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Abstract

Various factorization-based methods have been proposed to
leverage second-order, or higher-order cross features for
boosting the performance of predictive models. They gen-
erally enumerate all the cross features under a predefined
maximum order, and then identify useful feature interactions
through model training, which suffer from two drawbacks.
First, they have to make a trade-off between the expressive-
ness of higher-order cross features and the computational
cost, resulting in suboptimal predictions. Second, enumerat-
ing all the cross features, including irrelevant ones, may intro-
duce noisy feature combinations that degrade model perfor-
mance. In this work, we propose the Adaptive Factorization
Network (AFN), a new model that learns arbitrary-order cross
features adaptively from data. The core of AFN is a logarith-
mic transformation layer that converts the power of each fea-
ture in a feature combination into the coefficient to be learned.
The experimental results on four real datasets demonstrate the
superior predictive performance of AFN against the state-of-
the-arts.

1 Introduction

Feature engineering is typically recognized as central to suc-
cessful machine learning tasks, such as recommender sys-
tems (Lian et al. 2017), computational advertising (He et al.
2014) and search ranking (Lian and Xie 2016). Except for
exploiting raw features, it is usually crucial to find effective
transformations of raw features to boost the performance of
predictive models. Cross features are a major type of fea-
ture transformations, where multiplication is performed over
sparse raw features to form new features (Cheng et al. 2016).
However, handcrafting useful cross features is inevitably
expensive and time-consuming, and the results may not
generalize to unseen feature interactions. In order to solve
this problem, Factorization Machines (FMs) (Rendle 2010;
2012) are proposed to explicitly model second-order cross
features by parameterizing the weight of a cross feature as
the inner product of the embedding vectors of the raw fea-
tures. To be more general, higher-order FMs (HOFMs) in-
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volving higher-order feature combinations were also intro-
duced in the original work (Rendle 2010).

Despite the superior predictive power, there remain two
critical questions in FMs/HOFMs to be answered. First,
what is the maximum order of cross features we should con-
sider? While a larger order enables the modeling of more
complex feature interactions and seems to be beneficial, the
number of cross features can increase exponentially with the
value of the maximum order, resulting in high computational
complexity. Some recent works (Blondel et al. 2016) focus
on reducing the time complexity of training HOFMs. How-
ever, due to the large model size, the time cost of model
training and prediction is still high for a large maximum or-
der, which limits the practical usage of higher-order cross
features.

Second, what is the set of useful cross features under the
maximum order? It is important to recognize that not all
the features contain useful signals for estimating the target,
and different cross features usually have different predictive
power. Interactions among irrelevant features can be consid-
ered as noises, which have no contribution to the prediction
or even degrade model performance. To deal with this prob-
lem, Xiao et al. (2017) proposed Attentional Factorization
Machines (AFM) to distinguish the importance of factorized
interactions by reweighing each cross feature with an atten-
tion score (Bahdanau, Cho, and Bengio 2015). The influence
of useless cross features can be compromised by assigning
lower weights. Nevertheless, applying the attention mecha-
nism over complex feature combinations increases the com-
putational cost significantly. As such, AFM aims at model-
ing second-order feature interactions only.

In this paper, we argue that existing factorization meth-
ods fail to answer the above two questions appropriately. In
general, they follow an enumerating-and-filtering manner to
model feature interactions for prediction. The typical proce-
dure is to predefine the maximum order, enumerate all the
cross features within the maximum order, and then filter ir-
relevant cross features via training. This procedure consists
of two major drawbacks. First, predefining a maximum or-
der (which is typically small) restricts model’s potential in
finding discriminative cross features, because of the trade-
off between expressive higher-order cross features and com-
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putational complexity. Second, considering all the cross fea-
tures may introduce noises and degrade the prediction per-
formance, since not all the useless cross features can later be
filtered out successfully.

