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Abstract

Crafting adversarial examples has become an important tech-
nique to evaluate the robustness of deep neural networks
(DNNs). However, most existing works focus on attacking
the image classification problem since its input space is con-
tinuous and output space is finite. In this paper, we study the
much more challenging problem of crafting adversarial ex-
amples for sequence-to-sequence (seq2seq) models, whose
inputs are discrete text strings and outputs have an almost infi-
nite number of possibilities. To address the challenges caused
by the discrete input space, we propose a projected gradient
method combined with group lasso and gradient regulariza-
tion. To handle the almost infinite output space, we design
some novel loss functions to conduct non-overlapping attack
and targeted keyword attack. We apply our algorithm to ma-
chine translation and text summarization tasks, and verify
the effectiveness of the proposed algorithm: by changing less
than 3 words, we can make seq2seq model to produce de-
sired outputs with high success rates. We also use an external
sentiment classifier to verify the property of preserving se-
mantic meanings for our generated adversarial examples. On
the other hand, we recognize that, compared with the well-
evaluated CNN-based classifiers, seq2seq models are intrin-
sically more robust to adversarial attacks.

Introduction

Adversarial attack on deep neural networks (DNNs) aims
to slightly modify the inputs of DNNs and mislead them to
make wrong predictions (Szegedy et al. 2013; Goodfellow,
Shlens, and Szegedy 2014). This task has become a com-
mon approach to evaluate the robustness of DNNs – gener-
ally speaking, the easier an adversarial example can be gen-
erated, the less robust the DNN model is. However, models
designed for different tasks are not born equal: some tasks
are strictly harder to attack than others. For example, attack-
ing an image is much easier than attacking a text string, since
image space is continuous and the adversary can make arbi-
trarily small changes to the input. Therefore, even if most
of the pixels of an image have been modified, the pertur-
bations can still be imperceptible to humans when the ac-
cumulated distortion is small. In contrast, text strings live
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in a discrete space, and word-level manipulations may sig-
nificantly change the meaning of the text. In this scenario,
an adversary should change as few words as possible, and
hence this limitation induces a sparse constraint on word-
level changes. Likewise, attacking a classifier should also be
much easier than attacking a model with sequence outputs.
This is because different from the classification problem that
has a finite set of discrete class labels, the output space of se-
quences may have an almost infinite number of possibilities.
If we treat each sequence as a label, a targeted attack needs
to find a specific one over an enormous number of possible
labels, leading to a nearly zero volume in search space. This
may explain why most existing works on adversarial attack
focus on the image classification task, since its input space
is continuous and its output space is finite.

In this paper, we study a harder problem of crafting adver-
sarial examples for sequence-to-sequence (seq2seq) mod-
els (Sutskever, Vinyals, and Le 2014). This problem is chal-
lenging since it combines both aforementioned difficulties,
i.e., discrete inputs and sequence outputs with an almost in-
finite number of possibilities. We choose this problem not
only because it is challenging, but also because seq2seq
models are widely used in many safety and security sensi-
tive applications, e.g., machine translation (Bahdanau, Cho,
and Bengio 2014), text summarization (Rush, Chopra, and
Weston 2015), and speech recognition (Chan et al. 2016),
thus measuring its robustness becomes critical. Specifically,
we aim to examine the following questions in this study:
1. Is it possible to slightly modify the inputs of seq2seq mod-

els while significantly change their outputs?
2. Are seq2seq models more robust than the well-evaluated

