
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking

Eric Crawford
Mila/McGill University
Montreal, QC, Canada

eric.crawford@mail.mcgill.ca

Joelle Pineau
Mila/McGill University
Montreal, QC, Canada
jpineau@cs.mcgill.ca

Abstract

The ability to detect and track objects in the visual world is a
crucial skill for any intelligent agent, as it is a necessary pre-
cursor to any object-level reasoning process. Moreover, it is
important that agents learn to track objects without supervision
(i.e. without access to annotated training videos) since this
will allow agents to begin operating in new environments with
minimal human assistance. The task of learning to discover
and track objects in videos, which we call unsupervised object
tracking, has grown in prominence in recent years; however,
most architectures that address it still struggle to deal with
large scenes containing many objects. In the current work,
we propose an architecture that scales well to the large-scene,
many-object setting by employing spatially invariant computa-
tions (convolutions and spatial attention) and representations
(a spatially local object specification scheme). In a series of
experiments, we demonstrate a number of attractive features
of our architecture; most notably, that it outperforms compet-
ing methods at tracking objects in cluttered scenes with many
objects, and that it can generalize well to videos that are larger
and/or contain more objects than videos encountered during
training.

1 Introduction

The ability to reason about objects is a vital skill for intelli-
gent agents. Indeed, it underlies much of human intelligence,
and is one of several “core” domains of human cognition,
meaning that it is sufficiently important that evolution has
endowed humans (and many animals) with special-purpose
hardware for discovering, tracking and reasoning about ob-
jects (Carey 2009). Recently, significant progress has been
made in the design of neural networks that can reason about
objects, and these architectures have been shown to possess
a number of significant advantages over systems that lack
object-like representations (Diuk, Cohen, and Littman 2008;
Chang et al. 2016; Kansky et al. 2017; Zambaldi et al. 2018).
However, in order to reason in terms of objects, a system first
needs a way of discovering and tracking objects in the world;
moreover, the system should be able to do this without super-
vision, in order to be able to adapt to new environments with
little human oversight. Much of the recent work on object-
level reasoning assumes that object-like representations are

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

directly provided by the environment, thereby avoiding the
problem of discovering and learning to track objects.

In the current work, we aim to make progress on this task
of discovering and tracking objects, which we call unsuper-
vised object tracking. Our general approach is to formulate a
Variational Autoencoder (VAE) (Kingma and Welling 2013)
for videos, endowed with a highly structured, object-like la-
tent representation. This VAE is composed of a number of
modules that are applied each timestep of the input video,
notably a discovery module which detects new objects in the
current frame, and a propagation module which updates the
attributes of objects discovered in previous frames based on
information from the current frame. For each input frame,
a rendering module creates a corresponding output frame
from the objects proposed by the discovery and propagation
modules. The network is trained by maximizing the VAE
evidence lower bound, which encourages the output frames
to be accurate reconstructions of the input frames. At the end
of training, it is expected that the discovery module will have
become a competent object detector, while the propagation
module will have learned object dynamics. This overall archi-
tecture was first proposed in Sequential Attend Infer Repeat
(SQAIR) (Kosiorek et al. 2018).

However, as we demonstrate empirically, SQAIR strug-
gles at processing spatially large videos that contain many
densely packed objects. We hypothesize that this is because
SQAIR does not fully exploit the spatial statistics of ob-
jects. One example is SQAIR’s discovery module, which
processes input frames holistically. Specifically, it computes
an initial representation for an input frame by processing it
with a Multi-layer Perceptron (MLP), effectively discarding
all spatial structure, before recurrently emitting a sequence
of detected objects. The discovery module is consequently
unable to exploit the fact that objects are spatially local. A
consequence of this spatial locality is that in order to detect
an object, a local detector can be used which only has ac-
cess to a sub-region of the frame. Doing so has the notable
advantage that a sub-region will have significantly less com-
plexity than the frame as a whole, making the detector’s job
easier. In order to ensure the entire frame is covered, the local
detector can be applied repeatedly to different (but possibly
overlapping) sub-regions. This scheme can be implemented
efficiently through the use of convolutional neural networks;
indeed, this is the intuition behind the success of recent su-

3684

pervised single-shot object detectors such as SSD (Liu et al.
2016) and YOLO (Redmon and Farhadi 2017).

In the current work, we propose Spatially Invariant Label-
free Object Tracking (SILOT) (pronounced like “silo”), a
differentiable architecture for unsupervised object tracking
that is able to scale well to large scenes containing many
objects. SILOT achieves this scalability by making extensive
use of spatially invariant computations and representations,
thereby fully exploiting the structure of objects in images.
For example, in its discovery module SILOT employs a con-
volutional object detector with a spatially local object speci-
fication scheme, and spatial attention is used throughout to
compute objects features in a spatially invariant manner.

Through a number of experiments, we demonstrate the
concrete advantages that arise from this focus on spatial in-
variance. In particular, we show that SILOT has a greatly im-
proved capacity for handling large, many-object videos, and
that trained SILOT networks can generalize well to videos
that are larger and/or contain different numbers of objects
than videos encountered in training.

