃ = 0.001. MPC+iLQR and Greedy are
used to solve this problem. The time step of MPC is set to be
l = 5. Inside the MPC loop, the stopping condition of iLQR
is tol = 10−4. The maximum iteration of iLQR is set to be
1000. For Greedy, we use the default setting for the lsqnonlin
solver in Matlab (Coleman, Branch, and Grace 1999) except
that we do provide the gradients

We again run 50 trials, the last one is shown in Figure 4.
The mean actual realized cost of no attack, MPC+iLQR attack
and Greedy attack are (6.87, 3.03, 3.23)× 10−4 respectively.
The standard errors are (1.40, 0.18, 0.19)×10−5 respectively.
The null hypothesis of equal mean is rejected with p = 6×
10−65 by a paired t-test. As an interesting observation, in the
beginning MPC+iLQR adopts a larger attack than Greedy; at
time t = 4, MPC+iLQR adopts a smaller attack than Greedy,
but drives yT |5 closer to 0.01. This shows the advantage of
looking into future. Since Greedy only focus on current time,
it ignores how the attack will affect the future.

0 5 10
-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10
-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4: MPC+iLQR and Greedy attack on GNP data.
MPC+iLQR: u4 = 0.0590, yT |5 = 0.0084; Greedy: u4 =

0.0719, yT |5 = 0.0079. x†
T |5 = 0.01.

Using System Identification in Black-box Attack

We now show system identification can perform black-
box attack effectively. We compare the system identification
attack to an oracle, who has full information of both the

environmental dynamics and forecast model. The oracle use
MPC+ILQR to attack the forecast.

We use the same dynamic in (Fan and Yao 2008) but we
change the noise to be wt ∼ N(0, 0.12). The dynamic is
xt+1 = 2xt/(1 + 0.8x2

t) + wt. We let x0 = 3, T = 50. We
simulate this dynamical system to t = 50 and get a sample se-
quence from this dynamical system. The forecaster’s AR(1)
model C is estimated from this sequence. We introduce an at-
tacker who can add perturbation ut to change the state value:
xt+1 = 2xt/(1 + 0.8x2

t) + ut + wt. Q is “tomorrow”. The
attack target is set to be y†t+1|t = 2. We let λ̃ = 0.01.

Both the attacker and the oracle do nothing but observe
the xt and yt′|t at time t = 0, . . . , b + p − 2, and attack
the forecast at time t = b + p − 1, . . . , T − 2. For system
identification, we let b = 15, l = 5, p = 3. For the oracle,
the time step of MPC is set to be l = 10. Inside the MPC
loop, the stopping condition of ILQR is tol = 10−4. The
maximum iteration of iLQR is set to be 1000.

We run 100 trials, the last one is shown in Figure 5. The
mean actual realized cost of system identification attack and
oracle MPC+ILQR attack are 4.20, 1.43 respectively. Even
though the cost of System identification attack is larger than
that of the oracle, it is evident from Figure 5 that the attacker
can quickly force the forecasts (blue) to the attack target
(green) after t=25; the chaotic period between t=20 and t=25
is the price to pay for system identification.

0 20 40 60

-4

-2

0

2

4

6

0 20 40 60

-4

-2

0

2

4

6

Figure 5: System identification and MPC+ILQR oracle attack

Conclusion

In this paper we formulated adversarial attacks on autoregres-
sive model as optimal control. This sequential attack problem
differs significantly from most of the batch attack work in
adversarial machine learning. In the white-box setting, we
obtained closed-form LQR solutions when the environment
is linear, and good MPC approximations when the environ-
ment is nonlinear. In the black-box setting, we propose a
method via system identification then perform MPC. We
demonstrated their effectiveness on synthetic and real data.

Acknowledgment

We thank Laurent Lessard, Yuzhe Ma, and Xuezhou Zhang
for helpful discussions. This work is supported in part by
NSF 1836978, 1545481, 1704117, 1623605, 1561512, the

3551

MADLab AF Center of Excellence FA9550-18-1-0166, and
the University of Wisconsin.