CNN-based image classifiers?
We provide an affirmative answer to the first question by

developing an effective adversarial attack framework called
Seq2Sick. It is an optimization-based framework that aims
to learn an input sequence that is close enough to the orig-
inal sequence (in terms of distance metrics in word embed-
ding spaces or sentiment classification) while leads to the
desired outputs with high confidence. To address the chal-
lenges caused by the discrete input space, we propose to use
the projected gradient descent method combined with group
lasso and gradient regularization. To address the challenges
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of almost infinite output space, we design some novel loss
functions for the tasks of non-overlapping attack and tar-
geted keyword attack. Our experimental results show that
the proposed framework yields high success rates in both
tasks. However, even if the proposed approach can success-
fully attack seq2seq models, our answer to the second ques-
tion is “Yes”. Compared with CNN-based classifiers that are
highly sensitive to adversarial examples, seq2seq model is
intrinsically more robust since it has discrete input space and
the output space is exponentially large. As a result, adver-
sarial examples of seq2seq models usually have larger dis-
tortions and are more perceptible than the adversarial ex-
amples crafted for CNN-based image classifiers. To the best
of our knowledge, this paper is the first work that evaluates
the robustness of seq2seq model, which has inspired many
follow-up works and has been cited since its debut.

Related work and Background
Papernot et al.(2016) first uses Fast Gradient Sign Method
(FGSM) to conduct an attack on RNN/LSTM-based clas-
sification problems. In order to generate text adversar-
ial examples, Li, Monroe, and Jurafsky(2016) proposes to
use reinforcement learning to locate important words that
could be deleted in sentiment classification. Samanta and
Mehta(2017) and Liang et al.(2017) generate adversarial se-
quences by inserting or replacing existing words with ty-
pos and synonyms. Gao et al.(2018) aims to attack senti-
ment classification models in a black-box setting. It devel-
ops some scoring functions to find the most important words
to modify. Yang et al.(2018) applied a greedy approach and
a Gumbel trick to speed up the inference time. Alzantot et
al.(2018) proposed a genetic algorithm to attack sentiment
analysis. These approaches differ from our method in that
they study simple text classification problems while we fo-
cus on the more challenging seq2seq model with sequen-
tial outputs. Other than attacking text classifiers, Jia and
Liang(2017) aims to fool reading comprehension systems
by adding misleading sentences, which has a different focus
than ours. Zhao, Dua, and Singh(2017) uses the generative
adversarial network (GAN) to craft natural adversarial ex-
amples. However, it can only perform the untargeted attack
and also suffers from high computational cost.

Notably, almost all the previous methods are based on
greedy search, i.e., at each step, they search for the best word
and the best position to replace the previous word. As a re-
sult, their search space grows rapidly as the length of in-
put sequence increases. To address this issue, we propose
a novel approach that uses group lasso regularization and
the projected gradient descent method with gradient regu-
larization to simultaneously search all the replacement po-
sitions. Table 1 summarizes the key differences between the
proposed framework Seq2Sick and the existing attack meth-
ods on RNN-based models. Note that our paper was the first
method for attacking seq2seq model on arXiv and after our
work, there are some followup papers such as (Michel et al.
2019), where they use several similarity metrics to conduct
the attack while our work are focusing on the BLEU score
and self-defined loss functions.

Before introducing the proposed algorithms, we first

briefly describe the sequence-to-sequence (seq2seq) model.
Let xi ∈ R

d be the embedding vector of each input word,
N be the input sequence length, and M be the output se-
quence length. Let ω be the input vocabulary, and the output
word yj ∈ ν where ν is the output vocabulary. The seq2seq
model has an encoder-decoder framework that aims at map-
ping an input sequence of vectors X = (x1, . . . ,xN ) to
the output sequence Y = {y1, . . . ,yM}. Its encoder first
reads the input sequence, then each RNN/LSTM cell com-
putes ht = f(xt, ht−1), where xt is the current input,
ht−1 and ht represent the previous and current cells’ hidden
states, respectively. The next step computes the context vec-
tor c using all the hidden layers of cells h1, . . . ,hN , i.e c =
q(h1, · · · ,hN ), where q(·) could be a linear or non-linear
function. In this paper, we follow the setting in (Sutskever,
Vinyals, and Le 2014) that c = q(h1, · · · ,hN ) = hN .

Given the context vector c and all the previously words
{y1, . . . ,yt−1}, the decoder is trained to predict the next
word yt. Specifically, the t-th cell in the decoder receives
its previous cell’s output yt−1 and the context vector c, and
then outputs

zt = g(yt−1, c) and pt = softmax(zt), (1)
where g is another RNN/LSTM cell function. zt :=

[z
(1)
t , z

(2)
t , . . . , z

(|ν|)
t ] ∈ R

|ν| is a vector of the logits for each
possible word in the output vocabulary ν.

