
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

System Identification with Time-Aware Neural Sequence Models

Thomas Demeester
Internet Technology and Data Science Lab, Ghent University - imec

thomas.demeester@ugent.be

Abstract

Established recurrent neural networks are well-suited to solve
a wide variety of prediction tasks involving discrete se-
quences. However, they do not perform as well in the task of
dynamical system identification, when dealing with observa-
tions from continuous variables that are unevenly sampled in
time, for example due to missing observations. We show how
such neural sequence models can be adapted to deal with vari-
able step sizes in a natural way. In particular, we introduce a
‘time-aware’ and stationary extension of existing models (in-
cluding the Gated Recurrent Unit) that allows them to deal
with unevenly sampled system observations by adapting to
the observation times, while facilitating higher-order tempo-
ral behavior. We discuss the properties and demonstrate the
validity of the proposed approach, based on samples from two
industrial input/output processes.

1 Introduction
The field of system identification, aiming to build mathemat-
ical models of dynamical systems based on observed data,
has been a large active research area for many years, with
several specialized sub-fields (Ljung 2013). Within this gen-
eral field, the topic of research in this paper is the joint appli-
cation of numerical methods developed to solve systems of
differential equations, with established techniques from the
field of artificial neural networks.

On the one hand, neural networks provide a highly flex-
ible tool to train unknown parameterized functions to fit
available data (Goodfellow, Bengio, and Courville 2016).
In particular, recurrent neural networks (RNNs), and espe-
cially variants such as Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber 1997) or Gated Re-
current Units (GRU) (Cho et al. 2014), have become impor-
tant general-purpose tools for modeling discrete sequential
data, for example in the area of natural language processing
(Young, Hazarika, and Poria 2017). These models are how-
ever not naturally suited to deal with sampled time series
where the interval between consecutive samples may not be
constant over time. Yet, so-called unevenly spaced time se-
ries occur often in practice, due to missing data after discard-
ing invalid measurements, or because of variations in the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sampling times (Eckner 2014). For example, a patient’s clin-
ical variables may only be measured at irregular moments.
Or, observations from systems in meteorology, economics,
finance, or geology might only be possible at irregular points
in time. Multivariate data consisting of individual time se-
ries with different sample rates are also naturally treated as
unevenly spaced time series. Eckner (2014) further summa-
rizes a number of disadvantages of transforming unevenly
spaced data through resampling into evenly spaced data.

On the other hand, numerical methods such as the Runge-
Kutta schemes (Butcher 2016) lead to highly accurate solu-
tions for dynamical systems with known differential equa-
tions, and are by construction able to deal with varying time
intervals.

The main research question that we tackle is therefore the
following. Given a set of dynamical system observations,
how can we build a model that can make use of the full ex-
pressive power of general-purpose RNNs, but that naturally
deals with unevenly spaced time series?

It has already been pointed out that the Euler scheme
for numerically solving differential equations bears similari-
ties with artificial neural network models containing residual
connections (E 2017; Zhu and Fu 2018; Chang et al. 2019).
Naively applying this numerical scheme to RNNs for time
series modeling, would indeed allow correctly dealing with
uneven time intervals. However, unlike traditional RNNs,
such schemes are incremental in nature, due to the resid-
ual connections along the time dimension, and therefore ill-
suited for modeling stationary time series. We will show
how this can be resolved, leading to models that take advan-
tage of both the bounded character and expressive power of
well-known RNNs, and the time-aware nature of numerical
schemes for differential equations.

The paper makes the following contributions:

• We introduce an extension of general-purpose RNNs to
deal with unevenly spaced time series (Section 3.1), and
which can be used in higher-order numerical schemes
(Section 3.2). In particular, we propose a solution for the
so-called ‘unit root’ problem related to incremental recur-
rent schemes, to make the proposed approach suited for
modeling stationary dynamical systems.

• We introduce a time-aware and higher-order extension of

3757



the Gated Recurrent Unit and Antisymmetric RNN (Sec-
tion 3.3).

• We provide insights into the introduced models with ex-
periments on data from two industrial input/output sys-
tems (Section 4). The code required to run the presented
experiments is publicly available1.

2 Related Work

This work is situated in between the fields of system iden-
tification, numerical techniques for differential equations,
and deep neural networks. We refer the reader to stan-
dard works in these areas (Ljung 2013; Butcher 2016;
Goodfellow, Bengio, and Courville 2016), and focus in the
following paragraphs on specifically related works.

System Identification with Neural Networks More than
two decades ago, Wang and Lin (1998) introduced ‘Runge
Kutta Neural Networks’, to predict trajectories of time-
invariant ODEs with unknown right-hand side. Their
core idea of combining neural networks and Runge-Kutta
schemes still applies to the underlying work.

Several authors have recently put forward techniques for
learning to compose partial differential equations from data.
Rudy et al. (2017) presented an efficient method to select
fitting nonlinear terms, from a library of potential candi-
date functions and their derivatives. Raissi and Kariadakis
(2018) proposed to use Gaussian Processes for learning sys-
tem parameters, to balance model complexity and data fit-
ting. Raissi (2018) introduced another interesting approach
whereby two neural network models are simultaneously
trained to model the solution as well as the right-hand side
of unknown partial differential equations.