2 Related Work
Our work builds on a growing body of recent research on
learning to detect and track objects without supervision. The
pioneering work Attend, Infer, Repeat (AIR) (Eslami et al.
2016) formulated a VAE for images, with a highly structured,
object-like latent representation. By training this VAE to
reconstruct input images, the encoder module of the VAE is
forced to learn to detect objects. AIR has since been extended
in a number of directions. Sequential Attend, Infer, Repeat
(SQAIR) (Kosiorek et al. 2018) extended AIR to handle
videos rather than images. This was achieved by combining
an object discovery module, which extracts objects from
the scene and has a design similar to AIR, with an object
propagation module which tracks changes in object attributes
(e.g. position, size, appearance) over time. Similar extensions
are also provided by (Hsieh et al. 2018; He et al. 2018). In
an orthogonal direction, Spatially Invariant Attend, Infer,
Repeat (SPAIR) (Crawford and Pineau 2019) improved on
AIR’s ability to handle cluttered scenes by replacing AIR’s
recurrent encoder network with a convolutional network and
a spatially local object specification scheme. Finally, Discrete-
AIR (Wang, Jamnik, and Lio 2019) showed how to adapt AIR
to discover discrete object classes.

AIR and its descendants generally describe each object
using, at minimum, a bounding box and the appearance of the
object within that box. A separate but related body of work
uses an alternate scheme, specifying each object using two
image-sized maps: a mask map, which determines how much
the object “owns” each image pixel, and an appearance map,
which specifies the object’s appearance at pixels that it owns.
In these architectures, objects compete with one another for
ownership of image pixels through their mask maps. Exam-
ples include (Greff, van Steenkiste, and Schmidhuber 2017;
van Steenkiste et al. 2018; Goel, Weng, and Poupart 2018;
Greff et al. 2019; Burgess et al. 2019). One weakness of this
style of object specification is that the objects are relatively
heavy-weight, which makes it computationally intensive to
use large numbers of objects. Additionally, there is no way to

ensure that the objects are compact and object-like (in AIR-
style architectures, a prior is used to encourage discovered
objects to have small spatial extent). Together these weak-
nesses make these architectures poorly suited to handling
large scenes with many objects. For instance, when the ar-
chitecture proposed in (Goel, Weng, and Poupart 2018) was
applied to scenes from the Space Invaders Atari game, it
grouped the 36 aliens into a single object, rather than allocat-
ing a separate object per alien.

As a final note, an architecture similar to SILOT, with
a similar emphasis on ability to scale to large numbers of
objects, was concurrently developed in (Jiang et al. 2019).

3 Spatially Invariant, Label-free Object

Tracking

SILOT is a Variational Auotencoder (VAE) which models a
video as a collection of moving objects. The model is divided
into modules: a discovery module, which detects objects
from each frame; a propagation module, which updates the
attributes of previously discovered objects; a selection mod-
ule, which selects a small set of objects to keep from the union
of the discovered and propagated objects; and a rendering
module which renders selected objects into an output frame.
The discovery, propagation and selection modules constitute
the VAE encoder hφ(z|x), with all encoder parameters gath-
ered together in a vector φ. Meanwhile the rendering module
constitutes the VAE decoder gθ(x|z), with its parameters
collected in a vector θ.

3.1 Overview

In this section we give a high-level overview of the architec-
ture of SILOT. Throughout this work we generally surround
temporal indices with brackets to differentiate them from
other types of indices (e.g. indexing a specific object within a
set of objects). To reduce clutter we often drop the temporal
index when it can be inferred from the context.

Assume we are given a length-T input video {x(t)}T−1
t=0 ,

with x(t) denoting an individual frame for t ∈ {0, . . . , T−1}.
For each timestep, we consider a number of variable sets:

1. Discovered latents z̄(t) and discovered objects ō(t)
2. Propagated latents z̃(t) and propagated objects õ(t)
3. Selected objects o(t)
The total set of latent variables for the VAE is:

z =

T−1⋃
t=0

z̄(t) ∪ z̃(t)

For both discovery and propagation, the object sets are de-
terministic functions of the corresponding latent variable
sets (and possibly other variables). The choice to employ
a separate set of latents, apart from the objects, was made
in part because it is generally inconvenient to define prior
distributions (required for training the VAE) in the highly
structured, interpretable space of objects. Past architectures
have employed a similar approach (Eslami et al. 2016;
Kosiorek et al. 2018).

3685

The generative model assumed by SILOT, as well as the
high-level structure of the SILOT neural network, is shown in
Figure 1. There we see the relationships between the variables
and modules discussed previously. Both the generative model
and high-level network structure are similar to and inspired
by SQAIR (Kosiorek et al. 2018). Within a timestep t, the
flow of computation proceeds as follows:

1. Input frame x(t) and objects from the previous frame
o(t−1) are passed into the propagation module, which
predicts a set of updates z̃(t) and deterministically applies
them, yielding propagated objects õ(t).

2. x(t) and õ(t) are passed into the discovery module, which
discovers objects in the frame that are not accounted for
by any propagated object, first yielding z̄(t) and then ō(t)
via a deterministic transformation.

3. õ(t) and ō(t) are passed into the selection module, which
selects a subset of the objects to retain, yielding o(t).

4. o(t) is passed into the rendering module which yields an
output frame x̂(t).

On the initial timestep, the propagation module is not exe-
cuted and a degenerate set of objects is used for õ(0).

Figure 1: High-level overview of SILOT. Top: Generative
model assumed by SILOT. Diamonds/circles are determinis-
tic/stochastic functions of their inputs. Bottom: Structure
of the SILOT neural network. Modules are indicated by
color. Propagation, discovery and selection constitute the
encoder/inference network hφ(z|x), while rendering consti-
tutes the decoder/likelihood network gθ(x|z).