To this end, we propose the Adaptive Factorization Net-
work (AFN) to learn arbitrary-order cross features and their
weights adaptively from data. The key idea is to encode
feature embeddings into a logarithmic space and convert
the powers of features into the multiplications with coef-
ficients. The core of AFN is a logarithmic neural transfor-
mation layer consisting of multiple vector-wise logarithmic
neurons. The purpose of each logarithmic neuron is to au-
tomatically learn the powers (i.e., orders) of the features in
a possibly useful combination. Upon the logarithmic neural
transformation layer, we apply the feedforward neural net-
work to model element-wise feature interactions. Different
from FMs/HOFMs, AFN is able to learn useful cross fea-
tures from data adaptively, and the maximum order can be
delivered on the fly. We summarize the major contributions
of this paper as follows.
• To the best of our knowledge, we are the first to intro-

duce the logarithmic transformation structure with neural
networks to model arbitrary-order feature interactions for
prediction.

• Based on the proposed logarithmic transformation layer,
we propose the Adaptive Factorization Network (AFN)
to learn arbitrary-order cross features and their weights
adaptively from data.

• We show that FMs/HOFMs can be interpreted as two spe-
cializations of AFN, and the learned orders in AFN allow
rescaling feature embeddings in different cross features.

• We conducted extensive experiments on four public
datasets. The results demonstrate that the orders of the
learned cross features span across a wide range, and our
approach achieves superior prediction performance com-
pared with the state-of-the-art methods.

2 Background

Feature Embeddings. In many real-world predictive
tasks such as CTR prediction, input instances consist of both
sparse categorical features and numerical features. By tradi-
tion, we represent each input instance as a sparse vector:

x = [x1,x2, ...,xm] (1)

where m is the number of feature fields (e.g., item brand or
user age), xi is the representation of the i-th feature field
(aka a feature), and x is the concatenation of xi. Since most
categorical features are sparse and high-dimensional, a com-
mon practice is to map them into dense vectors (i.e., embed-
dings) in low-dimensional latent space. Specifically, a cate-
gorical feature xi is initially a one-hot encoded vector, and
we have its embedding ei computed as follows:

ei = Vixi (2)

where Vi denotes the embedding matrix of field i. For a
numerical feature xj , its representation is a scalar xj . To
capture the interactions between numerical and categorical

features, xj is also transformed into a dense vector in the
same low-dimensional space:

ej = vjxj (3)

where vj is the embedding vector for the numerical field
j. The resultant collection of feature embeddings e =
{e1, e2, ..., em} will be used in FMs or neural networks for
prediction (Cheng et al. 2018; Li, Shen, and Zhu 2018).

Factorization Machines. Factorization Machines (Ren-
dle 2010) (FMs) are proposed to explicitly model second-
order feature interactions for high-dimensional data. For-
mally, the prediction of FMs is made as follows:

y = 〈w,x〉+
m∑

j2>j1

〈ej1 , ej2〉 (4)

where 〈·, ·〉 denotes the inner product operation. Intuitively,
the first term 〈w,x〉 is the linear combination of raw fea-
tures, and the second term is the sum of pair-wise inner
products of feature embeddings. Higher-Order Factorization
Machines (HOFMs) were introduced to capture higher-order
feature interactions for prediction:

y = 〈w,x〉+
m∑

j2>j1

〈e(2)
j1

, e
(2)
j2

〉+
m∑

j3>j2>j1

〈e(3)
j1

, e
(3)
j2

, e
(3)
j3

〉+

· · ·+
m∑

jn>···>j1

〈e(n)
j1

, . . . , e
(n)
jn

〉

(5)
where the inner product operation is extended to represent
the sum of element-wise products of multiple feature em-
beddings, and n is the maximum order of cross features.
Computing Equation (5) directly takes O(kmn) time, where
k is the rank of feature embeddings. Due to the high com-
putational complexity, HOFMs have seldom been applied to
real predictive systems (Blondel et al. 2016).