Rudy, Kutz, and Brunton (2019) presented a new
paradigm on system identification from noisy data. Rather
than assuming ideal trajectories, they proposed simultane-
ously predicting the measurement noise on the training data,
while learning the system dynamics. For the latter, they used
multilayer feed-forward neural networks in a Runge-Kutta
scheme, which allows dealing with non-uniform timesteps.
They provided results on well-known autonomous dynam-
ical systems including the chaotic Lorenz system and dou-
ble pendulum. We focus on the use of general-purpose re-
current neural networks, which allow modeling input/output
systems. Their ideas on predicting the measurement noise
can however be applied in our setting, which provides an
interesting future research direction.

Ayed et al. (2019) proposed a general model for continu-
ous state-space dynamics, based on the adjoint state method,
and with the explicit Euler scheme for stepping through
time. As in most of the related work mentioned above, they
focus on initial-value problems, while we target input/output
systems. Importantly, their model is able to capture the en-
tire state dynamics even if these are only partly observed. In
our work, we also consider systems for which the entire state
is not captured by the observations alone, an ideal setting for
RNNs which maintain a hidden state through time.

1https://github.com/tdmeeste/TimeAwareRNN

The work by Zhu et al. (2017) is related to our work in
the endeavor to extend RNN models with temporal informa-
tion. They propose the Time-LSTM, engineered for applica-
tions in the context of recommendation engines. Its so-called
‘time gates’ are designed to model intervals over time, to
capture users’ short- and long-term interests.

The use of RNNs in modeling time series with missing
data was explored by Che et al. (2018). More in particu-
lar, they leveraged ‘informative missingness’, the fact that
patterns of missing values are often correlated with the tar-
get labels. They introduced the GRU-D, an extension of the
GRU with a mask indicating which input variables are miss-
ing, as well as as a decay mechanism to model the fading
influence of missing variables over time.

Recent Advances in Machine Learning The successful
use of neural networks in the field of dynamical systems,
has in turn inspired some recent developments in the area of
deep learning.

E (2017) shared ideas on using dynamical systems to
model high-dimensional nonlinear functions in machine
learning, pointing out the link between the Euler scheme and
deep residual networks.

Zhu and Fu (2018) started from the same link, in the area
of image recognition, and suggested to extend the residual
building blocks by multi-stage blocks, whereby suitable co-
efficients are learned jointly with the model (rather than re-
lying on existing Runge-Kutta schemes).

Recently, Chen et al. (2018) introduced Neural ODEs, a
new family of neural networks where the output is com-
puted using a black-box ODE solver (which could involve
explicit Runge-Kutta methods, or even more stable implicit
methods). They provide proof-of-concept experiments on a
range of applications. These include the ‘continuous depth’
setting, where ODE solvers (including a Runge-Kutta inte-
grator) are shown to be able to replace residual blocks for a
simple image classification task. They also discuss the ‘con-
tinuous time’ setting, and propose a generative time-series
model. That model represents the considered time series,
which may be unevenly spaced in time, as latent trajectories.
These are initialized by encoding the observed time series
using an RNN, and can be generated by the ODE solver at ar-
bitrary points forwards or backwards in time. Training of the
generative model is done as a variational auto-encoder. The
complementary value of our work is in the fact that we pro-
vide an input/output dynamical systems formulation, and we
believe that our extension from discrete RNNs to time-aware
RNNs for dynamical systems makes it straightforward to ap-
ply.

Chang et al. (2019) introduced the Antisymmetric RNN
(henceforth written ASRNN), again based on knowledge
of the Euler scheme for dynamical systems. The use of an
anti-symmetric hidden-to-hidden weight matrix in the in-
cremental recurrent scheme (as well as a small diffusion
term), ensured stability of the system. They demonstrated
their model’s ability to capture long-term dependencies, for
a number of image recognition tasks cast as sequence clas-
sification problems. What’s more, the ASRNN model is nat-
urally suited for modeling unevenly sampled time series:

3758



while Chang et al. view the step size as a fixed hyperparam-
eter to be tuned during model selection, it can just as well be
used as the actual time step, which we will further describe
in Section 3.3. We will adapt the ASRNN to become better
suited for modeling stationary systems.

Finally, we want to point out that our use of the term
‘higher-order’ models, refers to the order of the correspond-
ing Runge-Kutta method. The term ‘higher order neural net-
works’ has also been used for neural network layers with
multiplicative, rather than additive, combinations of features
at the input (Zhang 2012). Also, ‘higher order recurrent neu-
ral networks’ may refer to RNNs where the current hidden
state has access to multiple previous hidden states, rather
than only the last one.

3 Time-Aware RNNs

After a general treatment on adapting recurrent neural net-
works to deal with unevenly spaced data (Section 3.1), we
show how to use such models in higher-order Runge-Kutta
schemes (Section 3.2), and introduce the higher-order time-
aware extensions for the GRU and ASRNN (Section 3.3).