3.2 Object Representation

In SILOT, an individual object is represented by a collection
of variables, each called an attribute:

owhere ∈ R
4 owhat ∈ R

A odepth ∈ [0, 1] opres ∈ [0, 1]

owhere decomposes as owhere = (oy, ox, oh, ow). oy and ox

specify the location of the object’s center, while oh and ow

specify the object’s size. owhat acts as a catch-all, storing infor-
mation about the object that is not captured by other attributes
(e.g. appearance, velocity). odepth specifies the relative depth
of the object; in the output image, objects with higher values
for this attribute appear on top of objects with lower values.
opres specifies the extent to which the object exists; objects
with opres = 0 do not appear in the output image.

3.3 Discovery

The role of the object discovery module is to take in the
current frame x(t) and the set of objects propagated from the
previous frame õ(t−1), and detect any objects in the frame
that are not yet accounted for (either because those objects
appeared for the first time in the current frame, or because
they were not previously discovered due to error). Object
discovery in SILOT is implemented as a convolutional neural
network in order to achieve spatial invariance, and is heavily
inspired by SPAIR, an unsupervised convolutional object
detector (Crawford and Pineau 2019), as well as by single-
shot supervised object detectors such as SSD and YOLO.

An initial convolutional network dbu
φ extracts “bottom-up”

information from the current input frame x(t), mapping to a
feature volume vbu

(t):

vbu
(t) = dbu

φ (x(t))

The structure of network dbu
φ can be taken to induce a spatial

grid over the frame, as follows. Let ch/cw be the translation
(in pixels) vertically/horizontally between receptive fields of
adjacent spatial locations in vbu

(t). Then for an input frame
with dimensions (Hinp,Winp, 3), we divide the frame up into
an (H,W) grid of cells, each cell being ch pixels high by
cw pixels wide, where H = �Hinp/ch�, W = �Winp/cw�.
The output volume vbu

(t) has spatial shape (H,W), and we
associate each of its spatial locations with the corresponding
grid cell. Importantly, the input frame is padded on all sides
to ensure that the receptive field for each spatial location in
vbu
t is centered on the corresponding grid cell1. This scheme

is visualized in Figure 2.
The discovery module will ultimately yield a separate ob-

ject for each grid cell. It is useful to think of the discovery
module as consisting of a 2D array of identical object detec-
tors, each operating on a different local region of the image.
We call each of these local detectors a discovery unit; the
structure of a unit is shown in Figure 3.

Variables for all units are grouped together into convolu-
tional volumes, and computations are implemented by size-
preserving convolutions on these volumes, essentially com-
puting all discovery units in parallel. Thus, unless otherwise

1(Dang Ha 2017) is a useful guide to receptive field arithmetic
in convolutional nets.

3686

Figure 2: Schematic depicting grid cells and padding in the
discovery module. The gray grid is the grid of cells described
in Section 3.3. The top of the trapezoid is a spatial location
in the output layer of dbu

φ , associated with the grid cell high-
lighted in green. The bottom of the trapezoid is the receptive
field of that spatial location; the frame is padded (solid gray
border area) before being passed into dbu

φ to ensure that all
receptive fields are centered on their corresponding grid cells.

Figure 3: Schematic depicting the structure of a discovery
unit with indices ij at time t, discovering the black bird
which has just come into view from the right. Local bottom-
up information from the current frame is processed by a
convolutional filter (trapezoid), which has a receptive field
(grey base of the trapezoid) centered on the discovery unit’s
grid cell (green rectangle). Next, top-down information about
nearby objects propagated from the previous frame (orange
boxes) is summarized using spatial attention with a Gaussian
kernel centered at the grid cell. Bottom-up and top-down
information is then fused and used to autoregressively predict
object attributes (here we have omitted the latent discovery
variables z̄ij). ōwhere

ij is specified with respect to the grid cell,
and the prediction for ōwhat

ij conditions on the output of a
spatial transformer parameterized by ōwhere

ij (blue rectangle).

specified, all variables in this section are volumes with spatial
dimensions (H,W), and all networks are convolutional and
preserve spatial dimensions. The convolutional layers use a
kernel width and stride of 1 so that each discovery unit is
independent (such a layer is equivalent to applying a fully

connected layer separately to each spatial location).
In order to avoid rediscovering objects that are already

accounted for, each discovery unit needs to be aware of “top-
down” information about objects propagated from the pre-
vious frame that are near its grid cell. We thus employ a
spatial attention step which, for each grid cell, extracts fea-
tures of propagated objects, and then weights those features
according to a Gaussian kernel centered at the cell (similar
to the Neural Physics Engine (Chang et al. 2016)). The result
is a feature volume vtd

(t) with spatial shape (H,W) where
each spatial location contains information about nearby prop-
agated objects:

vtd
(t) = SpatialAttentiondisc

φ (õ(t), σ)

where σ is a hyperparameter giving the standard deviation of
the Gaussian kernel. Details on the spatial attention step are
provided in Section B of the Supplementary Material2.

Next, a convolutional network dfuse
φ combines bottom-up

and top-down information (here we begin omitting temporal
indices):

v = dfuse
φ (vbu, vtd)

We follow the convention that a neural network that takes
multiple inputs first concatenates those inputs along their
trailing dimension (i.e. the depth dimension in the case of
convolutional volumes), and processes the result as usual.

