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Abstract

Recent approaches interpret deep neural works (DNNs) as
dynamical systems, drawing the connection between stability
in forward propagation and generalization of DNNs. In this
paper, we take a step further to be the first to reinforce this
stability of DNNs without changing their original structure
and verify the impact of the reinforced stability on the net-
work representation from various aspects. More specifically,
we reinforce stability by modeling attractor dynamics of a
DNN and propose relu-max attractor network (RMAN), a
light-weight module readily to be deployed on state-of-the-art
ResNet-like networks. RMAN is only needed during training
so as to modify a ResNet’s attractor dynamics by minimiz-
ing an energy function together with the loss of the original
learning task. Through intensive experiments, we show that
RMAN-modified attractor dynamics bring a more structured
representation space to ResNet and its variants, and more im-
portantly improve the generalization ability of ResNet-like
networks in supervised tasks due to reinforced stability.

1 Introduction

Numerous state-of-the-art deep learning tasks (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2015; Cho et al. 2014;
Goodfellow et al. 2014; Graves 2012) are powered by suc-
cessfully deployed deep neural networks (DNNs). One fun-
damental success of deep learning is that the large depth of
DNNs provides sufficient capability to fit large and compli-
cated datasets meanwhile they behave good generalization
ability (Zhang et al. 2016). While this is counter-intuitive
with the conventional theory about model complexity and
generalization (Zhang et al. 2016), many new interpretations
evolve to bring insights to the representation power of DNNs
and provide better design principles (Zhang et al. 2016;
Weinan 2017; Haber and Ruthotto 2018; Lu et al. 2018;
Veit, Wilber, and Belongie 2016; Ruthotto and Haber 2018;
Szegedy et al. 2013). One of these interpretations formu-
lates DNNs as discretized differential equations, which is re-

∗Tao Song is the corresponding author.
†This work was supported in part by National NSF of China

(NO. 61872234, 61732010, 61525204) and Shanghai Key Labora-
tory of Scalable Computing and Systems.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ferred to as dynamical systems interpretation (Weinan 2017;
Haber and Ruthotto 2018; Chang et al. 2017; Lu et al. 2018;
Ciccone et al. 2018; Chen et al. 2018; Ruthotto and Haber
2018). Specifically, the residual block of ResNet (He et al.
2016) is interpreted as one step of forward Euler discretiza-
tion. From the dynamical systems interpretation, the stabil-
ity of a forward propagation in DNNs is related with the
representation stability and the generalization ability of the
network (Ciccone et al. 2018; Haber and Ruthotto 2018;
Weinan 2017). In other words, a forward propagation is sta-
ble if similar inputs always converge to around some stable
representations (i.e., equilibria in Ciccone et al. (Ciccone et
al. 2018)) during the forward propagation, so that the out-
put of the network is stable against small perturbations from
the input. One example encountering the issue of stability is
the adversarial attacks (Szegedy et al. 2013) to the DNNs,
where small input perturbations lead to drastically different
prediction.

Although the connection between the stability and gen-
eralization of a DNN has been established (Ciccone et al.
2018; Haber and Ruthotto 2018; Weinan 2017), how to prop-
erly model the distribution of these equilibria in a given
task and quantify their impacts to the representation in a
DNN are not yet answered (Bengio, Courville, and Vin-
cent 2013). To address this, we examine the approach of
attractor dynamics (Hopfield 1982; Kam and Cheng 1989;
Bartlett and Sejnowski 1997; Wu et al. 2018), special forms
of system dynamics that settle down a system from various
different initial states to some steady states. These steady
states that the system evolve towards are referred to as at-
tractors, which can take many forms like a point or com-
plex manifolds (Milnor 1985) 1. As a widely existing dy-
namics in various dissipative system of the physical world,
attractor dynamics are also used in neural networks for
pattern retrieval and completion (Hopfield 1982; Kam and
Cheng 1989; Bartlett and Sejnowski 1997; Wu et al. 2018)
and biological memory retrieval (Poucet and Save 2005;
Kanerva 1988). Compared with equilibria, attractors provide
stronger convergence property. The convergence to attrac-
tors in neural networks can be directly analyzed with gradi-
ent descent through a probabilistic model (Wu et al. 2018)

1In this paper, we consider point attractors in the feature space.