3.1 RNNs and ODEs

An RNN that models a discrete sequence of N inputs
{xn}Nn=1 and outputs {yn}Nn=1, can generally be described
as follows

hn = fRNN(xn,hn−1)

yn = g(hn)
(1)

The quantity hn is called the hidden state at time step n,
and is obtained by combining the input xn with the hid-
den state hn−1 from the previous time step through the cell
function fRNN, which contains the recurrent cell’s trainable
parameters. The initial hidden state h0 can be fixed to the
zero vector, or trained with the model parameters. The out-
put function g, which converts the hidden state hn to the
output yn, is typically a basic neural network designed for
classification or regression, depending on the type of output
data. The nature of the recurrent network is determined by
fRNN. It could be for instance an Elman RNN (Elman 1990)
or a GRU. Variations to Eq. (1) are possible, for example for
an LSTM where an additional internal cell state is passed
between time steps.

Now consider an unknown continuous-time dynamical
system, with inputs x(t) and outputs y(t) at time t. These
do not necessarily cover the entire state space, as argued in
(Ayed et al. 2019). We therefore explicitly introduce the state
variable h(t) which, when observed at one point in time, al-
lows determining the future system behavior, provided the
system equations and future inputs are known. Many dy-
namical systems in science and technology can be described
by an n’th order ordinary differential equation (ODE) (Cod-
dington and Levinson 1955). Assuming this holds for the
considered system, its system equations can be reduced to a
first-order ODE in the n-dimensional state variable h

dh(t)

dt
= F

(
x(t),h(t)

)

y(t) = G(h(t))
(2)

whereby G represents a mapping from the latent state space
to the output space. We assume time-invariant systems, i.e.,
the system equations only indirectly depend on the time,
through the state h(t) and a potential source x(t).

If we discretize time into a sequence {tn}Nn=0, with po-
tentially irregular step sizes δn = (tn+1− tn), and make use
of the differential form of the derivative over a single time
step, we can discretize the system equations as

hn+1 = hn + δnF
(
xn,hn

)

yn+1 = G(hn+1)
(3)

in which hn is shorthand for h(tn) and similarly for the
other quantities.

Because of the similarities between the ODE discretiza-
tion formulation (Eq. (3)) and the standard RNN formulation
(Eq. (1)), we will be able to use RNNs to model the system
equations from the considered unknown system. However,
there are two important differences between both formula-
tions.

Predicting ‘current’ vs. ‘next’ output First of all, where
the RNN allows predicting the output yn from the input xn

at the same position in the sequence (combined with the pre-
vious state hn−1), Eq. (3) only allows predicting the output
yn+1 at the next time step tn+1, given the input and state
at the current time step tn. For evenly sampled data, shift-
ing the entire output sequence over one position still allows
training a model that predicts the output yn at the same point
in time as the input xn while using a valid ODE discretiza-
tion scheme. This is no longer possible for unevenly spaced
data. However, our preliminary experiments on the consid-
ered datasets (see Section 4) show very little difference in
prediction effectiveness, if we train a model that predicts ei-
ther yn+1 or yn from xn (in the evenly spaced case). Yet,
it should be implemented with care in the case of irregu-
lar spacing, to avoid ending up with incorrect discretization
schemes.

Stationarity Secondly, the trainable function F in Eq. (3)
is only responsible for the ‘residual’ part besides hn when
calculating hn+1. In other words, the term hn acts as a skip
connection. Such skip connections form a key element in
deep residual neural networks which have been highly suc-
cessful for image recognition tasks (He et al. 2016). How-
ever, in the time dimension they can have unwanted side ef-
fects. Naively extending a standard RNN with cell function
fRNN to deal with uneven time steps according to the Euler
scheme, yields the following update equation

hn+1 = hn + δnfRNN(xn,hn) (4)

Consider for example an LSTM, its cell function bounded
between −1 and +1. When starting from a zero initial
state, the bounds of the state hn after n time steps become
±∑n−1

ν=0 δν , or approximately ±nμδ , with μδ the average
step size. This does not necessarily lead to numerical prob-
lems, but a model with a potentially linearly growing state
is ill-suited for modeling stationary time series. As will be
demonstrated in Section 4, it leads to sub-optimal results.

3759



A similar problem arises for the well-studied discrete-
time stochastic process of first order defined by

hn+1 = hn + εn (5)

with εn a serially uncorrelated zero-mean stochastic pro-
cess with constant variance. The ‘unit root’ is a solution
to the process’ characteristic equation. It leads to a trend
in the mean, and hence a non-stationary process (Guidolin
and Pedio 2018). However, the ‘differenced time series’
Δhn+1 = hn+1 − hn = εn no longer has this unit root,
and is stationary.