The network then predicts parameters for distributions over
the latent discovery variables z̄, samples from the predicted
distributions, and then maps the sampled latent to the more
interpretable ō. This is done on an attribute-by-attribute basis
(in order [where, what, depth, pres]), and is autoregressive, so
that predictions for later attributes are conditioned on samples
for earlier attributes. These steps are detailed below.

Predicting ōwhere. We first use a network dwhere
φ to predict

parameters for a distribution over z̄where, and then sample:

μ̄where, σ̄where = dwhere
φ (v)

z̄where ∼ N(μ̄where, σ̄where)

Next we deterministically map to ōwhere. We decompose
z̄where as z̄where = (z̄y, z̄x, z̄h, z̄w). Here it will be useful
to narrow our focus to a single discovery unit with indices
ij for i ∈ {0, . . . , H − 1}, j ∈ {0, . . . ,W − 1}. z̄yij and z̄xij
parameterize the position of the object according to:

byij = bmin + sigmoid(z̄yij)
(
bmax − bmin)

ōyij = (i+ byij)ch

bxij = bmin + sigmoid(z̄xij)
(
bmax − bmin)

ōxij = (j + bxij)cw

where bmin and bmax are fixed real numbers which, in effect,
impose bounds on the distance between the object and the
grid cell. z̄hij and z̄wij parameterize the size of the object as:

ōhij = sigmoid(z̄hij)ah ōwij = sigmoid(z̄wij)aw
2Supplementary Material can be found at:

e2crawfo.github.io/misc/silot supp.pdf

3687

for fixed real numbers ah and aw. (ah, aw) can be interpreted
as the dimensions of an anchor box as used in supervised
object detection (Ren et al. 2015). Specifying object size
with respect to (ah, aw), as opposed to the size of the input
frame, ensures that ōhij and ōwij are meaningful regardless of
the spatial dimensions of the input frame.

Predicting ōwhat, ōdepth and ōpres. In order to obtain highly
location-specific information from the image, an array of
glimpses ḡ (one glimpse per discovery unit) is extracted from
the image using spatial transformers τ (Jaderberg et al. 2015)
parameterized by ōwhere. These glimpses are then mapped to
a feature volume vobj by a network dobj

φ :

ḡ = τ(x, ōwhere)

vobj = dobj
φ (ḡ)

We then autoregressively predict the remaining attributes:

μ̄what, σ̄what = dwhat
φ (v, vobj, ōwhere)

z̄what ∼ N(μ̄what, σ̄what)

ōwhat = z̄what

μ̄depth, σ̄depth = ddepth
φ (v, vobj, ōwhere, ōwhat)

z̄depth ∼ N(μ̄depth, σ̄depth)

ōdepth = sigmoid(z̄depth)

μ̄pres = dpres
φ (v, vobj, ōwhere, ōwhat, ōdepth)

z̄pres ∼ Logistic(μ̄pres)

ōpres = sigmoid(z̄pres)

Note that ōpres can be viewed as a set of BinConcrete random
variables (Maddison, Mnih, and Teh 2016). The significance
of this choice is discussed below in Section 3.5.

3.4 Propagation

Propagation at time t takes in the current frame x(t) and the
objects from the previous timestep o(t−1), and propagates the
objects forward in time, using information from the current
frame to update the object attributes. Let K be the number of
objects from the previous timestep. In this section, all vari-
ables are matrices with K as their leading dimension. All
networks are fully-connected networks that are applied to
each matrix row independently (i.e. “object-wise”) and in
parallel. This is similar to the convention used in the discov-
ery module, but with the “object” dimension K taking the
place of the two spatial dimensions (H,W). The structure
of propagation for an individual object is shown in Figure 4.
Here we outline the major points of the propagation module;
for additional details, see Section A.1 of the Supplementary
Material. To reduce visual clutter, assume that all variables
have temporal index t unless otherwise specified.

We begin by computing a feature vector for each object in
o(t−1). In order to handle interactions between objects, we
can have the feature vector for an object depend on other
objects as well. Here we make the assumption that object
interactions are spatially local (which is enough to handle
collisions, for example). Thus we compute features using a

spatial attention step similar to the one used in the Discovery
module, allowing the features for an object to depend on
attributes of nearby objects:

utd = SpatialAttentionprop
φ (o(t−1), σ)

Next we need to condition attribute updates on the current
frame. Rather than condition on the entire frame, we instead
extract a set of glimpses in a region near each object’s loca-
tion from the previous timestep:

uwhere = owhere
(t−1) + 0.1 · pglimpse

φ (utd)

g̃ = τ(x, uwhere)

ubu = pbu
φ (g̃)

A network pfuse
φ then combines bottom-up and top-down in-

formation:

u = pfuse
φ (ubu, utd)

From here we autoregressively predict new values for the
object attributes; this is similar to attribute prediction in the
discovery module, except that rather than directly predict-
ing attribute values, we predict attribute updates and subse-
quently apply them:

μ̃where, σ̃where = pwhere
φ (u)

z̃where ∼ N(μ̃where, μ̃where)

õwhere = fwhere(owhere
(t−1), z̃

where)

Next we extract and process another set of glimpses at õwhere:

g̃′ = τ(x, õwhere)

uobj = pobj
φ (g̃′)