A common limitation of FMs and HOFMs is that they
model all feature interactions with the same weight. As not
all the cross features are useful, incorporating all of them for
prediction may introduce noises and degrade model perfor-
mance. As described above, some efforts have been devoted
to alleviating this problem by exploiting attention mecha-
nisms to assign non-uniform weights on different cross fea-
tures (Xiao et al. 2017), or by learning weights for only
retained cross features (Lian et al. 2018). However, these
methods introduce additional costs and are still limited to
a preset maximum order n of feature interactions before
model training. In practice, n is usually set to a small value
to make model size moderate. Such a design hinders the op-
portunity of finding discriminative higher-order cross fea-
tures. In this paper, we propose to learn arbitrary-order cross
features adaptively from data. Both the maximum order and
the set of cross features used for prediction will be identified
adaptively through model training, leading to high computa-
tional efficiency without sacrificing predictive power.

Logarithmic Neural Network (LNN). Logarithmic Neu-
ral Network (Hines 1996) was initially proposed to approx-
imate unbounded non-linear functions. LNN is composed
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Figure 1: Logarithmic neuron in LNN.

of multiple logarithmic neurons, the structure of which is
shown in Figure 1. Formally, a logarithmic neuron can be
formulated as:

y = exp(
∑

i

wi lnxi) =
∏

i

xwi
i (6)

The idea of LNN is to transform input into the logarithmic
space, which converts multiplication to addition, division to
subtraction, and powers to multiplication by a constant. Al-
though multi-layer perceptrons (MLPs) are known to be uni-
versal approximators, they have limited ability in approxi-
mating some functions such as multiplication, division, and
powers when the input is unbounded (Hines 1996). On the
contrary, LNN is able to approximate such functions over
the entire input range well.

In this paper, we exploit logarithmic neurons to adaptively
learn the powers of each field in cross features from data.
We highlight three key differences between LNN and our
proposed AFN. 1) The learned power in AFN is applied at a
vector-wise level and shared among all feature embeddings
in the same field. 2) The inputs to our model are feature
embeddings to be learned. Thus we need to use some tech-
niques to keep gradients stable and learn appropriate feature
embeddings and combinations for prediction. 3) In AFN, we
further apply feed-forward hidden layers upon the learned
cross features to enhance the expressiveness of our model.

3 Adaptive Factorization Network

We first elaborate the AFN model that learns adaptive-
order feature interactions, including the optimization proce-
dure and its ensemble with deep neural networks. We then
make discussions on the learned feature orders in AFN, the
model’s relation to FMs/HOFMs, and the time complexity.
The overall structure of AFN is depicted in Figure 2.

3.1 Model Architecture

Input Layer and Embedding Layer. The input layer of
AFN absorbs both sparse categorical features and numer-
ical features. As described in Section 2, all the raw input
features are first transformed into embeddings in a shared
latent space. Here we introduce two crucial techniques for
implementing the embedding layer. First, since we will ap-
ply a logarithmic transformation to feature embeddings in
the successive layer, we need to keep all the values in the
embeddings to be positive. Second, it is advised to add a
small positive value ε (e.g., 1e-7) to zero embeddings to
avoid numerical overflow. After that, the output of the em-
bedding layer is a collection of positive feature embeddings
e = {e1, e2, ..., em}.

Figure 2: Framework of AFN.

Logarithmic Transformation Layer The core of AFN is
the logarithmic transformation layer which learns the pow-
ers (i.e., orders) of each feature field in cross features. This
layer consists of multiple vector-wise logarithmic neurons.
Similar to Equation (6), the output of the j-th vector-wise
logarithmic neuron can be formulated as:

yj = exp(

m∑

i=1

wij ln ei) = e
w1j

1 � e
w2j

2 � ...� ewmj
m (7)

where wij is the coefficient of the j-th neuron on the i-th
field. The functions ln(·) and exp(·) and the power term wij

are all applied at the element-wise level to the corresponding
vectors, and � denotes element-wise product operation. The
main observation based on Equation (7) is that the output
of each logarithmic neuron yj is able to represent any cross
features. For example, when w1j and w2j are set to 1, and
wij (2 < i < m) are set to 0, we have yj = e1 � e2, which
is a second-order cross feature for the first two raw feature
fields. Thus we can use multiple logarithmic neurons to ob-
tain different feature combinations in arbitrary orders as the
output of this layer. Note that the elements in the coefficient
matrix WLTL ∈ Rm×N (where N denotes the number of
logarithmic neurons in the layer) are learnable parameters,
and are not necessarily converged to be 0s or 1s.