Our update equation (4) similarly suffers from the unit
root problem. We can therefore apply the idea of the differ-
enced time series, but at the same time need to adhere to the
general scheme (3) to correctly deal with variable sample in-
tervals. We hence propose to use the following function F
in system equation (3)

F
(
x,h

)
=

1

μδ

(
fRNN(x,h)− h

)
(6)

with μδ again denoting the average step size. The first-order
update equation for the state can then be written as

hn+1 =
(
1− δn

μδ

)
hn +

δn
μδ

fRNN(xn,hn)

The unit root introduced by the term hn in Eq. (4) has in-
deed disappeared because the expected value of (1−δn/μδ)
is zero. Note that unlike εn in Eq. (5), the RNN cell func-
tion in Eq. (4) is no zero-mean stochastic process, nor are its
consecutive outputs uncorrelated. There is therefore no the-
oretical guarantee that the resulting model will be station-
ary. However, the neural network no longer has to explicitly
‘learn’ how to compensate for the unit root problem induced
by the skip connection, and we hypothesize that it is there-
fore more naturally suited to deal with stationary data. For
simplicity, in the remainder this will be called the ‘station-
ary’ formulation, in contrast to the incremental models with
the unit root, for simplicity denoted as the ‘non-stationary’
one.

Combining equations (3) and (6) results in an extension
of the standard RNN scheme towards unevenly spaced time
series, in the sense that for evenly spaced samples (δn =
μδ) they reduce to the standard RNN in Eq. (1), or strictly
speaking, one applied to predicting yn+1 from xn and hn.

Note that the sample rate at inference time might not en-
tirely correspond to μδ , leading to a remnant of the unit root
effect. Our experimentation indicates that this is less of a
problem than for instance the presence of outliers (i.e., oc-
casionally very large gaps between consecutive samples).

3.2 Higher Order Neural Sequence Models

A well-known family of higher order iterative ODE methods
are the explicit Runge-Kutta methods (Butcher 2016). Ap-
plying an s-stage Runge-Kutta method to the ODE in Eq. (2)
leads to the update equation

hn+1 = hn + δn

s∑
i=1

bi ki (7)

Table 1: Non-zero coefficients of selected explicit Runge-
Kutta methods.

NAME (order) c2 c3 c4 b1 b2 b3 b4 a21 a31 a32 a43

EULER (1) 1
MIDPOINT (2) 1/2 1 1/2
KUTTA3 (3) 1/2 1 1/6 2/3 1/6 1/2 -1 2
RK4 (4) 1/2 1/2 1 1/6 1/3 1/3 1/6 1/2 1/2 1

where k1, . . . ,ks are found recursively over s stages, as

k1 = F
(
xn,hn

)

ki = F
(
x(tn + ciδn),hn + δn

i−1∑
j=1

aijkj

)
, i ∈ {2, . . . , s}

for predefined values of the coefficients bi, ci, and aij .
The error in predicting hn+1 from a correct hn is called
the local truncation error. A Runge-Kutta method of or-
der p denotes a method where the local truncation error
is of the order O(δp+1). The coefficients for a number of
well-known methods are listed in Table 1. For these meth-
ods, the number of stages equals their order. The update
scheme initially proposed in Eq. (3) corresponds to Euler’s
method (EULER), the simplest Runge-Kutta method. We fur-
ther consider the second-order Explicit Midpoint method
(MIDPOINT), Kutta’s third order method (KUTTA3), and the
classical fourth-order Runge-Kutta method (RK4).

If the function F is differentiable, the model can be
trained by backpropagating the gradient of the loss on
the predicted output through the considered sequence, and
within each time step, through the stages of the considered
Runge-Kutta update scheme. Existing RNN models fRNN
can hence be directly extended towards higher-order models
that are suited for unevenly spaced data, by combining the
proposed function F (x,h) in Eq. (6) with the Runge-Kutta
update equation (7).

Some recent works have already applied numerical ODE
methods in combination with neural networks to model dy-
namical systems (Chen et al. 2018; Rudy, Kutz, and Brunton
2019). However, they do not investigate input/output sys-
tems, the focus of this work. An important restriction to the
use of higher-order methods for input/output systems, is the
fact that the inputs x may be only available under the form of
samples {x(tn)}Nn=1. A valid Runge-Kutta update scheme
however requires evaluating the input x(tn + ciδn) at inter-
mediate points in time (as per Eq. (7)). As shown experimen-
tally in Section 4, this can be achieved through interpolation,
but the approximation may counteract the effectiveness of
higher-order methods. Another approach is to build a gener-
ative higher-order model for the input as well, which will be
explored in future work.

3.3 Time-Aware GRU and ASRNN

To make the results from the previous sections more tangi-
ble, we write out the proposed time-aware extension for the
GRU cell and for the ASRNN.

The cell function fGRU for the GRU (Cho et al. 2014),

3760



cast for the formulation hn+1 = fGRU(xn,hn), is given by

fGRU = (1− zn)� tanh
(
Whxn + Uh(rn � hn) + bh

)

+ zn � hn

in which � represents elementwise multiplication. The aux-
iliary vectors zn and rn are called the ‘gates’

zn = σ(Wzxn + Uzhn + bz)

rn = σ(Wrxn + Urhn + br)

with σ(.) the sigmoid function. With the hidden state di-
mension kh and input size kx, the trainable parameters
are given by the weight matrices Wh,Wz,Wr ∈ R

kh×kx ,
Uh, Uz, Ur ∈ R

kh×kh , and biases bh, bz, br ∈ R
kh . Apply-

ing Eq. (6) to avoid the unit root, yields for the time-aware
GRU

F (xn,hn) =
1

μδ

(
fGRU(xn,hn)− hn

)