Seq2Sick: Proposed Framework
Crafting adversarial examples against the seq2seq model can
be formulated as an optimization problem:

minδ L(X+ δ) + λ ·R(δ), (2)
where R(·) indicates the regularization function to measure
the magnitude of distortions. L(·) is the loss function to
penalize the unsuccessful attack and it may take different
forms in different attack scenarios. A common choice for
R(δ) is the �2 penalty‖δ‖22, but it is, as we will show later,
not suitable for attacking seq2seq model. λ > 0 is the reg-
ularization parameter that balances the distortion and attack
success rate – a smaller λ will make the attack more likely
to succeed but with the price of larger distortion.

In this work, we focus on two kinds of attacks: non-
overlapping attack and targeted keywords attack. The first
attack requires that the output of the adversarial example
shares no overlapping words with the original output. This
task is strictly harder than untargeted attack, which only re-
quires that the adversarial output to be different from the
original output (Zhao, Dua, and Singh 2017; Ebrahimi et al.
2017). We ignore the task of untargeted attack since it is triv-
ial for the proposed framework, which can easily achieve a
100% attack success rate, while Ebrahimi et al.(2017) could
achieve 76.24% attack success rate for text summarization
and 98.8% success rate for machine translation with 1 word
change. Targeted keywords attack is an even more challeng-
ing task than non-overlapping attack. Given a set of targeted
keywords, the goal of targeted keywords attack is to find an
adversarial input sequence such that all the keywords must
appear in its corresponding output. In the following, we re-
spectively introduce the loss functions developed for the two
attack approaches.
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Table 1: Summary of existing works that are designed to attack RNN models. “BINARY” indicates the attack is for binary
classifications, and there is no difference between untargeted and targeted attack in this case. “CLASS” means targeted attack to
a specific class. “KEYWORD” means targeted attack to a specific keyword. Here we omit follow-up works based on Seq2Sick.

Methods Gradient Based? Word-level RNN? Sequential Output? Targeted Attack?

Ebrahimi et al.(2017)
√ × √

Class
Jia and Liang(2017) × √ × ×
Li, Monroe, and Jurafsky(2016)

√ √ × Class
Papernot et al.(2016)

√ × √ ×
Gao et al.(2018) × √ × Binary
Samanta and Mehta(2017) × × × Binary
Zhao, Dua, and Singh(2017) /

√ √
Class

Liang et al.(2017)
√ × × Class

Alzantot et al.(2018) × √ × Class
Yang et al.(2018) × √ × Class
Seq2Sick (Ours)

√ √ √
Keyword

Non-overlapping Attack To formally define the non-
overlapping attack, we let s = {s1, . . . , sM} be the original
output sequence, where si denotes the location of the i-th
word in the output vocabulary ν. {z1, . . . , zM} indicates the
logit layer outputs of the adversarial example. In the non-
overlapping attack, the output of adversarial example should
be entirely different from the original output S, i.e.,

st �= argmaxy∈ν z
(y)
t , ∀t = 1, . . . ,M,

which is equivalent to

z
(st)
t < maxy∈ν, y �=st z

(y)
t , ∀t = 1, . . . ,M.

Given this observation, we can define a hinge-like loss
function L to generate adversarial examples in the non-
overlapping attack, i.e.,

Lnon-overlapping =
∑M

t=1
max{−ε, z

(st)
t −max

y �=st
{z(y)t }}, (3)

where ε ≥ 0 denotes the confidence margin parameter. Gen-
erally speaking, a larger ε will lead to a more confident out-
put and a higher success rate, but with the cost of more iter-
ations and longer running time.

We note that non-overlapping attack is much more chal-
lenging than untargeted attack, which suffices to find a one-
word difference from the original output (Zhao, Dua, and
Singh 2017; Ebrahimi et al. 2017). We do not take untar-
geted attack into account since it is straightforward and the
replaced words could be some less important words such as
“the” and “a”.