Feed-forward Hidden Layers and Prediction. Upon the
logarithmic transformation layer, we stack several fully-
connected hidden layers to combine the formed cross fea-
tures. We first concatenate all the cross features as input to
the feed-forward network:

z0 = [y1,y2, ...,yN ] (8)

where N is the number of logarithmic neurons in the pre-
ceding layer, and [ ] denotes the concatenation operation. We
then feed z0 into L hidden layers:

z1 = ReLU(W1z0 + b1)

· · · · · ·
zL = ReLU(WLzL−1 + bL)

(9)
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where WL and bL denote the weight matrix and bias vector
of the L-th layer, respectively. ReLU is the Rectifier acti-
vation function (Nair and Hinton 2010) to capture nonlinear
element-wise feature interactions. At last, the output zL of
the hidden layers is transformed to the final prediction ŷ:

ŷ = w�
p zL + bp (10)

where wp and bp denote the weight vector and bias term of
the prediction layer, respectively.

3.2 Optimization

As AFN enhances FMs from the perspective of learning
adaptive-order cross features, it can be applied to a variety
of prediction tasks, including classification, regression and
ranking, where the objective functions should be chosen ac-
cordingly. For binary classification tasks producing 0 or 1
target labels, a common objective function is the logarith-
mic loss:

Logloss = − 1

K

K∑

i=1

yi log σ(ŷi) + (1− yi) log(1− σ(ŷi))

(11)
where K is the total number of training instances, and σ
denotes the sigmoid function. For regression tasks, we can
minimize the mean squared error loss. In this work, we fo-
cus on binary classification tasks and optimize the log loss
in Equation (11). We employ the Adam optimizer (Kingma
and Ba 2015), a variant of Stochastic Gradient Descent that
dynamically tunes the learning rate during the training pro-
cess, thus leading to faster convergence (Sun et al. 2019).

Besides, we perform batch normalization (BN) (Ioffe and
Szegedy 2015) on the outputs of logarithmic transformation,
exponential transformation, and all the hidden layers with
two considerations. First, the feature embeddings e are usu-
ally initialized and optimized to be close to zero. After the
logarithmic transformation, the embeddings tend to involve
large negative values with a significant variance, which is
harmful to the optimization of the parameters in the succes-
sive layers. As BN can scale and shift the outputs to normal-
ized values, it is crucial to the training process of AFN. Sec-
ond, we employ multi-layered neural networks after the log-
arithmic transformation layer. Performing BN on the outputs
of hidden layers helps alleviate the covariance shift prob-
lem (Ioffe and Szegedy 2015), leading to faster convergence
and better model performance empirically.

3.3 Ensemble AFN with DNNs

Prior works (Cheng et al. 2016; Guo et al. 2017; Lian et al.
2018) have proposed to ensemble the prediction results from
cross feature-based models such as FMs with those from raw
feature-based neural methods to boost the performance. As
AFN adaptively learns cross features for prediction, we can
combine it with deep neural networks (DNNs) in a similar
manner. Note that neural structures are powerful to capture
nonlinear and deep feature interactions at the element-wise
level, which can be viewed as a fine-grained feature inter-
actions modeling method to enhance AFN. To enforce the
ensemble between AFN and the neural networks, we first

train the two models separately. After that, we develop an
ensemble model to combine the prediction results from the
two trained models, as below:

ŷensem = w1ŷAFN + w2ŷDNN + b (12)

where ŷAFN and ŷDNN are the predictions made from the
trained AFN and DNN respectively, w1 and w2 are the cor-
responding coefficients, and b is a bias term. The ensemble
model can be trained by optimizing the log loss similar to
Equation (11). We dub this ensembled model as “AFN+”.
Our ensemble method is a bit different from the one used
by DeepFM (Guo et al. 2017) whose feature embeddings
are shared among FM and DNN. Here we separate the em-
bedding layers of AFN and DNN to avoid interference. Our
primary concern is that unlike DeepFM, the distribution of
the embedding values in AFN, which should always keep
positive, is far from that in DNN. The separation slightly
increases the model complexity but leads to better perfor-
mance according to our experiments.