=
z̃n

μδ
�
(
tanh

(
Whxn + Uh(rn � hn) + bh

)− hn

)

whereby for convenience (1−zn) is replaced by a new gate
z̃n. The function F (xn,hn) is to be used with Eq. (3) for
the first-order scheme, or with Eq. (7) for its higher-order
counterparts. These equations retain the expressiveness and
amount of trainable parameters from the original GRU cell,
but remain valid for unevenly spaced data without induc-
ing the unit root problem, and can be used in higher-order
schemes. In Section 4, the non-stationary formulation from
Eq. (4), i.e., F = fGRU, will be used as a baseline, to under-
line the importance of avoiding the unit root.

As a second example, we consider the gated ASRNN in-
troduced by Chang et al. (2019). Its cell function fASRNN
can be written as

fASRNN = zn � tanh
(
Whxn +Ahn + bh

)

with the gate zn = σ
(
Wzxn +Ahn + bz

)

The hidden-to-hidden matrix A ∈ R
kh×kh can be writ-

ten as A = (Wh − WT
h − γI). It corresponds to an anti-

symmetric matrix (i.e., the difference between a weight ma-
trix Wh and its transpose WT

h ), with a small negative value
on the diagonal (indicated by the non-negative ‘diffusion’
parameter γ and unit matrix I) to ensure stability. The orig-
inal ASRNN formulation follows the incremental (i.e., non-
stationary) first-order formulation, with the step size ε as a
hyperparameter for weighting the residual term in the state
update equation. We replace it by the actual step size δn/μδ

(normalized by its mean) to deal with uneven sample times,
and keep the scaling factor ε for tuning the model:

hn+1 = hn + ε
δn
μδ

fASRNN(xn,hn) (8)

Its stationary counterpart follows from Eq. (3) and Eq. (6)

hn+1 = hn +
δn
μδ

(
εfASRNN(xn,hn)− hn

)
(9)

with straightforward extension to higher-order schemes.

4 Experimental Validation

This section presents experimental results on two in-
put/output datasets. The main research questions we want
to investigate are (i) what is the impact of unevenly sam-
pled data on prediction results with standard RNNs vs. with
their time-aware extension, (ii) how important is the use
of state update schemes that avoid the unit root issue, (iii)
is there any impact from applying the time-aware models
with higher-order schemes, and (iv) how are the output pre-
dictions affected while applying such higher-order schemes
based only on sampled inputs?

After describing the selected datasets (Section 4.1),
the model architecture, and the training and evaluation
setup (Section 4.2), we describe the experiments and discuss
the results (Section 4.3).

4.1 Datasets

We have selected two datasets from STADIUS’s Identifica-
tion Database “DaISy” (De Moor et al. 1997), a well-known
database for system identification.

CSTR Dataset We use the Continuous Stirred Tank Re-
actor (CSTR) dataset2. It contains evenly sampled observa-
tions (10 samples per minute) from a model of an exother-
mic reaction in a continuous stirred tank reactor. There is
a single piecewise constant input signal, the coolant flow,
and two output signals, the resulting concentration and tem-
perature. The data was first studied by Lightbody and Irwin
(1997), who introduced a basic neural network model in the
context of adaptive control of nonlinear systems. It consists
of a sequence of in total 7,500 samples, of which we used
the first 70% for training, the next 15% for validation, and
the last 15% for testing. We used the original dataset for
an evenly spaced baseline model, and generated a version
with missing data, by randomly leaving out samples with
a probability of pmissing = 0.50. The average interval be-
tween consecutive samples is doubled (μδ = 0.2 minutes),
but the data now contains gaps up to 13 times the original
gap (δn ∈ [0.1, 1.3]). We normalize the input and outputs, by
subtracting their respective mean value in the training data,
and dividing by the standard deviation.

Winding Dataset We also use the data from a Test Setup
of an Industrial Winding Process3 (Winding). It contains a
sequence of 2,500 evenly sampled measurements (10 sam-
ples per second). The test setup consists of 3 reels, the ‘un-
winding reel’ from which a web is unwinded, after which it
goes over a traction reel, and is rewinded onto the ‘rewind-
ing reel’. The inputs are the angular speed of the 3 reels, as
well as the setpoint current of the motors for the unwinding
and rewinding reel, i.e., five inputs in total. The two outputs
correspond to measurements of the web’s tension in between

2ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process industry/
cstr.dat.gz

3ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process industry/
winding.dat.gz

3761



the reels. The data was introduced and first studied by Bas-
togne et al. (1997). We again created an artificial unevenly
sampled data sequence based on real-world data, by ran-
domly leaving out samples with probability pmissing = 0.50.
We used the first 70% of the input sequence for training, then
15% for development, and the last 15% for testing.

4.2 Experimental Sfinaletup

The overall goal of this work is to demonstrate how stan-
dard RNNs can be applied to unevenly sampled data from
input/output models. To keep the approach generic, we use
the same overall architecture and training procedure for both
datasets.