3765



or an energy function (Zemel and Mozer 2001).
Built upon the idea of attractor dynamics, we aim at mod-

eling the attractor dynamics of a DNN to explore the im-
pact of reinforced stable forward propagation on network
performance. We propose a light-weight and practical mod-
ule, named as relu-max attractor network (RMAN), which
is ready to be deployed on state-of-the-art ResNet-like net-
works and improve their performance on supervised tasks.
Firstly, we categorize the network equilibria as centers of at-
tractors (Milnor 1985) in the feature space, which enables
us to model their distribution and optimize them with gra-
dient descent. Secondly, during training of a DNN, RMAN
assigns accurate target attractor dynamically for each input
through our proposed relu-max operation. Each target at-
tractor can be composited by RMAN’s learnable placement
attractors. Thirdly, a quadratic energy function is proposed
to quantify the attractor dynamics for each input. With-
out changing the architecture of a DNN, we can reinforce
the stability of a ResNet-like network by minimizing the
quadratic energy function during training. As illustrated in
Figure 1, the modified attractor dynamics bring more sta-
bility in sense that not only initial states of the same class
converge closer in the output feature space, but also the dy-
namics at the last few time steps are much smaller when the
network is trained with RMAN.

By means of RMAN, we conduct extensive experiments
to verify the impact of attractor dynamics on the represen-
tation of ResNet and its variants, including Neural ODE
(Chen et al. 2018). Our first finding is that modifying the
attractor dynamics and stability of ResNet-like networks
does improve their generalization ability on supervised clas-
sification tasks. Second, through experiments on different
datasets, we observe that the performance of RMAN is in-
sensitive to the predefined number of placement attractors.
Interestingly, the number of effective placement attractors
that dominate the attractor dynamics are quite consistent
across different network architectures on a given dataset,
which suggests that the learned attractors successfully cap-
ture important factors about a dataset and thus modeling
the attractor dynamics with RMAN can improve the gen-
eralization ability. Specifically, due to the structural design
of RMAN, spurious placement attractors deteriorate to near
zero norm, while target attractors are composited by differ-
ent effective placement attractors to model more compli-
cated dynamics. Third, we further evaluate the impact of
modeling attractor dynamics on the distribution of learned
representation. A noticeable effect is that RMAN signifi-
cantly reduces the variance of distribution in ResNet out-
put, suggesting that a more structured representation space
is brought by RMAN. While testing on Neural ODE (Chen
et al. 2018), we observe that a more complex input-output
mapping is learned in order to embed attractor dynamics
when training with RMAN.

To sum up, our contributions can be listed as follows:

• We propose to reinforce network stability of ResNet and
its variants by modeling their attractor dynamics so that
the network can learn a better distribution of stable repre-
sentation.

• We design an effective yet simple module, relu-max at-
tractor network (RMAN) to modify attractor dynamics in
ResNets without changing their structure.

• Through extensive experiments, we examine the be-
havior of attractor dynamics in ResNets with our pro-
posed RMAN and show reinforcing network stability with
RMAN can improve network generalization ability on
ResNet and its variants.