Finally we predict updates to the remaining attributes:

μ̃what, σ̃what = pwhat
φ (u, uobj, õwhere)

z̃what ∼ N(μ̃what, σ̃what)

õwhat = fwhat(owhat
(t−1), z̃

what)

μ̃depth, σ̃depth = pdepth
φ (u, uobj, õwhere, õwhat)

z̃depth ∼ N(μ̃depth, σ̃depth)

õdepth = f depth(odepth
(t−1), z̃

depth)

μ̃pres = ppres
φ (u, uobj, õwhere, õwhat, õdepth)

z̃pres ∼ Logistic(μ̃pres)

õpres = opres
(t−1) · sigmoid(z̃pres)

Notice that propagation cannot increase the value of the pres
attribute, due to the form of the update (multiplication by
a sigmoid). This ensures that objects are only ever discov-
ered by the Discovery module, which is better equipped for
it. fwhere, fwhat and f depth determine the forms of the other
updates; full details are left to the Supplementary Material.

Propagation in SILOT is similar to propagation in SQAIR,
with one significant exception. In SQAIR, objects within a
timestep are updated sequentially; this allows objects within a

3688

Figure 4: Schematic depicting the propagation module updat-
ing an object with index k, tracking the location of the white
bird. A feature vector for the object, which also takes into
account nearby objects, is first created using spatial attention.
Next, an initial glimpse (grey region) is specified with respect
to the object’s location from the previous time step (green
box). This glimpse is then processed by a neural network
(trapezoid) and used to predict and apply an update to the
where attribute, resulting in õwhere

k . The blue box corresponds
to the location of the image referred to by õwhere

k . Another
glimpse is extracted at location õwhere

k , and updates to the re-
maining attributes are predicted and applied autoregressively.
Here we have omitted the latent propagation variables z̃k.

timestep to condition on one another, facilitating coordination
between objects and supporting behavior such as explaining
away. However, this sequential processing can be computa-
tionally demanding when there are large numbers of objects.
In contrast, SILOT updates all objects within a timestep in
parallel; a degree of coordination between objects is achieved
via the spatial attention step.

3.5 Selection

Past architectures in this domain, particularly AIR and
SQAIR, use discrete Bernoulli random variables for their
equivalents of the pres attribute, and are thus forced to em-
ploy reinforcement learning–inspired techniques for estimat-
ing gradients. In order to avoid this complication and make
our architecture fully differentiable, we opted to model opres

as real-valued BinConcrete random variables, which are dif-
ferentiable relaxations of Bernoullis (Maddison, Mnih, and
Teh 2016). One downside of this choice is that objects never
“go away”, even if opres = 0; all posited objects are always
present, but to varying degrees. If care is not taken this will
result in scaling issues, since the discovery module yields
HW new objects per frame; if all these objects are kept
and propagated forward, we would end up with a collection
of HW (t + 1) objects at timestep t, which would quickly
become intractable.

To fix this, we use a simple top-K selection strategy
wherein we keep only the K objects from the union of õ(t)
and ō(t) with highest values for the pres attribute, for fixed
integer K. While this hard selection step is not differentiable,
the number of objects with non-negligible values for the pres
attribute is intended to be small compared to HW (t+1) (see
Section 3.8), and we have not found this non-differentiability

to cause problems in training as long as K is large enough.
As a rule-of-thumb, we typically set K to be roughly 25%
larger than the maximum number of objects that we expect
to see in a single frame; this ensures there is always room for
a reasonable number of objects with low values for pres to
be propagated and receive gradient feedback. The output of
this selection step is the final set of objects o(t).

3.6 Rendering

The differentiable rendering module is the sole constituent of
the VAE decoder gθ(x|z), taking in the current set of objects
o(t) and yielding a reconstructed frame x̂(t). The rendering
process is highly structured, and this structure gives meaning
to the object attributes. Object appearance and transparancy
are predicted from owhat, the object is placed at location owhere

via spatial transformers, odepth parameterizes a differentiable
approximation of relative depth, and object transparency is
multiplied by opres so that objects are only rendered to the
extent that they exist. Full details can be found in Section
A.2 of the Supplementary Material.

3.7 Training

Recall that propagation, discovery and selection form the
VAE encoder hφ(z|x), while rendering forms the VAE de-
coder gθ(x|z). The network is trained by maximizing the
evidence lower bound (Kingma and Welling 2013):

L(φ, θ) := Ex∼h(x),z∼hφ(z|x)

[
log

(
gθ(x|z)g(z)
hφ(z|x)

)]
(1)

φ∗, θ∗ = argmax
φ,θ

L(φ, θ) (2)

Here h(x) is the distribution over videos defined by the
dataset, and g(z) is the prior distribution over z. The op-
timization is performed by gradient ascent.
Curriculum Learning. Following SQAIR, we train the net-
work with a form of curriculum learning. We begin by train-
ing on only the first 2 frames of each video. We then increase
the number of training frames by 2 every Ncurric update steps.
After (�T/2� − 1)Ncurric update steps the network will be
training on complete videos. This was observed to help with
training stability, possibly because it allows the network to
learn object appearances before learning object dynamics.
Discovery Dropout. Early in development we found the net-
work often tried to predict objects for new frames exclusively
by way of the discovery module rather than propagating
objects from the previous frame. This strategy can yield rea-
sonable reconstruction performance, but will fail at object
tracking since object identities are not maintained from one
frame to the next. Moreover, this is a local minimum; once
the network starts relying completely on discovery, propaga-
tion stops being trained and cannot improve. To discourage
this behavior, we designed a technique that we call discovery
dropout. Each timestep other than t = 0, the entire discovery
module is turned off with probability pdd. This forces the
network do as much as possible through propagation rather
than discovery, since the network is never sure whether the
discovery module will be turned on for the next timestep.
Throughout this work we use pdd = 0.5.