Targeted Keywords Attack Given a set of targeted key-
words, the goal of targeted keywords attack is to generate
an adversarial input sequence to ensure that all the targeted
keywords appear in the output sequence. This task is impor-
tant since it suggests adding a few malicious keywords can
completely change the meaning of the output sequence. For
example, in English to German translation, an input sentence
“policeman helps protesters to keep the assembly in order”
should generate an output sentence “Polizist hilft Demon-
stranten, die Versammlung in Ordnung zu halten”. However,

changing only one word from “hilft” to “verhaftet” in the
output will significantly change its meaning, as the new sen-
tence means “police officer arrested protesters to keep the
assembly in order”.

In our method, we do not specify the positions of the tar-
geted keywords in the output sentence. Instead, it is more
natural to design a loss function that allows the targeted key-
words to become the top-1 prediction at any positions. The
attack is considered as successful only when ALL the tar-
geted keywords appear in the output sequence. Therefore,
the more targeted keywords there are, the harder the attack
is. To illustrate our method, we start from the simpler case
with only one targeted keyword k1. To ensure that the tar-
get keyword word’s logit z(k1)

t be the largest among all the
words at a position t, we design the following loss function:

L = min
t∈[M ]

{max{−ε, max
y �=k1

{z(y)t } − z
(k1)
t }}, (4)

which essentially searches the minimum of the hinge-
like loss terms over all the possible locations t ∈ [M ].
When there exist more than one targeted keywords K =
{k1, k2, . . . , k|K|}, where ki denotes the i-th word in out-
put vocabulary ν, we follow the same idea to define the loss
function as follows:

Lkeywords =

|K|∑
i=1

min
t∈[M ]

{max{−ε,max
y �=ki

{z(y)t }− z
(ki)
t }}. (5)

However, the loss defined in (5) suffers from the “keyword
collision” problem. When there are more than one keyword,
it is possible that multiple keywords compete at the same
position to attack. To address this issue, we define a mask
function m to mask off the position if it has been already
occupied by one of the targeted keywords:

mt(x) =

{
+∞ if argmaxi∈ν z

(i)
t ∈ K

x otherwise
(6)

In other words, if any of the keywords appear at position t
as the top-1 word, we ignore that position and only consider
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other positions for the placement of remaining keywords. By
incorporating the mask function, the final loss for targeted
keyword attack becomes:

|K|∑
i=1

min
t∈[M ]

{mt(max{−ε, max
y �=ki

{z(y)t } − z
(ki)
t })}. (7)

Handling Discrete Input Space

As mentioned before, the problem of “discrete input space”
is one of the major challenges in attacking seq2seq model.
Let W be the set of word embeddings of all words in the in-
put vocabulary. A naive approach is to first learn X + δ∗

in the continuous space by solving the problem (2), and
then search for its nearest word embedding in W. This idea
has been used in attacking sequence classification models
in Gong et al.(2018). Unfortunately, when applying this idea
to targeted keywords attack, we report that all of the 100 at-
tacked sequences on Gigaword dataset failed to generate the
targeted keywords. The main reason is that by directly solv-
ing (2), the final solution will not be a feasible word embed-
ding in W, and its nearest neighbor could be far away from
it due to the curse of dimensionality (Friedman 1997).

To address this issue, we propose to add an additional con-
straint to enforce that X+δ belongs to the input vocabulary
W. The optimization problem then becomes

min
δ

L(X+ δ) + λ ·R(δ)

s.t. xi + δi ∈ W ∀i = 1, . . . , N
(8)

We then apply projected gradient descent to solve this con-
strained problem. At each iteration, we project the current
solution xi+δi, where δi denotes the i-th column of δ, back
into W to ensure that X+δ can map to a specific input word.

Group lasso Regularization: �2 norm has been widely
used in the adversarial machine learning literature to mea-
sure distortions. However, it is not suitable for our task since
almost all the learned {δt}Mt=1 using �2 regularization will be
nonzero. As a result, most of the inputs words will be per-
turbed to another word, leading to an adversarial sequence
that is significantly different from the input sequence.