2 Background and Related Work

The dynamical systems perspective. Many recent ap-
proaches (Ciccone et al. 2018; Lu et al. 2018; Weinan 2017;
Chang et al. 2017) interpret the forward propagation of deep
neural networks as dynamical systems. Specifically, a deep
neural network is considered as a discrete dynamical system
that transforms different initial states (i.e., input patterns)
into output state (i.e., representation) through several time
steps, where the state dynamics at each time step are de-
scribed by one layer of the neural network. One typical ex-
ample is the ResNet-like structure that describes the trans-
formation between states at time step t and t+ 1:

xt+1 = xt +Δtf(xt), (1)

which is identical to one step of forward Euler discretization
of ordinary differential equations (ODEs) ẋ(t) = f(x(t))
(Lu et al. 2018; Weinan 2017; Haber and Ruthotto 2018).

This interpretation provides a new perspective on under-
standing deep neural networks and sheds light on the princi-
ples of network architecture design. The relation between
dynamical system and neural networks’ forward pass has
been analyzed in several papers (Haber and Ruthotto 2018;
Ciccone et al. 2018; Lu et al. 2018; Chang et al. 2017).
Weinan (Weinan 2017) proposed to view machine learn-
ing systems as continuous dynamical systems so that ideas
from mathematics and physics can be leveraged. Haber and
Ruthotto (Haber and Ruthotto 2018) further gave more in-
stantiated links between ResNet and differential equations
and enables stability modeling in simplified architectures.
Chang et al. (Chang et al. 2017) carried lesion study on
ResNet to support the dynamical systems property of deep
neural networks. Lu et al. (Lu et al. 2018) drew links from
the design of ResNet variants to dynamical systems, and
proposed a new ResNet architecture based on the linear
multi-step scheme from numerical ODEs (Ascher and Pet-
zold 1998). Ciccone et al. (Ciccone et al. 2018) pointed
out that the popular ResNet structures are autonomous and
proposed a non-autonomous structure with proved stability.
They showed that stable architectures have a significant re-
duction in generalization gap compared to the unmodified
ResNet counterpart.

Attractor dynamics and attractor networks. Attractor
arises from dynamical systems to describe the steady states
where a system may finally settle (Milnor 1985). Attractor
dynamics describe this convergence property and have been
found to play an important role in robust memory retrieval
(Poucet and Save 2005; Kanerva 1988). Attractor neural net-
works (Zemel and Mozer 2001) map inputs to steady attrac-
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(a) Flow map of a trained ResNet without RMAN.
The trajectories in the flow map diverge, resulting
diverged distribution of representation.

(b) Flow map of a ResNet trained with RMAN.
Blue points denote the placement attractors. The
trajectories converge closely, resulting structured
distribution of representation.

Figure 1: Flow map comparison without/with modifying attractor dynamics on a simplified ResNet. The plane denotes the 2-d
feature space and each arrow denotes the dynamics of its tail position x in the feature space (the output of f(x) in Eq. 1) at one
time step. The detailed setup is described in Section 3. Best viewed in color

tor states and model the attractor dynamics into their net-
works. Different attractor networks are designed for asso-
ciative memories (Kanerva 1988), noisy image reconstruc-
tion (Koch, Marroquin, and Yuille 1986), pattern completion
(Zemel and Mozer 2001) and generative modeling (Wu et al.
2018).

In many attractor networks, the attractor dynamics are
characterized by gradient descent in an energy function
(Hopfield 1982; Zemel and Mozer 2001) and the steady
states are where the energy is minimum (Hopfield 1982).
The design of the energy function depends on the domain
knowledge (Zemel and Mozer 2001). The simplest form of
an energy function can be a quadratic function, because we
can always approximate a smooth energy function with a
quadratic function in a suitable neighborhood (Kass 1997).

Recent memory augmented neural networks (Graves,
Wayne, and Danihelka 2014; Wu et al. 2018) potentiate the
attractor mechanism into sequence modeling. Given a fea-
ture vector x, many approaches (Graves, Wayne, and Dani-
helka 2014; Wu et al. 2018; Zemel and Mozer 2001) model
the attractor dynamics as follows:

f(x) = Σi
πid(mi, x)

Σjπid(mj , x)
mi, (2)

where mi is referred to as center of attraction (Zemel and
Mozer 2001) or memory (Graves, Wayne, and Danihelka
2014), πi indicates the pull strength and d(·) describes the
distance from each input x to the centers of attraction.