3689

0 2 4 6 8 10 12
Digits in Test Image

−1.0

−0.5

0.0

0.5

1.0

M
O

TA

SILOT - trained on 1–12 digits
SILOT - trained on 1–6 digits
SQAIR (conv) - trained on 1–6 digits
SQAIR (mlp) - trained on 1–6 digits
ConnComp

0 2 4 6 8 10 12
Digits in Test Image

0.0

0.2

0.4

0.6

0.8

1.0

A
P

0 2 4 6 8 10 12
Digits in Test Image

0

1

2

3

4

C
ou

nt
A

bs
.E

rr
or

Figure 5: Probing object tracking performance as number of digits per video varies in the Scattered MNIST task. All points are
averages over 6 random seeds, filled regions are standard deviations (except for the fully deterministic ConnComp algorithm).

3.8 Prior Distribution

A crucial component of a VAE is the prior over latent vari-
ables, g(z), which can be used to influence the statistics of
latent variables yielded by the encoder. For the majority of
the latents, we assume independent Normal distributions.
However, for the Logistic random variables z̄pres and z̃pres we
design a prior that puts pressure on the network to reconstruct
the video using as few objects as possible (i.e. few objects
with large values for opres). This pressure is necessary for the
network to extract quality object-like representations; without
it, the network is free to set all opres = 1, and the extracted
objects become meaningless. The prior is identical to the one
used in SPAIR (Crawford and Pineau 2019), applied to the
union of the discovered and propagated objects for a given
timestep.

As done in SQAIR, we can also use a learned prior gθ(z),
whose parameters can be trained alongside the other parame-
ters. In the current work, we do this only for the propagation
module. In effect, this amounts to learning a separate prior
propagation module which does not take into account in-
formation from the current frame. This prior propagation
module employs an architecture that is similar to the main
propagation module, except that it omits the glimpse com-
ponents which extract information from the current frame.
The prior propagation module thus is forced to truly learn
the dynamics of the objects, whereas the main propagation
module can rely on information from the current frame. In
the training objective (Equation (1)), we use the static prior
g(z) for the discovery latents, and an even mixture of the
static and learned priors for the propagation latents.

4 Experiments

We tested SILOT in a number of challenging object discovery
and tracking tasks, emphasizing large videos containing many
objects. We use 3 metrics to assess model performance: Multi-
Object Tracking Accuracy (MOTA) (with IoU threshold 0.5),
a standard measure of object tracking performance (Milan
et al. 2016); Average Precision (AP) (with IoU=0.1:0.1:0.9),
a standard measure of object detection performance (Ever-
ingham et al. 2010); and Count Abs. Error, or the absolute
difference between the number of objects predicted by the

model and the ground truth number of objects (on a frame-
by-frame basis). Intersection over Union (IoU) is a measure
of the overlap between two objects.

We compare against a simple baseline algorithm called
ConnComp (Connected Components), which works by treat-
ing each connected region of similarly-colored pixels in a
frame as a separate object, and computing object identities
over time using the Hungarian algorithm (Kuhn 1955). The
performance of ConnComp can be interpreted as a measure
of the difficulty of the dataset; it will be successful only to
the extent that objects can be tracked by color alone.

Code for running these experiments is available online
at github.com/e2crawfo/silot. To supplement the quantitative
results provided in this section, we also provide qualitative
results: videos depicting the performance of trained SILOT
networks can be found at sites.google.com/view/silot, and
static visualizations are shown in Supplementary Material.

4.1 Scattered MNIST

In this experiment, each 8-frame video is generated by first
selecting a number of MNIST digits to include and sampling
that number of digits. Videos have spatial size 48× 48 pixels,
digits are scaled down to 14 × 14 pixels, and initial digit
positions are randomly chosen so that the maximum over-
lap allowed is small but non-trivial. For each digit we also
uniformly sample an initial velocity vector with a fixed mag-
nitude of 2 pixels per frame. Digits pass through one another
without event, and bounce off the edges of the frames.

In order to test generalization ability, we used two train-
ing conditions: training on videos containing 1–6 digits, and
training on videos containing 1–12 digits. In both cases, we
test performance on videos containing up to 12 digits; net-
works trained in the 1–6 condition will thus be required to
generalize beyond their training experience.