To solve this problem, we treat each δt with d variables as
a group, and use the group lasso regularization

R(δ) =
∑N

t=1
‖δt‖2

to enforce the group sparsity: only a few groups (words)
in the optimal solution δ∗ are allowed to be nonzero.

Gradient Regularization

When attacking the seq2seq model, it is common to find that
the adversarial example is located in a region with very few
or even no embedding vector. This will negatively affect our
projected gradient method since even the closest embedding
from those regions can be far away.

To address this issue, we propose a gradient regularization
to make X+δ close to the word embedding space. Our final
objective function becomes:

Algorithm 1 Seq2Sick algorithm
Input: input sequence x = {x1, . . . , xN}, seq2seq
model, target keyword {k1, . . . , kT }
Output: adversarial sequence x∗ = x+ δ∗

Let s = {s1, . . . , sM} denote the original output of x.
Set the loss L(·) in (9) to be (3)
if Targeted Keyword Attack then

Set the loss L(·) in (9) to be (7)
end if
for r = 1, 2, . . . , T do

back-propagation L to achieve gradient ∇δL(x+ δr)
for i = 1, 2, . . . , N do

δr,i = 0
if
∥∥δr,i∥∥ > ηλ1 then

δr,i = δr,i − ηλ1
δr,i

‖δr,i‖
end if

end for
yr+1 = δr + η · ∇δL(x+ δr)

δr+1 = argmin
x+δr+1∈W

∥∥∥yr+1 − δr+1
∥∥∥

end for
δ∗ = δT

x∗ = x+ δ∗

return x∗

min
δ

L(X+δ)+λ1

N∑

i=1

‖δi‖2+λ2

N∑

i=1

min
wj∈W

{
∥∥xi + δi −wj

∥∥
2
}

s.t. xi + δi ∈ W ∀i = 1, . . . , N (9)

where the third term is our gradient regularization that penal-
izes a large distance to the nearest point in W. The gradient
of this term can be efficiently computed since it is only re-
lated to one wj that has a minimum distance from xi + δi.
For the other terms, we use the proximal operator to opti-
mize the group lasso regularization, and the gradient of the
loss function L can be computed through back-propagation.
The detailed steps of our approach, Seq2Sick, is presented
in Algorithm 1. Our source code is publicly available at
https://github.com/cmhcbb/Seq2Sick.

Computational Cost: Our algorithm needs only one
back-propagation to compute the gradient ∇δL(x+ δ). The
bottleneck here is to project the solution back into the word
embedding space, which depends on the number of words
in the input dictionary of the model. Gong et al.(2018) uses
GloV e word embedding (Pennington, Socher, and Manning
2014) that contains millions of words to do a nearest neigh-
bor search. Fortunately, our model does not need to use any
pre-trained word embedding, thus making it a more generic
attack that does not depend on pre-trained word embed-
ding. Besides, we can employ approximate nearest neighbor
(ANN) approaches to further speed up the projection step.
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Experiments
We conduct experiments on two widely-used applications of
seq2seq model: text summarization and machine translation.

Datasets

We use three datasets DUC2003, DUC2004, and Giga-
word, to conduct our attack for the text summarization
task. Among them, DUC2003 and DUC2004 are widely-
used datasets in documentation summarization. We also in-
clude a subset of randomly chosen samples from Giga-
word to further evaluate the performance of our algorithm.
For the machine translation task, we use 500 samples from
WMT’16 Multimodal Translation task. The statistics about
the datasets are shown in Table 2.