3.4 Discussions

Understanding orders in AFN. AFN learns the power
(i.e., the orders) of each feature in cross features though
the logarithmic transformation layer. As no restriction is en-
forced on the weight matrix WLTL of the logarithmic trans-
formation layer, the learned feature orders can be decimals
or negative values. In order to understand the feature orders
learned by AFN, we borrow some ideas from the field-aware
factorization machines (FFMs) (Juan et al. 2016). In FFMs,
each feature is associated with m feature embeddings, where
m is the number of feature fields. FFMs is distinct from FMs
in that each feature employs different embeddings when in-
teracting with features from different fields. The insight of
FFMs is to avoid interference among the feature space of
different fields. In AFN, the order of each feature can be
considered as a scaling factor for the corresponding feature
embedding. For example, consider an embedding with val-
ues ranging from 0 to 1. An order larger than 1 would shrink
embedding values while an order smaller than 1 would do
the opposite. By analogy to FFMs, the orders learned by
AFN can be utilized to rescale feature embeddings when in-
teracting with other features in different fields.

Relation to FMs and HOFMs. We first show that FMs
can be viewed as a special case of AFN. According to
Equation (7), the output yj from a logarithmic neuron is
able to represent any second-order cross features by set-
ting the power wij of each feature embedding appropriately.
Suppose we have enough logarithmic neurons to produce
all the second-order cross features, and the successive hid-
den layers approximate a simple summation function at the
element-level. Then AFN can exactly recover FMs. Simi-
larly, when we have enough logarithmic neurons to deliver
all the cross features within the maximum order and al-
low the hidden layers to approximate a summation function,
AFN is able to recover HOFMs. Note that in HOFMs (Blon-
del et al. 2016), feature embeddings in different orders can
be either shared or learned separately.
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Table 1: Statistics of the datasets.

Dataset #instances #fields #features

Criteo 45,840,617 39 2,086,936
Avazu 40,428,967 22 1,544,250

Movielens 2,006,859 3 90,445
Frappe 288,609 10 5,382

Time complexity analysis. Recall that we use k and m
to denote the rank of feature embeddings and the number
of feature fields, respectively. In AFN, a logarithmic neu-
ron in Equation (7) can be computed in O(km) time. As-
sume we use N logarithmic neurons to obtain cross features.
The computational complexity of the logarithmic transfor-
mation layer is O(kmN). Considering the additional cost
in the hidden layers, the total time complexity of AFN is
O(kmN + nW ), where nW is the total number of weights
in the hidden layers. As for HOFMs, supposing n is the
maximum order of feature combinations as predefined, it
takes O(kmn) time to deliver a prediction which can be
reduced to O(kmn2) with dynamic programming (Blondel
et al. 2016). Note that the time complexity of HOFMs is
highly correlated with the maximum order n of cross fea-
tures, while in AFN, both N and nW are only determined by
the model structure due to its adaptive cross features genera-
tion manner. The time cost of training AFN with the optimal
setting is empirically close to that of CIN (Lian et al. 2018).

4 Experiments

In this section, we conduct experiments to answer the fol-
lowing research questions:
RQ1: How do our proposed methods AFN and AFN+ per-
form against the state-of-the-art methods?
RQ2: How does the performance of AFN vary with different
settings of the hyper-parameters?
RQ3: What are the learned feature orders in AFN, and can
AFN find useful cross features from data?

4.1 Experimental Settings

Datasets. We conduct experiments with four publicly ac-
cessible datasets following previous works (Lian et al. 2018;
He and Chua 2017): Criteo1, Avazu2, Movielens3 and
Frappe4. For each dataset, we randomly split the instances
by 8:1:1 for training, validation and test, respectively. The
details of the four datasets are summarized in Table 1.
(1) Criteo: This is a popular industry benchmarking dataset
for CTR prediction, which contains 13 numerical feature
fields and 26 categorical feature fields.
(2) Avazu: This dataset contains users’ click records on mo-
bile advertisements. It has 22 feature fields including user
features and advertisement attributes.