We compare SILOT against SQAIR. We tested SQAIR
with two different discovery backbone networks (the net-
work which first processes each input frame): an MLP, and
a convolutional network with the same structure as SILOT’s
convolutional backbone dbu

φ . Note that using a convolutional
network as a backbone, rather than an MLP, should improve
SQAIR’s spatial invariance to a degree; however it will still

3690

0 5 10 15 20 25 30 35
Shapes in Test Image

−1.0

−0.5

0.0

0.5

1.0

M
O

TA

Trained on cropped images, 1–10 shapes
Trained on cropped images, 21–30 shapes
Trained on full images, 1–10 shapes
Trained on full images, 21–30 shapes
ConnComp

0 5 10 15 20 25 30 35
Shapes in Test Image

0.0

0.2

0.4

0.6

0.8

1.0

A
P

0 5 10 15 20 25 30 35
Shapes in Test Image

0

1

2

3

4

C
ou

nt
A

bs
.E

rr
or

Figure 6: Probing SILOT’s object tracking performance as the number of shapes per video varies in the Scattered Shapes task. All
points are averages over 4 random seeds, and filled regions are standard deviations (except for the fully deterministic ConnComp
algorithm). We manipulated 2 different aspects of the training setup: training on images that contain 1–10 shapes vs 21–30
shapes, and training on random 60× 60 crops vs. full 96× 96 images (full videos are always used at test time).

lack, among other features, SILOT’s local object specifica-
tion scheme, which is part of what allows SILOT’s discovery
module to be interpreted as an array of local discovery units.

We also experimented with Tracking by Animation (TbA)
(He et al. 2018), but were unable to obtain good tracking
performance on these densely cluttered videos. One relevant
point is that TbA lacks a means of encouraging the network
to explain scenes using few objects, and we found TbA often
using several internal objects to explain a single object in the
video; in contrast, both SILOT and SQAIR use priors on opres

which encourage opres to be near 0, forcing the networks to
use internal objects efficiently.

Results are shown in Figure 5. We have omitted both
SQAIR networks trained on the 1–12 digit condition;
SQAIR’s simpler discovery module was unable to handle
the more densely packed scenes, resulting in highly varied
performance that would make the plot unreadable. From the
plot we can see that SILOT outperforms SQAIR by a large
margin (especially when extrapolating beyond training expe-
rience), and that SILOT trained on 1–6 digits suffers only a
minor performance hit compared to SILOT trained on 1–12
digits, a result of SILOT’s spatially invariant architecture. In
the Supplementary Material, we also show results obtained
when using the learned prior propagation module (see Section
3.8) in place of the regular propagation module.

Note the slight improvement in performance of the AP of
the SQAIR networks when going from 1 to 2 digits. This
reflects an interesting strategy developed by the SQAIR net-
works. On the first timestep, they often turn “on” several
more objects than are in the video; this pushes down the AP
score, with a greater negative effect when there are fewer ob-
jects. We hypothesize that it settles on this strategy because
the backbone networks are unable to get an accurate read on
the number of objects present, and so the network settles for
a strategy of casting a “wide net” on the first timestep.

Additionally, when testing on videos containing 1–6 dig-
its, the SQAIR networks were used in the same fashion as
they were during training. However, when testing on videos
containing 7 or more digits, we found that the network’s per-
formance at guessing the number of objects to use became

very poor; thus, for such test cases we artificially told the
network the correct number of objects to use by running
SQAIR’s recurrent network for the correct number of steps.

4.2 Scattered Shapes

In this experiment we tackle larger images with significantly
more objects to track. Here each video has spatial size 96×96,
and contains a number of moving monochrome shapes. We
use 6 different colors and 5 different shapes. Initial shape
velocities are uniformly sampled with a fixed magnitude of 5
pixels per frame.

Here we test ability to generalize to scenes that are larger
and/or contain different numbers of objects than scenes en-
countered during training. To assess the former, networks
were trained on either random 60× 60 crops of input videos,
or full 96× 96 videos (note that SILOT’s fully convolutional
discovery module allows it to process videos of any size). To
assess the latter, networks were trained on videos containing
either 1–10 shapes or 21–30 shapes. This yields 4 different
training conditions. At test time, we use full 96× 96 videos
containing up to 35 shapes.

Results are shown in Figure 6. There we see that all SILOT
networks drastically outperform the baseline. Additionally,
there is significant evidence that the networks are able to gen-
eralize well to both different numbers of shapes and different
sized videos than what was encountered during training. In
particular, the network trained on 60×60 crops of videos con-
taining 1–10 shapes achieves reasonable performance when
asked to process 96× 96 images containing up to 35 shapes.

4.3 Atari

We also applied SILOT to videos obtained from select Atari
games (Bellemare et al. 2013) (the possibility of applying a
SQAIR-style model to reinforcement learning was first sug-
gested in (Kosiorek et al. 2018)). Results are shown in Table
1. Ground truth object labels for evaluation were obtained us-
ing the ConnComp algorithm, which is reasonably effective
for the chosen games. Our goal here was to push scalability,
rather than ability to deal with e.g. overlapping objects.

3691

Game MOTA AP Count Abs. Error
Space Invaders .89 .73 2.94

Asteroids .67 .67 1.81

Table 1: SILOT performance on Atari videos.

5 Conclusion

In the current work we proposed an architecture for scalable
unsupervised object tracking, and empirically demonstrated a
number of its benefits. Many interesting directions are left for
future research. For one, it should be possible to extend the
discovery module to discover objects at different scales, simi-
lar to the supervised object detection architecture SSD (Liu et
al. 2016). Additionally, in order to have SILOT and related ap-
proaches work on real videos, it will be necessary to include
a means of dealing with complex, dynamic backgrounds;
past work in this area has generally preprocessed videos with
an off-the-shelf background subtractor, largely avoiding the
problem of modeling the background (though see concurrent
work in (Jiang et al. 2019) which makes significant progress
on this issue). Finally, as suggested in (Kosiorek et al. 2018),
these architectures are quite complex, and it would be worth-
while to perform ablation studies to determine whether all
components are necessary for good performance.