Model Architecture Modeling the data using a recurrent
network with the same input dimension kx as the number of
observed system inputs, appeared not sufficient. We there-
fore use RNN cell functions with a potentially higher input
size k and the same state size, and feed it with the observed
input data (1 dimension for CSTR, 5 for Winding) extended
to k dimensions by applying a trainable linear mapping from
the inputs to k dimensions, followed by a tanh non-linearity.
As output function G(h) (from Eq. (3)) we use a trainable
linear mapping from k state dimensions to the observed out-
put space (2 dimensions for both datasets).

Evaluation We report the root relative squared error
(RRSE) averaged over the kout output channnels. Being a rel-
ative metric, it allows comparing results between different
models and datasets. The RRSE is defined as (Botchkarev
2018)

RRSE =
1

kout

kout∑
i=1

√√√√
∑N

n=1

(
ŷ
(i)
n − y

(i)
n

)2
∑N

n=1

(
ŷ
(i)
n − μ

(i)
y

)2

in which ŷ
(i)
n represents the predicted test value for chan-

nel i at time step n, whereas y(i)n is the corresponding ground
truth value, with μ

(i)
y = 1

N

∑
n y

(i)
n the channel mean.

Per output channel, the RRSE can be interpreted as the
root mean squared (RMS) error of the prediction, normal-
ized by the RMS error of the channel’s average as a base-
line. In other words, for an RRSE value of 100%, the model
performs no better than predicting the mean.

The test value is obtained by evaluating the model through
the entire sequence, to ensure that the test sequence receives
the appropriate initial state, and calculating the RRSE on the
test sequence only. All reported values are the mean (and
standard deviation) over five training runs starting from a
different random initialization of the network.

Training We train the model with backpropagation-
through-time (Werbos 1988) over 20 time steps, and perform
the optimization in parallel over mini-batches of (possibly
overlapping) segments of 20 time steps. The hidden state h0

at the start of the entire sequence is randomly initialized, and
trained with the model. After each training epoch over all
segments, a forward pass through the entire train sequence

Table 2: Hyperparameters tuned over ranges b ∈ {64, 512},
k ∈ {5, 10, 20, 30, 40, 60, 80, 100, 150}, and λ ∈
{0.001, 0.003, 0.01}.

hyperparameter CSTR Winding
GRU ASRNN GRU ASRNN

minibatch size b 512 512 512 64
state size k 20 100 10 10
learning rate λ 0.001 0.001 0.003 0.01

is performed, and the resulting states are used as initial state
for the corresponding training segments (i.e., we used the
training ‘scheme 4’ as introduced by De Boom, Demeester,
and Dhoedt (2018)). We minimize the mean squared error
of the predicted outputs using the Adam optimizer (Kingma
and Ba 2014), and apply early stopping by measuring the
RRSE on the validation sequence.

In order to investigate whether the proposed models work
out of the box, rather than requiring substantial tuning, we
only tune the baseline GRU and ASRNN models, without
missing data. The same hyperparameters are then adopted
for the experiments in the uneven sampling setting. They are
shown in Table 2.

During our preliminary experiments, we noticed that ap-
plying regularization through dropout gave higher prediction
errors. Given the small amount of training data (i.e., a single
sequence of a few thousand measurements), our hypothesis
is that applying dropout while allowing for larger numbers
of trainable parameters did not allow to better capture the
system dynamics, while it made training more difficult. We
therefore chose to tune the model complexity only through
the hidden state size k.

4.3 Results and Discussion

Baselines The test error for the GRU and ASRNN base-
lines without missing data are shown in Table 3 (top two
lines). As mentioned above, the hyperparameters from Ta-
ble 2 are tuned on these. For both models, the formulation
without unit root is used. For the GRU, this comes down to
its standard formulation, whereas for the ASRNN, the sta-
tionary variant in Eq. (9) is used, which for evenly sampled
data reduces to hn+1 = εfASRNN(xn,hn).

Overall it can be seen that the prediction error for the
CSTR data is much lower than for the Winding data. This
is likely due to properties of the datasets. The CSTR dataset
contains smooth simulation results, and has a relatively
higher sample rate with respect to changes in the signal com-
pared to the Winding data, which consists of actual measure-
ments.

We created a number of baselines for the data with miss-
ing samples as well, also shown in Table 3. When the stan-
dard GRU is applied, ignoring the missing data, there is a
substantial increase of the error (‘standard, ignore missing’
in Table 3). The results are not dramatic, though. We hypoth-
esize that the model learns, to some extent, to compensate in
its output for sudden larger gaps in the input (due to larger
temporal gaps). From that perspective, it does make sense to

3762



Table 3: Baseline results with missing data. Displaying test
RRSE values in percentage points (mean ± std).

Model CSTR Winding

Baselines on all original samples
GRU (standard) 2.2± 0.5 20.1± 0.6
ASRNN (stationary) 2.5± 0.2 27.4± 3.9

Baselines with missing data
GRU (standard, ignore missing) 10.8± 0.6 30.2± 0.4
GRU (standard, extra input δn) 9.2± 1.4 28.9± 1.7
GRU (time-aware, non-station.) 79.7± 8.0 64.8± 10.2
ASRNN (time-aware, non-station.) 12.3± 1.1 41.5± 7.4

apply a standard RNN to unevenly sampled data. A straight-
forward way to augment standard RNN models with variable
time steps, is by providing the step size δn (normalized) as
an additional input signal to the model. This reduces the er-
ror by a few percentage points (‘standard, extra input δn’ in
the table). More advanced models, in line with (Zhu et al.
2017), may provide an even better alternative.