References

Alfeld, S.; Zhu, X.; and Barford, P. 2016. Data poisoning
attacks against autoregressive models. In The Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16).
Alfeld, S.; Zhu, X.; and Barford, P. 2017. Explicit defense
actions against test-set attacks. In The Thirty-First AAAI
Conference on Artificial Intelligence (AAAI).
Biggio, B., and Roli, F. 2017. Wild patterns: Ten years
after the rise of adversarial machine learning. CoRR
abs/1712.03141.
Biggio, B.; Corona, I.; Nelson, B.; Rubinstein, B. I.; Maiorca,
D.; Fumera, G.; Giacinto, G.; and Roli, F. 2014. Security
evaluation of support vector machines in adversarial environ-
ments. In Support Vector Machines Applications. Springer.
105–153.
Biggio, B.; Nelson, B.; and Laskov, P. 2012. Poisoning
attacks against support vector machines. arXiv preprint
arXiv:1206.6389.
Box, G. E.; Jenkins, G. M.; Reinsel, G. C.; and Ljung, G. M.
2015. Time series analysis: forecasting and control. John
Wiley & Sons.
Coleman, T.; Branch, M. A.; and Grace, A. 1999. Opti-
mization toolbox. For Use with MATLAB. User’s Guide for
MATLAB 5, Version 2, Relaese II.
Dean, S.; Mania, H.; Matni, N.; Recht, B.; and Tu, S. 2017.
On the sample complexity of the linear quadratic regulator.
arXiv preprint arXiv:1710.01688.
Fan, J., and Yao, Q. 2008. Nonlinear time series: nonpara-
metric and parametric methods. Springer Science & Business
Media.
Garcia, C. E.; Prett, D. M.; and Morari, M. 1989. Model
predictive control: theory and practice—a survey. Automatica
25(3):335–348.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Hamilton, J. D. 1994. Time series analysis, volume 2. Prince-
ton university press Princeton, NJ.
Joseph, A. D.; Nelson, B.; Rubinstein, B. I. P.; and Tygar,
J. D. 2018. Adversarial Machine Learning. Cambridge
University Press. in press.
Jun, K.-S.; Li, L.; Ma, Y.; and Zhu, X. 2018. Adversarial
attacks on stochastic bandits. In Advances in Neural Infor-
mation Processing Systems (NIPS).
Kouvaritakis, B., and Cannon, M. 2015. Stochastic model
predictive control. Encyclopedia of Systems and Control
1350–1357.
Kwakernaak, H., and Sivan, R. 1972. Linear optimal control
systems, volume 1. Wiley-Interscience New York.
Lee, E. B., and Markus, L. 1967. Foundations of optimal con-
trol theory. Technical report, Minnesota Univ Minneapolis
Center For Control Sciences.

Lessard, L.; Zhang, X.; and Zhu, X. 2018. An optimal control
approach to sequential machine teaching. arXiv preprint
arXiv:1810.06175.
Li, W., and Todorov, E. 2004. Iterative linear quadratic
regulator design for nonlinear biological movement systems.
In ICINCO (1), 222–229.
Liu, C.; Li, B.; Vorobeychik, Y.; and Oprea, A. 2017. Robust
linear regression against training data poisoning. In Proceed-
ings of the 10th ACM Workshop on Artificial Intelligence and
Security, 91–102. ACM.
Lowd, D., and Meek, C. 2005. Adversarial learning. In
Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, 641–647.
ACM.
Ma, Y.; Jun, K.-S.; Li, L.; and Zhu, X. 2018. Data poisoning
attacks in contextual bandits. In Conference on Decision and
Game Theory for Security (GameSec).
Ma, Y.; Zhang, X.; Sun, W.; and Zhu, J. 2019. Policy poison-
ing in batch reinforcement learning and control. In Advances
in Neural Information Processing Systems, 14543–14553.
Ma, Y.; Zhu, X.; and Hsu, J. 2019. Data poisoning against
differentially-private learners: Attacks and defenses. arXiv
preprint arXiv:1903.09860.
Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 427–436.
Papernot, N.; McDaniel, P.; Swami, A.; and Harang, R. 2016.
Crafting adversarial input sequences for recurrent neural net-
works. In MILCOM 2016-2016 IEEE Military Communica-
tions Conference, 49–54. IEEE.
Recht, B. 2018. A tour of reinforcement learning: The view
from continuous control. Annual Review of Control, Robotics,
and Autonomous Systems.
Tiao, G. C., and Tsay, R. S. 1994. Some advances in non-
linear and adaptive modelling in time-series. Journal of
forecasting 13(2):109–131.
Vorobeychik, Y., and Kantarcioglu, M. 2018. Adversarial ma-
chine learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 12(3):1–169.
Wang, Y., and Chaudhuri, K. 2018. Data poisoning attacks
against online learning. arXiv preprint arXiv:1808.08994.
Zhang, X., and Zhu, X. 2019. Online data poisoning attack.
arXiv preprint arXiv:1903.01666.
Zhu, X. 2018. An optimal control view of adversarial ma-
chine learning. arXiv preprint arXiv:1811.04422.

3552