3 Reinforce Network Stability with Attractor

Dynamics

From dynamical systems interpretation, the main concern
in a supervised task is how to transform input state into
subset of the feature space, so that the target task can ex-
ploit the learned representation satisfactorily (Weinan 2017).
This subset can be an invariant set (Borrelli, Bemporad, and
Morari 2017) to ensure a stable representation (Ciccone et

al. 2018). Here, we further hypothesize that these sets are
attractors (Milnor 1985), so that we can model the attrac-
tor dynamics of a deep neural network (DNN) to reinforce
the stability of forward propagation. It is worth noting that,
given the DNN’s compositional structure and powerful ap-
proximation ability (Lin and Jegelka 2018), we aim to model
the attractor dynamics of a DNN itself. Like Dropout (Sri-
vastava et al. 2014), our module introduces no extra cost for
the network during inference.

To model the attractor dynamics of a DNN, firstly, a target
attractor needs to be assigned for each network output x. We
propose a relu-max attractor network (RMAN) to dynami-
cally compute a target attractor based on each x. Secondly,
to induce the network to learn attractor dynamics, i.e., ad-
justing network weights to produce an output x closer to the
target attractor, we propose to minimize a quadratic energy
function together with the loss of the target task. The energy
function guides each representation closer to the assigned
attractor after each iteration of training.
Relu-max attractor network. The proposed relu-max at-
tractor network g consists of h learnable placement attrac-
tors m1, · · · ,mh ∈ R

c, where h is set as a hyper-parameter.
Let xi ∈ R

c, i = 1, . . . , n denotes one feature vector at po-
sition i in a feature map of ResNet. Given xi as an input,
RMAN first evaluates the attraction strength between each
placement attractor mj , j = 1, · · · , h and xi through relu-
max operation. The attraction strength is defined as

aj(xi) =
relu(mT

j xi)

Σh
k=0relu(m

T
k xi)

. (3)

Then RMAN assigns a target attractor to xi as combination
of placement attractors by

g(xi) = Σh
j=0aj(xi)mj . (4)

The assigned target attractor is where we want xi to get close
to, as a reflection of the attractor dynamics that we would
like to model.
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There are two noticeable differences between our pro-
posed RMAN and the other attractor networks in the form of
Eq. 2. The first one is that we consider the output of RMAN
as the a target attractor. While in other methods (Zemel and
Mozer 2001; Graves, Wayne, and Danihelka 2014), the out-
puts of the attractor networks are often used to modify one
step of state dynamics. The second one is that we use our
proposed relu-max in Eq. 3 instead of its common counter-
parts like softmax (Graves, Wayne, and Danihelka 2014) or
Gaussian (Zemel and Mozer 2001). On the one hand, relu-
max preserves better locality than softmax. This is reflected
in the relu operation in Eq. 3, where if mT

j xi < 0 then the at-
traction strength aj(xi) = 0 and the jth placement attractor
has no effect when assigning a target attractor to xi. On the
other hand, softmax is monotonic, which means that for each
input xi there is a unique target attractor g(xi) if softmax is
used. In contrast, different xi can have the same g(xi) using
relu-max, which is a favored property to enforce inputs of
the same class to share similar target attractors.
Energy Function of Relu-Max Attractor Network. In or-
der to model the attractor dynamics of ResNet and induce
the output of ResNet to converge closer to a target attrac-
tor in the forward propagation, we minimize the following
quadratic energy function with gradient descent method,

E(xi) = ‖g(xi)− xi‖2. (5)