Finally, we applied the incremental Euler scheme of
Eq. (4) without compensation of the unit root, both for
the GRU and the ASRNN (indicated as ‘time-aware, non-
station.’). This leads to an increased error, confirming the
hypothesis from Section 3.1 that the presence of the unit
root negatively affects the modeling of stationary data. Note
however that the ASRNN seems less affected than the in-
cremental GRU model. The step size ε and the diffusion pa-
rameter γ from the original ASRNN were both set to 1.0 for
the baseline without missing data, but were now tuned over
the same values as in (Chang et al. 2019), without much im-
provement.

Time-aware higher-order models The results for the sta-
tionary time-aware higher-order GRU model are shown in
Table 4. The ‘constant’ vs. ‘linear’ input interpolation shown
in the table is related to the issue identified in Section 3.2 that
correct higher-order schemes require inputs evaluated in be-
tween samples, i.e., x(tn + ciδn), with ci depending on the
specific Runge-Kutta scheme. For the CSTR data, the con-
stant approximation x(tn + ciδn) ≈ xn is sufficient as the
inputs are piecewise constant over several time steps, and
higher-order schemes lead to lower errors. However, this is
not the case for the Winding dataset, where some of the in-
puts correspond to continuous variables. The results in Ta-
ble 4 indeed show that higher-order schemes are not benefi-
cial when the inputs are assumed piecewise constant within
each sample interval (column ‘constant’ for the Winding
data). However, with a simple linear interpolation between
consecutive inputs x(tn + ciδn) ≈ (1− ci)xn + ci xn+1, it
seems the output error again decreases for the tested higher-
order schemes. More advanced interpolation methods may
be more suited still, but were considered out of scope for
this work.

For both datasets, the EULER scheme performs a few per-
centage points worse than the standard GRU where the time
steps are not explicitly encoded (see baseline ‘ignore miss-
ing’ in Table 3). This might be related to the absence of hy-

Table 4: Stationary time-aware higher-order GRU with con-
stant vs. linear input interpolation for the datasets with miss-
ing data. Displaying test RRSE values in percentage points
(mean ± std).

Scheme CSTR Winding
constant constant linear

EULER 12.1± 1.3 33.1± 0.6 33.1± 0.6
MIDPOINT 11.0± 4.1 35.3± 2.1 28.2± 1.8
KUTTA3 9.9± 4.7 34.7± 4.3 27.1± 1.0
RK4 8.0± 0.4 32.2± 6.6 25.6± 1.4

perparameter tuning for the time-aware models. However,
increasing the order leads to gradually lower test errors for
the time-aware methods with appropriate input interpola-
tion. The 4’th order RK4 method leads to the overall lowest
error for the missing data setting, even without tuning.

Due to space constraints, Table 4 only shows time-aware
results for the stationary GRU. Note that the corresponding
ASRNN errors would remain slightly higher, consistent with
the baselines. Also, the non-stationary counterpart of Table 4
would show that the presence of the unit root annihilates the
positive effect of higher-order schemes entirely.

Summary We now shortly look back at the research ques-
tions formulated at the start of this section. In our setting,
randomly leaving out training and test samples from a se-
quence of input/output system measurements leads to an in-
crease in output prediction error. However, standard RNNs
can still make meaningful predictions, especially when the
temporal information is explicitly provided as a feature. For
the datasets under study, the proposed time-aware higher-
order schemes have the potential to compensate even bet-
ter for the missing data. Eliminating the unit root appears
however important when applying a standard RNN cell in
an incremental update scheme. Furthermore, for data with
continuously valued input samples, the use of higher-order
schemes only makes sense if a proper interpolation in the
input space is performed.

5 Conclusions and Future Research Ideas

This paper focused on using neural sequence models for in-
put/output system identification from unevenly spaced ob-
servations. We showed how to extend standard recurrent
neural networks to naturally deal with unevenly spaced data
by augmenting the update scheme with the local step size in
a way that allows modeling stationary dynamical systems,
and showed how the resulting model can be used in higher-
order Runge-Kutta schemes.

We provided experimental results for two different in-
put/output system datasets where we experimented with the
impact of randomly leaving out data samples. Applying the
time-aware model in higher-order schemes, gave better out-
put predictions compared to ignoring the uneven sample
times. The direct extension of RNNs with the incremental
Euler scheme to correctly account for uneven sample times
appeared to give inferior results. We hypothesized that this
was due to the unit root problem, leading to an inherently

3763



non-stationary model, and showed how to avoid that prob-
lem.