1http://labs.criteo.com/2014/02/
kaggle-display-advertising-challenge-dataset/

2https://www.kaggle.com/c/avazu-ctr-prediction
3https://grouplens.org/datasets/movielens/
4http://baltrunas.info/research-menu/frappe

(3) Movielens: This dataset consists of users’ tagging
records on movies. We focus on personalized tag recommen-
dation by converting each tagging record (user ID, movie
ID, tag) to a feature vector as input. The target value denotes
whether the user has assigned a particular tag to the movie.
(4) Frappe: This dataset contains app usage logs from users
under different contexts (e.g., daytime, location). We con-
verted each log (user ID, app ID, context features) to a fea-
ture vector as input. The target value indicates whether the
user has used the app under the context.
Evaluation metrics. We adopt two metrics for performance
evaluation: AUC (Area Under the ROC curve) and Logloss
(cross entropy). Note that a slight increase in AUC or de-
crease in Logloss at .001-level is known to be a significant
improvement for the tasks such as CTR prediction (Cheng
et al. 2016; Guo et al. 2017; Song et al. 2018).
Comparison methods. We compare AFN and AFN+ with
four classes of the existing approaches: (i) first-order ap-
proaches that linearly sum up raw features; (ii) FM-based
methods that consider second-order cross features; (iii) ad-
vanced approaches that model high-order feature interac-
tions; (iv) ensemble models that involve a DNN as the coun-
terpart. We briefly describe these methods as follows.
• Linear Regression (LR). It sums up raw features linearly.
• Wide&Deep (Cheng et al. 2016). It integrates LR with
DNN. Note that we omit the hand-crafted cross features for
a fair comparison.
• FM (Rendle 2012). FM models second-order cross fea-
tures with factorization techniques for prediction.
• HOFM (Blondel et al. 2016). It is the high-order version
of FM.
• DeepFM (Guo et al. 2017). It is an ensemble between
DNN and FM.
• AFM (Xiao et al. 2017). It extends FM via the attention
mechanism to distinguish the importance of second-order
cross features.
• CrossNet (Wang et al. 2017). It explicitly models feature
interactions by taking the outer product of input feature vec-
tors.
• Deep&Cross (Wang et al. 2017). It is the ensemble be-
tween CrossNet and DNN.
• NFM (He and Chua 2017). It sums up pairwise Hadamard
product of input feature vectors followed by fully connected
layers.
• PNN (Qu et al. 2019). It models feature interactions by
concatenating pairwise inner or outer products of input fea-
ture vectors.
• CIN (Lian et al. 2018). It produces high-order cross fea-
tures by computing outer products of feature vectors at dif-
ferent orders.
• xDeepFM (Lian et al. 2018). It integrates CIN with DNN.

Implementation details. We implement our methods us-
ing Tensorflow5. We apply Adam with a learning rate of
0.001 and a mini-batch size of 4096. The default number
of logarithmic neurons is set to 1500, 1200, 800 and 600 for
Criteo, Avazu, Movielens and Frappe datasets, respectively.
We use 3 hidden layers and 400 neurons per layer by default

5https://github.com/WeiyuCheng/AFN-AAAI-20
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Table 2: Performance comparison.