Note that, the outputs of a DNN are not forced to be ex-
actly close to placement attractor mj . Instead, they approach
the assigned target attractor g(xi), which can be composited
by many placement attractors as verified by our experiments.
End-to-End Training with Relu-Max Attractor Network.
In a supervised classification task like image classification,
for each input image u with class c, we minimize the en-
ergy function in Eq. 5 together with the cross-entropy loss
to update the network weights including placement attrac-
tors through gradient descent method,

l(x) = −P (c|u)log(P̃ (c|u)) + α

n
Σn

i E(xi), (6)

where x1, · · · , xn are from the tth layer of ResNet that
RMAN is inserted and α is a scaling factor. The real attrac-
tors of a system can be very complicated and more than sim-
ple point attractors (Milnor 1985), thus we multiply energy
function by a small scaling factor α in Eq. 6 to weaken its
impact in forming point attractors during training. As sug-
gested in (Haber and Ruthotto 2018), if all inputs converge
to few points during forward propagation, then the essen-
tial variations between inputs are eliminated in the output,
resulting in an ill-posed learning problem.
A Visualization of Learned Attractor Dynamics. An il-
lustration of the learned dynamics is given in Figure 2 to
demonstrate the impact of applying RMAN to a ResNet.
Figure 2a1 to Figure 2a4 shows the dynamics of ResNet
without RMAN while Figure 2b1 to Figure 2b4 shows those
trained with RMAN. For illustrative purpose, we construct a
simple classification dataset with two classes distributed as
in Figure 2a1 and Figure 2b1, where each data point x ∈ R

2

belongs to one of the classes. A simplified ResNet with 10
identical layers is used to classify the data. The tth layer is

set as xt+1 = xt + f(xt), where f(x) = W1relu(W
T
2 x)

describes the state dynamic between two consecutive layer
t and t + 1, with W1,W2 ∈ R

2×16. The state dynamic f is
shared across all layers so that we are only approximating
one flow map and can thus easily split and visualize every
time step of dynamics in the same feature space. The learned
flow map represented by f is shown in Figure 1, where each
arrow represents the output of f taken the arrow’s tail coor-
dinate as input.

In Figure 2, the sub-figure of time step t illustrates all the
outputs of the tth layer. We can clearly see the dynamics of
each x at different time steps, where it “moves” a little ac-
cording to the flow map at each time step. Although both re-
sults can be linearly classified at 10th time step, with RMAN
the output distribution is more structured in sense that they
are more concentrated within each class and the variance of
the distribution is much smaller. Note how data points flows
and finally get attracted together. On the contrary, the out-
puts of ResNet without RMAN diverge and span a much
larger space than the input distribution. This can be gener-
alized to complex deep networks with similar architectures
where multiple flow maps and more complex dynamics are
learned.

4 Experiments

4.1 Datasets and Implementation Details

We conduct various experiments on the datasets for various
tasks, including CIFAR10, CIFAR100 (Krizhevsky and Hin-
ton 2009) for image classification and Google Commands
(Warden 2017) for audio classification. On CIFAR10 and
CIFAR100, we follow the data augmentation in (He et al.
2015; Lu et al. 2018), a random crop of 32 × 32 after a
4-pixel padding on each side of image and random hori-
zontal flip. We use preact residual block (He et al. 2016)
on ResNet and LM-ResNet implementations. For network
depth 20, 32, 44, 56, and 110, we use a two layer bn-relu-
conv-bn-relu-conv structure and for networks with larger
depth the bottleneck structure is adopted. Our implemented
networks consist of a 3 × 3 conv layer, 3 residual layers, a
batch normalization (Ioffe and Szegedy 2015), a global aver-
age pooling and a fully connected layer. We train all the net-
works using SGD with a batch size of 128 and momentum
of 0.9. The learning rate starts with 0.1 and is devided by 10
at epoch 80/150, 120/225 and training terminates at epoch
160/300 on CIFAR10/CIFAR100, respectively. We apply a
weight decay of 0.0005 for all networks. For all our exper-
iments, we insert RMAN after the global average pooling
layer. We set the scaling factor α = 0.0001 and increase it
by 0.0001 every epoch. The placement attractors are initial-
ized with stand normal distribution.