Future research includes looking into more complex in-
put/output systems with non-uniform noisy data. One poten-
tial research direction could involve the application of adap-
tive sampling schemes during forecasting. For example, the
introduced models could be readily used with the Runge-
Kutta-Fehlberg methods with adaptive step size (Fehlberg
1969) in a computationally efficient way. A further promis-
ing research direction is in extending the proposed tech-
niques for dynamical systems to generative sampling models
for time series as proposed by Chen et al. (2018). A poten-
tially interesting application domain would be in robotics,
where light-weight dynamical system models with adaptive
sample times could be of interest in terms of computational
efficiency.

Acknowledgments

This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” programme. I am grateful to Cedric
De Boom for his feedback on the paper, and to the anony-
mous reviewers for their useful suggestions.

References

Ayed, I.; de Bézenac, E.; Pajot, A.; Brajard, J.; and Gallinari,
P. 2019. Learning dynamical systems from partial observations.
arXiv:1902.11136.
Bastogne, T.; Noura, H.; Richard, A.; and Hittinger, J.-M. 1997.
Application of subspace methods to the identification of a winding
process. 1997 European Control Conference (ECC) 2168–2173.
Botchkarev, A. 2018. Performance metrics (error measures) in
machine learning regression, forecasting and prognostics: Proper-
ties and typology. arXiv:1809.03006.
Butcher, J. C. 2016. Numerical methods for ordinary differential
equations, 3rd edition. Wiley.
Chang, B.; Chen, M.; Haber, E.; and Chi, E. H. 2019. Antisymmet-
ricRNN: A dynamical system view on recurrent neural networks.
In International Conference on Learning Representations (ICLR
2019).
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y. 2018.
Recurrent neural networks for multivariate time series with missing
values. Scientific Reports 8(1):6085.
Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud, D. K.
2018. Neural ordinary differential equations. In Thirty-third
Conference on Neural Information Processing Systems (NeurIPS
2018), 6571–6583.
Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, (EMNLP 2014), 1724–
1734.
Coddington, E. A., and Levinson, N. 1955. Theory of ordinary
differential equations. New York: McGraw-Hill.
De Boom, C.; Demeester, T.; and Dhoedt, B. 2018. Character-
level recurrent neural networks in practice: comparing training and
sampling schemes. Neural Computing and Applications.

De Moor, B.; De Gersem, P.; De Schutter, B.; and Favoreel, W.
1997. DAISY: A database for identification of systems. Journal A
38(3):4–5.
E, W. 2017. A proposal on machine learning via dynamical sys-
tems. Communications in Mathematics and Statistics 5(1).
Eckner, A. 2014. A framework for the analysis of unevenly spaced
time series data. Technical report, working paper.
Elman, J. L. 1990. Finding structure in time. Cognitive Science
14(2):179–211.
Fehlberg, E. 1969. Low-order classical runge-kutta formulas with
step size control and their application to some heat transfer prob-
lems. Technical report, NASA, United States.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org.
Guidolin, M., and Pedio, M. 2018. Chapter 4 - unit roots and
cointegration. In Guidolin, M., and Pedio, M., eds., Essentials of
Time Series for Financial Applications. Academic Press. 113 –
149.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 770–778.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation 9(8):1735–1780.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. In Proceedings of the 3rd International Conference
on Learning Representations (ICLR).
Lightbody, G., and Irwin, G. W. 1997. Nonlinear control structures
based on embedded neural system models. IEEE Transactions on
Neural Networks 8(3):553–567.
Ljung, L. 2013. System Identification: An Overview. London:
Springer London. 1–20.
Raissi, M., and Kariadakis, G. E. 2018. Hidden physics models:
Machine learning of nonlinear partial differential equations. Jour-
nal of Computational Physics 125–141.
Raissi, M. 2018. Deep hidden physics models: Deep learning
of nonlinear partial differential equations. J. Mach. Learn. Res.
19(1):932–955.
Rudy, S. H.; Brunton, S. L.; Proctor, J. L.; and Kutz, J. N. 2017.
Data-driven discovery of partial differential equations. Science Ad-
vances 3(4).
Rudy, S. H.; Kutz, J. N.; and Brunton, S. L. 2019. Deep learning of
dynamics and signal-noise decomposition with time-stepping con-
straints. Journal of Computational Physics 396:483 – 506.
Wang, Y.-J., and Lin, C.-T. 1998. Runge-kutta neural network
for identification of dynamical systems in high accuracy. IEEE
Transactions on Neural Networks 9(2):294–307.
Werbos, P. J. 1988. Generalization of backpropagation with appli-
cation to a recurrent gas market model. Neural Networks 1(4):339
– 356.
Young, T.; Hazarika, D.; and Poria, S. 2017. Recent trends in deep
learning based natural language processing. arXiv:1708.02709.
Zhang, M. 2012. Artificial Higher Order Neural Networks for
modeling and simulation. IGI Global.
Zhu, M., and Fu, C. 2018. Convolutional neural networks com-
bined with runge-kutta methods. arXiv:1802.08831.
Zhu, Y.; Li, H.; Liao, Y.; Wang, B.; Guan, Z.; Liu, H.; and Cai, D.
2017. What to do next: Modeling user behaviors by time-LSTM.
In Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, IJCAI’17, 3602–3608. AAAI Press.

3764