Model Class Model Criteo Avazu Movielens Frappe
AUC Logloss AUC Logloss AUC Logloss AUC Logloss

First-Order LR 0.7858 0.4636 0.7313 0.4065 0.9215 0.3080 0.9329 0.2860

Second-Order FM 0.7933 0.4574 0.7496 0.3740 0.9388 0.2797 0.9641 0.2143
AFM 0.7953 0.4554 0.7454 0.3766 0.9295 0.2836 0.9639 0.2294

High-Order

CrossNet 0.7915 0.4585 0.7498 0.3756 0.9323 0.2929 0.9393 0.2835
HOFM 0.7960 0.4551 0.7516 0.3756 0.9410 0.3088 0.9709 0.2141
NFM 0.7968 0.4537 0.7531 0.3761 0.9441 0.3004 0.9727 0.2079
PNN 0.8026 0.4509 0.7526 0.3737 0.9469 0.2792 0.9735 0.2012
CIN 0.8042 0.4472 0.7533 0.3756 0.9494 0.2600 0.9704 0.2342
AFN 0.8061 0.4458 0.7512 0.3731 0.9477 0.2753 0.9759 0.1784

Ensembled

Deep&Cross 0.8059 0.4463 0.7550 0.3721 0.9419 0.2791 0.9402 0.2808
Wide&Deep 0.8062 0.4453 0.7529 0.3744 0.9381 0.3310 0.9728 0.2038
DeepFM 0.8025 0.4501 0.7535 0.3742 0.9424 0.3131 0.9719 0.2108
xDeepFM 0.8070 0.4443 0.7535 0.3737 0.9448 0.2717 0.9738 0.2098
AFN+ 0.8074 0.4451 0.7555 0.3718 0.9500 0.2585 0.9783 0.1762
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Figure 3: Effects of hyperparameters on the performance of AFN.

in AFN. To avoid overfitting, we perform early-stopping ac-
cording to the AUC on the validation set. We set the rank of
feature embeddings to 10 in all the models. We use the same
neural network structure (i.e., 3 layers, 400-400-400) for all
the approaches that involve DNN for a fair comparison. The
maximum order in HOFM is set to 3. All the other hyperpa-
rameters are tuned on the validation set. For each empirical
result, we run the experiments for 3 times and report the av-
erage value.

4.2 Performance Comparison (RQ1)

Comparing with individual models. We first compare
AFN with various individual models involving first-order,
second-order and high-order feature interactions. The results
are shown in Table 2. We have three important observa-
tions. First, AFN yields the best or competing performance
over all the datasets. For Criteo and Frappe, AFN outper-
forms the second-best model CIN by a large margin, i.e.,
on average, the increase on AUC and the decrease on log
loss are 0.0037 and 0.0286, respectively. For Movielens,
AFN achieves the second-best performance, and for Avazu,
it achieves the best log loss with a moderate AUC. Regard-

ing the good performance of simpler models on Movielens
and Avazu, we conjecture that the predictions on these two
datasets rely more on lower-order cross features, and the ad-
vantages of AFN are thus restricted. Note that Movielens
only contains three feature fields, and the benefit of find-
ing useful higher-order cross features can be marginal. Sec-
ond, AFN consistently outperforms FMs and HOFMs on
all the datasets, which verifies that learning adaptive-order
cross features can bring better predictive performance than
modeling fixed-order feature interactions. Third, the mod-
els that utilize higher-order feature interactions generally
outperform those based on lower-order cross features, es-
pecially when the number of feature fields is large. This is
consistent with the intuition that higher-order feature inter-
actions have stronger predictive power.

Comparing with integrated models. AFN+ integrates
AFN and DNN to exploit both explicit cross features and
implicit element-wise feature interactions for prediction. We
compare AFN+ with several state-of-the-art ensemble mod-
els. As shown in Table 2, AFN+ achieves the best perfor-
mance on the four datasets. On average, AFN outperforms
xDeepFM, which integrates CIN and DNN, by achieving
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(c) Learned feature orders on each feature field

Figure 4: Quantitative analysis and case study. (a)&(b): Distribution of the learned feature orders (x-axis) over training steps
(y-axis) on Criteo dataset. (c) A case study on Frappe dataset, where we set the number of logarithmic neurons to 3.

0.003 and 0.012 improvements on AUC and log loss, re-
spectively. This demonstrates that the adaptive-order cross
features learned by AFN are quite different from the implicit
feature interactions modeled by DNN, thus improving the
performance gain significantly when combining two differ-
ent types of feature interactions for prediction.