4.2 Overall Performance on Classification Tasks
and Ablation Study

Overall performance. The main results of testing with
different numbers of placement attractors on different
datasets and network architectures are presented in Table 1.
Each experiment is tested three times and their mean and
standard deviation are shown. We have tested on ResNet
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(a1) Time step 0 (a2) Time step 2 (a3) Time step 6 (a4) Time step 10

(b1) Time step 0 (b2) Time step 2 (b3) Time step 6 (b4) Time step 10

Figure 2: Illustration of state dynamics in ResNet without/with RMAN. The upper row shows the results of ResNet without
RMAN while the bottom row demonstrates the results of ResNet with RMAN. The time step t represents the outputs of the tth
layer. Specifically, time step 0 represents the input data. A 10-layer simplified ResNet is used, as described in Section 3. Best
viewed in color

(He et al. 2016), LM-ResNet (Lu et al. 2018) and ResNext
(Xie et al. 2017) of various depths. LM-ResNet is a ResNet
variant that is directly inspired by linear multi-step method
for solving differential equations (Ascher and Petzold 1998).
The results show that RMAN can improve the classification
accuracy. This suggests that RMAN modified attractor dy-
namics and reinforced stability indeed improve the perfor-
mance of a deep neural network.

The average training/testing loss with/without RMAN are
shown in Figure 3a. The data are collected from ResNet-44,
and the RMAN results with different number of placement
attractors are all shown. With RMAN, a better generalization
gap is achieved where the gap between training loss (dotted
curve) and testing loss (solid curve) is smaller than with-
out RMAN, suggesting a better generalization gap. This is
also observed on all the other models in Table 1. This shows
that the reinforced network stability based on attractor dy-
namics is favourable for the network performance and it can
improve the network’s generalization ability.

Number of placement attractors. One thing worth notic-
ing is that the performance gain is similar for different num-
ber of placement attractors as presented in Table 1. We at-
tribute this to our design of RMAN in Eq. 3, where relu
filters out attraction between a pair of placement attractor
mj and network output xi whose dot product mT

j xi < 0.
This leads to the result that spurious attractors deteriorate to
zero norm with training going on and become ineffective in
assigning target attractor, as represented in Table 2, while
remaining placement attractors are able to assign sufficient
target attractors for modeling attractor dynamics that leads
to a performance gain.

Most importantly, only small but constant number of ef-
fective placement attractor is needed in modeling attractor
dynamics on a given dataset, as shown in Table 2. We define

a placement attractor effective when its norm ‖mi‖2 > 0.01
after training. The number of effective placement attrac-
tors is almost identical under different network architectures
and different numbers of predefined placement attractors.
In other words, these effective placement attractors capture
important factors about the dataset, as also can be revealed
from the difference in the average number of effective attrac-
tors between CIFAR10 and CIFAR100 datasets. On the one
hand, this accords with the previous observation that distri-
bution of these attractors embeds the knowledge from the
dataset (Sudharsanan and Sundareshan 1991). On the other
hand, this observation also suggests that while the attractor
dynamics bring stability to the neural network, the end-to-
end training of these attractors is also stable.

4.3 Evaluation of Learned Attractor Dynamics
and Stability

Interactions between learned placement attractors.
While the number of effective placement attractors after
training is almost constant, we find that their spatial rela-
tions are also similar across different network architectures
and different number of placement attractors. Let vector mj

and mk denote two effective placement attractors, in all our
trained networks, we have mT

j mk < 0 except when i = j.
Figure 4 illustrates this relationship between effective place-
ment attractors, where different colors of circle at position
(i, j) denote the value of dot product between mi and mj .
We can see that dot products between different effective
placement attractors are all below zero. This suggests that, if
the output of ResNet xi is close to any effective placement
attractor mj then it is likely to be affected solely by this at-
tractor. Due to the relu operation used in Eq. 3, if xi ≈ mj ,
then it is likely that relu(mT