Acknowledgements

Funding for this work was provided by Samsung.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The arcade learning environment: An evaluation platform for gen-
eral agents. Journal of Artificial Intelligence Research 47:253–279.
Burgess, C. P.; Matthey, L.; Watters, N.; Kabra, R.; Higgins,
I.; Botvinick, M.; and Lerchner, A. 2019. Monet: Unsuper-
vised scene decomposition and representation. arXiv preprint
arXiv:1901.11390.
Carey, S. 2009. The origin of concepts. Oxford University Press.
Chang, M. B.; Ullman, T.; Torralba, A.; and Tenenbaum, J. B. 2016.
A compositional object-based approach to learning physical dynam-
ics. arXiv preprint arXiv:1612.00341.
Crawford, E., and Pineau, J. 2019. Spatially invariant, unsupervised
object detection with convolutional neural networks. In Thirty-Third
AAAI Conference on Artificial Intelligence.
Dang Ha, T. H. 2017. A guide to receptive field arithmetic for
convolutional neural networks. https://medium.com/mlreview/a-
guide-to-receptive-field-arithmetic-for-convolutional-neural-
networks-e0f514068807. Accessed: Aug 7, 2019.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-oriented
representation for efficient reinforcement learning. In Proceedings
of the 25th international conference on Machine learning, 240–247.
ACM.
Eslami, A.; Heess, N.; Weber, T.; Tassa, Y.; Szepesvari, D.; Hinton,
G. E.; et al. 2016. Attend, infer, repeat: Fast scene understand-
ing with generative models. In Advances in Neural Information
Processing Systems, 3225–3233.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.; and
Zisserman, A. 2010. The pascal visual object classes (voc) challenge.
International journal of computer vision 88(2):303–338.

Goel, V.; Weng, J.; and Poupart, P. 2018. Unsupervised video
object segmentation for deep reinforcement learning. In Advances
in Neural Information Processing Systems, 5683–5694.
Greff, K.; Kaufmann, R. L.; Kabra, R.; Watters, N.; Burgess, C.;
Zoran, D.; Matthey, L.; Botvinick, M.; and Lerchner, A. 2019. Multi-
object representation learning with iterative variational inference.
arXiv preprint arXiv:1903.00450.
Greff, K.; van Steenkiste, S.; and Schmidhuber, J. 2017. Neural
expectation maximization. In Advances in Neural Information
Processing Systems, 6691–6701.
He, Z.; Li, J.; Liu, D.; He, H.; and Barber, D. 2018. Tracking by
animation: Unsupervised learning of multi-object attentive trackers.
arXiv preprint arXiv:1809.03137.
Hsieh, J.-T.; Liu, B.; Huang, D.-A.; Fei-Fei, L. F.; and Niebles, J. C.
2018. Learning to decompose and disentangle representations for
video prediction. In Advances in Neural Information Processing
Systems, 517–526.
Jaderberg, M.; Simonyan, K.; Zisserman, A.; et al. 2015. Spatial
transformer networks. In Advances in neural information processing
systems, 2017–2025.
Jiang, J.; Janghorbani, S.; de Melo, G.; and Ahn, S. 2019. Scal-
able object-oriented sequential generative models. arXiv preprint
arXiv:1910.02384.
Kansky, K.; Silver, T.; Mély, D. A.; Eldawy, M.; Lázaro-Gredilla,
M.; Lou, X.; Dorfman, N.; Sidor, S.; Phoenix, S.; and George, D.
2017. Schema networks: Zero-shot transfer with a generative causal
model of intuitive physics. In International Conference on Machine
Learning, 1809–1818.
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.
Kosiorek, A.; Kim, H.; Teh, Y. W.; and Posner, I. 2018. Sequential
attend, infer, repeat: Generative modelling of moving objects. In
Advances in Neural Information Processing Systems, 8606–8616.
Kuhn, H. W. 1955. The hungarian method for the assignment
problem. Naval research logistics quarterly 2(1-2):83–97.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.;
and Berg, A. C. 2016. Ssd: Single shot multibox detector. In
European conference on computer vision, 21–37. Springer.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2016. The concrete
distribution: A continuous relaxation of discrete random variables.
arXiv preprint arXiv:1611.00712.
Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; and Schindler, K. 2016.
Mot16: A benchmark for multi-object tracking. arXiv preprint
arXiv:1603.00831.
Redmon, J., and Farhadi, A. 2017. Yolo9000: better, faster, stronger.
arXiv preprint.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks.
In Advances in neural information processing systems, 91–99.
van Steenkiste, S.; Chang, M.; Greff, K.; and Schmidhuber, J.
2018. Relational neural expectation maximization: Unsuper-
vised discovery of objects and their interactions. arXiv preprint
arXiv:1802.10353.
Wang, D.; Jamnik, M.; and Lio, P. 2019. Unsupervised and inter-
pretable scene discovery with discrete-attend-infer-repeat. arXiv
preprint arXiv:1903.06581.
Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.; Babuschkin,
I.; Tuyls, K.; Reichert, D.; Lillicrap, T.; Lockhart, E.; et al.
2018. Relational deep reinforcement learning. arXiv preprint
arXiv:1806.01830.

3692