4.3 Hyperparameter Investigation (RQ2)

We now study the effect of three hyperparameters on the
performance of AFN. We only provide the results on Frappe
as the results on the other three datasets are similar.
Number of logarithmic neurons. Figure 3a provides the
results over different numbers of logarithmic neurons in the
logarithmic transformation layer. We can see that the per-
formance of AFN shows an increasing trend, followed by
a decreasing trend when the number of neurons becomes
larger. This indicates that an appropriate number of loga-
rithmic neurons should be employed to make a trade-off be-
tween expressiveness and generalization to achieve optimal
performance. Surprisingly, the advantage of AFN is stable
even when the number of logarithmic neurons is less than 5.
This result demonstrates that finding a small number of dis-
criminative cross features is vital to the prediction accuracy
and AFN is effective to find these critical cross features.
Depth of hidden layers. Figure 3b shows the effect of the
depth of hidden layers. We observe that stacking hidden lay-
ers upon the learned adaptive-order cross features is bene-
ficial in improving the model performance. However, it is
worth noticing that the performance of AFN is not highly
dependent on the number of hidden layers. When the depth
is set to 0, and the prediction is made by a weighted sum
over the learned cross features, AFN can still achieve fairly
good results. This demonstrates the effectiveness of the loga-
rithmic transformation layer in learning discriminative cross
features.
Number of neurons in hidden layers. As shown in Fig-
ure 3c, the performance of AFN first grows with the number

of neurons. This is because more parameters bring better ex-
pressiveness to the model. The performance starts to degrade
when the parameter size of the hidden layers exceeds 600,
which is caused by overfitting as the training loss keeps on
decreasing afterward.

4.4 Quantitative Analysis and Case Study (RQ3)

Learned feature orders. We now investigate the learned
feature orders in the logarithmic transformation layer of
AFN. Figure 4 shows the variation of feature orders during
the whole training procedure on Criteo Dataset. From Fig-
ure 4a, we can see that the orders of individual feature field
are typically centered around zero and within the range of
[−1, 1]. This is quite different from the typical factorization-
based methods where individual feature orders are either 0
or 1. The relaxation in the learned feature orders allows the
original feature embeddings to be rescaled when compos-
ing different cross features. We also provide the order dis-
tribution of cross features in Figure 4b, where the order of a
cross feature is computed by the sum of absolute values of
the constituent features orders. We can see that the learned
cross feature orders are gradually optimized during the train-
ing process. The final cross feature orders spread over a wide
range (from 4 to 10), instead of being fixed to a predefined
value (e.g., 2) as in much of the factorization-based work.
Case study. To get a deeper understanding of the cross fea-
tures learned by AFN, we conduct a case study on Frappe
Dataset, where the description of each feature field is avail-
able. For illustration purpose, we limit the number of log-
arithmic neurons to be 3. Figure 4c provides the absolute
values of individual feature orders on each neuron and the
summation. From the figure, we can approximately infer
that three cross features (item id, is free, country), (user id,
item id), and (item id, is free) are learned in the respective
logarithmic neurons. Moreover, by summing up feature or-
ders in three neurons, the most discriminative feature fields
are found to be item id, is free, and user id. This is reason-
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able because user and item identities are the most commonly
used features in collaborative filtering, and is free, denoting
whether a user has paid for a mobile app, is a strong indica-
tor of users’ preferences towards apps.

5 Conclusion

In this paper, we introduced the Adaptive Factorization
Network (AFN), which learns arbitrary-order feature inter-
actions adaptively from data. Instead of explicitly model-
ing all the cross features within a fixed maximum order,
AFN is able to generate discriminative cross features and
the weights of the corresponding features automatically. The
key idea is to transform feature embeddings into a logarith-
mic space and treat the power of each feature in a feature
combination as the coefficient to be learned. Feedforward
neural networks are further applied to combine the learned
cross features for prediction. We also showed that AFN can
generalize FMs and HOFMs with computational efficiency.
Extensive experiments on four real-world datasets demon-
strate the superior predictive performance of AFN compared
with the state-of-the-art methods.
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