k xi) = 0 for any k �= j, which
isolates xi from the attraction of other placement attractors.
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Dataset Model Layer
Number of Placement Attractors

h=0 16 64 256

CIFAR10 ResNet 20 7.95±0.08 7.90±0.05 7.61±0.07 7.68±0.20

ResNet 32 6.95±0.16 6.50±0.17 6.71±0.16 6.65±0.07

CIFAR100

ResNet 44 28.16±0.21 27.87±0.09 28.02±0.12 27.57±0.12

ResNet 56 27.28±0.16 27.12±0.15 26.90±0.06 26.67±0.37

LM-ResNet 110 25.46±0.20 24.76±0.15 24.58±0.29 24.36±0.36

LM-ResNet 164 22.44±0.15 22.02±0.07 22.09±0.14 21.86±0.18

ResNext 29 (8x64d) 19.59±0.10 18.33±0.08 18.43±0.02 18.22±0.11

ResNext 29 (16x64d) 18.64±0.06 17.62±0.06 17.45±0.04 17.38±0.02

Table 1: Comparison testing error (%) on different ResNet-like networks without/with RMAN and different number of place-
ment attractors, where h = 0 denotes networks trained without RMAN.

(a) Generalization gap of ResNet-44. The gap between
training (dotted curve) and testing (solid curve) loss of
ResNet with RMAN (red curve) is smaller than ResNet
without RMAN (blue curve), showing the modified at-
tractor dynamics improve the generalization.

(b) The norm of ResNet outputs from the global aver-
age pooling layer on test set. For networks with differ-
ent depths, there all exist a clear gap between the output
norms with/without applying RMAN.

Figure 3: Illustration of the Generalization gap and the norm of ResNets outputs trained without/with RMAN on CIFAR100.

Impact of attractor dynamics on the output distribution.
In Figure 4, the radius of each circle on the diagonal is equal
to the average attraction strength Σn

i=0aj(xi)/n over all n
outputs of a ResNet on a dataset, where maximum radius is
1 and denotes the maximum attraction that all outputs are
attracted solely by this placement attractor. For other circles
off the diagonal, the radius denotes the average attraction
strength over outputs x that are mostly attracted by both at-
tractors i and j. First, the sum of the radius on the diago-
nal is approximately one, suggesting that almost all outputs
are attracted by these effective placement attractors. Second,
the variations of radius of circles off the diagonal show that
many target attractors are composited by at least two effec-
tive placement attractors. This implies that the six effective
placement attractors assign various and more complex dis-
tributed target attractors to capture the dynamics of ResNet
on CIFAR100, which explains why with only six effective
placement attractors RMAN can improve the performance

of ResNet. Another observation to support the complex dis-
tribution of the target attractor is that among all the outputs
on CIFAR100, only around 4% of outputs xi are solely at-
tracted (i.e., aj(xi) > 0.9) by one placement attractor mj .

Figure 3b illustrates the impact of RMAN on the out-
put norms of ResNet on CIFAR100. The output of different
depths of ResNets in Table 1 are shown here. We display the
norm of the output of global average pooling. A clear gap
can be observed with/without RMAN. RMAN brings signif-
icantly variance reduction in the distribution of the output as
the norms are now much smaller, suggesting that the distri-
bution is more concentrated around the origin. We compare
the norms because we find that the means of these outputs
are all around 0, thus the norms reveal a rough distribution
of these outputs since it is roughly the variance of each com-
ponent in the outputs. This effect is more intuitive on the 2-d
dataset in Figure 2.
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Dataset Model
Number of Placement Attractors

Avg.
h=16 32 64 128 256 512

CIFAR10 ResNet 5.25 5.5 6 5.25 6 5.75 5.63

CIFAR100
ResNet 5.71 5.57 6 6.29 6 6.57

6.07LM-ResNet 6.67 6 5.67 5.67 6 6.67
ResNext 6 6 6.5 6.5 5.5 7

Table 2: Average number of effective placement attractors after training. Effective placement attractors have ‖m‖2 > 0.01.
The number of effective placement attractors is almost identical under different network architectures and different predefined
number of placement attractors.