Table 2: Statistics of the datasets. “# Samples” is the number
of test examples we used for robustness evaluations
DATASETS # SAMPLES AVERAGE INPUT LENGTHS

GIGAWORD 1,000 30.1 WORDS
DUC2003 624 35.5 WORDS
DUC2004 500 35.6 WORDS
MULTI30K 500 11.5 WORDS

Seq2seq models

We implement both text summarization and machine trans-
lation models on OpenNMT-py. Specifically, we use a word-
level LSTM encoder and a word-based attention decoder
for both applications (Bahdanau, Cho, and Bengio 2014).
For the text summarization task, we use 380k training pairs
from Gigaword dataset to train a seq2seq model. The archi-
tecture consists of a 2-layer stacked LSTM with 500 hid-
den units. We conduct experiments on two types of models,
one uses the pre-trained 300-dimensional GloVe word em-
beddings and the other one is trained from scratch. We set
the beam search size to be 5 as suggested. For the machine
translation task, we train our model using 453k pairs from
the Europal corpus of German-English WMT 15, common
crawl and news-commentary. We use the hyper-parameters
suggested by OpenNMT for both models, and have repro-
duced the performance reported in Rush, Chopra, and We-
ston(2015) and Ha, Niehues, and Waibel(2016).

Empirical Results

Text Summarization For the non-overlapping attack, we
use the proposed loss (3) in our objective function. A non-
overlapping attack is treated as successful only if there is no
common word at every position between output sequence
and original sequence. We set λ = 1 in all non-overlapping
experiments. Table 3 summarizes the experimental results. It
shows that our algorithm only needs to change 2 or 3 words
on average and can generate entirely different outputs for
more than 80% of sentences. We have also included some
adversarial examples in Table 8. From these examples, we
can only change one word to let output sequence look com-
pletely different with the original one and change the sen-
tence’s meaning completely.

Table 3: Results of non-overlapping attack in text summa-
rization. # changed is how many words are changed in
the input sentence. The high BLEU scores and low average
number of changed words indicate that the crafted adversar-
ial inputs are very similar to their originals, and we achieve
high success rates to generate a summarization that differs
with the original at every position for all three datasets.

Dataset Success% BLEU # changed

Gigaword 86.0% 0.828 2.17
DUC2003 85.2% 0.774 2.90
DUC2004 84.2% 0.816 2.50

For the targeted keywords attack, we randomly choose
some targeted keywords from the output vocabulary after
removing the stop words like “a” and “the”. A targeted key-
words attack is treated as successful only if the output se-
quence contains all the targeted keywords. We set λ1 =
λ2 = 1 in our objective function (9) in all our experiments.
Table 4 summarizes the performance, including the overall
success rate, average BLEU score (Papineni et al. 2002),
and the average number of changed words in input sen-
tences. Average BLEU score is defined by exponential av-
erage over BLEU 1,2,3,4, which is commonly used in eval-
uating the quality of text which has been machine-translated
from one natural language to another. Also, we have in-
cluded some adversarial examples crafted by our method in
Table 9. In Table 9, some adversarial examples with 3 sets
of keywords, where “##” stands for a two-digit number af-
ter standard preprocessing in text summarization. Through
these examples, our method could generate totally irrele-
vant subjects, verbs, numerals and objects which could eas-
ily be formed as a complete sentence with only several word
changes. Note that there are three important techniques used
in our algorithm: projected gradient method, group lasso,
and gradient regularization. Therefore, we conduct experi-
ments to verify the importance of each of these techniques.

Machine Translation We then conduct both non-
overlapping and targeted keywords attacks to the English-
German machine translation model. We first filter out stop
words like “Ein”(a), “und”(and) in German vocabulary and
randomly choose several nouns, verbs, adjectives or adverbs
in German as targeted keywords. Similar to the text summa-
rization experiments, we set λ1 = λ2 = 1 in our objective
function. The success rates, BLEU scores, and the average
number of words changed are reported in Table 5, with some
adversarial examples shown in Table 7.

Analysis of Syntactic structure and Semantic
Meaning Preservation

In our algorithm we aim to make adversarial examples hav-
ing similar meaning to original examples by constraining the
number of changed words and enforcing the changed words
are close to the original words in the embedding space. How-
ever, depending on the implemented word embedding tech-
niques, in general there is no guarantee that every word pair
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Table 4: Results of targeted keywords attack in text summa-
rization. |K| is the number of keywords. We found that our
method can make the summarization include 1 or 2 target
keywords with a high success rate, while the changes made
to the input sentences are relatively small, as indicated by
the high BLEU scores and low average number of changed
words. When |K| = 3, this task becomes more challenging,
but our algorithm can still find many adversarial examples.