Figure 4: The color of circle on position (i, j) shows the dot
product mT

i mj between the ith and jth effective placement
attractors. The radius of circle on position (i, j) shows the
average attraction of each effective attractor (or combination
of ith and jth attractor) to all network outputs. A reference
for the size of unit radius (i.e., maximum attraction) is given
at (1, 1). The data is gathered on CIFAR100 test set using
ResNet-110 trained with RMAN (256 placement attractors),
where there are six effective placement attractors after train-
ing. Best viewed in color

Approximated function complexity. We apply RMAN
on Neural ODE (Chen et al. 2018) and present the results
in Table 3. Neural ODE (Chen et al. 2018) is a radically new
design of neural network based on the idea of continuous
ODEs. The conventional stacked layer structure of a neu-
ral network, analog to multiple discrete time steps of ODEs,
is replaced with an ODE solver (Ascher and Petzold 1998)
to directly approximate a continuous differential equation.
Modern ODE solvers used in Neural ODE can monitor the
approximation error and adapt the number of function eval-
uations (NFE) to achieve requested approximation accuracy.
We also monitor NFE as reference to the function complex-
ity approximated by the Neural ODE with/without modify-
ing attractor dynamics. As shown in Table 3, after apply-
ing RMAN, NFE increases by 8.1 and 8.0 on CIFAR10
and CIFAR100 dataset, respectively. This suggests that a
more complex function (i.e., more complicated dynamics)
is learned by the Neural ODE to embed attractor dynamics
when RMAN is applied. With RMAN in a supervised classi-
fication, it requires a network’s final representation not only
to be linearly separable, but also more structured because of
the modified attractor dynamics, which lead to a more com-
plicated trajectory and improved accuracy.

Dataset Model
Num. of Error

NFE
Attractor (%)

CIFAR10 ODE-NET 0 12.09 26.3
ODE-NET 8 11.64 32.4

CIFAR100 ODE-NET 0 41.06 26.4
ODE-NET 16 40.54 32.4

Table 3: Performance of Neural ODE (Chen et al. 2018)
without/with RMAN. Trained with RMAN, the number
of function evaluations (NFE) increases—a more complex
function is learned to embed attractor dynamics.

Layer
Number of Placement Attractors

h=0 16 64 256
18 4.06±0.07 3.92±0.01 3.89±0.01 3.88±0.07

34 4.02±0.12 3.87±0.06 3.86±0.08 3.78±0.06

Table 4: Testing result on Google Command dataset. Com-
parison testing error (%) on ResNets without/with RMAN
and different number of placement attractors.

Experiments on audio recognition dataset. To examine
the generalization of our method, we perform experiments
on Google Commands (Warden 2017), a speech classifica-
tion dataset. It contains 30 classes of utterances, correspond-
ing to 30 classes of voice commands spoken pronounced dif-
ferent speakers. Following (Zhang et al. 2017), we extract
normalized spectrogram from the waveform of each utter-
ance at a sampling rate of 16 kHz and zero-pad each spec-
trogram to size 160 × 101. The result is shown in Table 4,
where each experiment is tested three times and their mean
and standard deviation are shown.

5 Conclusion

In this paper, we propose a novel relu-max attractor network
(RMAN) to model the attractor dynamics to reinforce sys-
tem stability of a deep neural network. RMAN is ready to be
deployed on the state-of-the-art ResNets-like network and it
is only required during training stage. We conduct extensive
experiments to demonstrate that reinforcing network stabil-
ity can improve network generalization ability on ResNet
and its variants.
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