Datasest |K| Success% BLEU # changed

Gigaword
1 99.8% 0.801 2.04
2 96.5% 0.523 4.96
3 43.0% 0.413 8.86

DUC2003
1 99.6% 0.782 2.25
2 87.6% 0.457 5.57
3 38.3% 0.376 9.35

DUC2004
1 99.6% 0.773 2.21
2 87.8% 0.421 5.1
3 37.4% 0.340 9.3

Table 5: Results of non-overlapping method and targeted
keywords method in machine translation.

Method Success% BLEU # changed

Non-overlap 89.4% 0.349 3.5
1-keyword 100.0% 0.705 1.8
2-keyword 91.0 % 0.303 4.0
3-keyword 69.6% 0.205 5.3

close in the embedding space have similar meanings. There-
fore, we have conducted additional experiments to verify
the syntactic and semantic quality of our generated adver-
sarial examples. For syntactic structure part, as showed in
Table 6, we measure the perplexity of generated adversar-
ial sentences in DUC2003 and DUC2004 dataset. It shows
that our examples keeps the original syntactic structure. For
the semantic meaning part, We use DeepAI’s online senti-
ment analysis API to test whether our attack changes the
sentiment of 500 sentences from DUC2003 dataset in sum-
marization task. The results show that only 2.2% of adver-
sarial examples have semantic meaning differ from the
original sentences. It proves that almost all adversarial ex-
amples keep the same semantic classification unchanged.

Table 6: Perplexity score for adversarial example
DUC2003 DUC2004

Original 102.02 121.09
Non-overlap 114.02 149.15
1-keyword 159.54 199.01
2-keyword 352.12 384.80

Analysis and Discussions

Observation from adversarial example As shown in Ta-
ble 9, our targeted keyword attack wouldn’t just directly
replace the keyword with some word in the source input.
However, the word changed in the adversarial example and
the target keyword are co-occurrent in the training dataset.
It infers that seq2seq model learns the relationship between
changed word and target keyword. However, the model fails
to decide where it should focus on, which is strongly re-
lated with attention layer used in the model. It encourages
us to use self-attention such as transformer (Vaswani et al.
2017) instead to extract all the attentions between any two
words.When attacking subword transformer model, the tar-
get 1 keyword attack has 17% lower success rate and 0.13
lower BLEU score. It shows transformer model has a greater
adversarial robustness.

Robustness of Seq2Seq Model Although our algorithm
can achieve very good success rates (84% − 100%) in both
non-overlapping and targeted keywords attacks with 1 or 2
keywords, we also recognize some strengths of the seq2seq
model: (i) unlike CNN models where targeted attack can
be conducted easily with almost 100% success rate and
very small distortion that cannot be perceived by human
eyes (Carlini and Wagner 2017), it is harder to turn the entire
seq2seq output into a particular sentence – some sentences
are even impossible to generate by seq2seq models; and (ii)
since the input space of seq2seq is discrete, it is easier for
human to detect the differences between the adversarial se-
quence and the original one, even if we only change one or
few words. Therefore, we conclude that, compared with the
DNN models designed for other tasks such as image classi-
fication, seq2seq models are more robust to adversarial at-
tacks. The main reason, as pointed out in the introduction, is
that the seq2seq model has a finite and discrete input space
and almost infinite output space, so it is more robust than
visual classification models that have an infinite and con-
tinuous input space and a very small output space (e.g., 10
categories in MNIST and 1,000 categories in ImageNet).

Conclusion

In this paper, we propose a novel framework, i.e., Seq2Sick,
to generate adversarial examples for sequence-to-sequence
neural network models. We propose a projected gradient
method to address the issue of discrete input space, adopt
group lasso to enforce the sparsity of the distortion, and de-
velop a regularization technique to further improve the suc-
cess rate. Besides, different from most existing algorithms
that are designed for untargeted attack and classification
tasks, our algorithm can perform the more challenging tar-
geted keywords attack. Our experimental results show that
the proposed framework is powerful and effective: it can
achieve high success rates in both non-overlapping and tar-
geted keywords attacks with relatively small distortions and
preserve similar sentiment classification results for the most
of the generated adversarial examples.
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Table 7: Machine translation adversarial examples. Upper 4 lines: non-overlap; Bottom 4 lines: targeted keyword ”Hund sitzt”
Source input seq A child is splashing in the water.
Adv input seq A children is unionists in the water.
Source output seq Ein Kind im Wasser.
Adv output seq Kinder sind in der Wasser @-@ <unk>.

Source input seq Two men wearing swim trunks jump in the air at a moderately populated beach.
Adv input seq Two men wearing dog Leon comes in the air at a moderately populated beach.
Source output seq Zwei Männer in Badehosen springen auf einem mäßig belebten Strand in die Luft.
Adv output seq Zwei Männer tragen Hund , der in der Luft sitzt , hat <unk> <unk> .

Table 8: Text summarization adversarial examples using non-overlapping method. Surprisingly, it is possible to make the output
sequence completely different by changing only one word in the input sequence.

Source input seq among asia ’s leaders , prime minister mahathir mohamad was notable as a man with a bold vision :
a physical and social transformation that would push this nation into the forefront of world affairs .

Adv input seq among lynn ’s leaders , prime minister mahathir mohamad was notable as a man with a bold vision
: a physical and social transformation that would push this nation into the forefront of world affairs.

Source output seq asia ’s leaders are a man of the world
Adv output seq a vision for the world

Source input seq under nato threat to end his punishing offensive against ethnic albanian separatists in kosovo , presi-
dent slobodan milosevic of yugoslavia has ordered most units of his army back to their barracks and
may well avoid an attack by the alliance , military observers and diplomats say

Adv input seq under nato threat to end his punishing offensive against ethnic albanian separatists in kosovo , pres-
ident slobodan milosevic of yugoslavia has jean-sebastien most units of his army back to their
barracks and may well avoid an attack by the alliance , military observers and diplomats say.

Source output seq milosevic orders army back to barracks
Adv output seq nato may not attack kosovo

Source input seq flooding on the yangtze river remains serious although water levels on parts of the river decreased
today , according to the state headquarters of flood control and drought relief .

Adv input seq flooding that the yangtze river becomes serious although water levels on parts of the river decreased
today , according to the state headquarters of flood control and drought relief .

Source output seq floods on yangtze river continue
Adv output seq flooding in water recedes in river

Table 9: Text summarization examples with targeted keywords “police arrest ”
Source input seq north korea is entering its fourth winter of chronic food shortages with its people malnourished and

at risk of dying from normally curable illnesses , senior red cross officials said tuesday.
Adv input seq north detectives is apprehended its fourth winter of chronic food shortages with its people malnour-

ished and at risk of dying from normally curable illnesses , senior red cross officials said tuesday.
Source output seq north korea enters fourth winter of food shortages
Adv output seq north police arrest fourth winter of food shortages.

Source input seq after a day of fighting , congolese rebels said sunday they had entered kindu , the strategic town and
airbase in eastern congo used by the government to halt their advances.

Adv input seq after a day of fighting , nordic detectives said sunday they had entered UNK , the strategic town and
airbase in eastern congo used by the government to halt their advances.

Source output seq congolese rebels say they have entered UNK.
Adv output seq nordic police arrest ## in congo.

Source input seq president boris yeltsin stayed home tuesday , nursing a respiratory infection that forced him to cut
short a foreign trip and revived concerns about his ability to govern.

Adv input seq president boris yeltsin stayed home tuesday , cops cops respiratory infection that forced him to cut
short a foreign trip and revived concerns about his ability to govern.

Source output seq yeltsin stays home after illness
Adv output seq yeltsin stays home after police arrest
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