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Abstract

Compressed communication, in the form of sparsification or
quantization of stochastic gradients, is employed to reduce
communication costs in distributed data-parallel training of
deep neural networks. However, there exists a discrepancy
between theory and practice: while theoretical analysis of
most existing compression methods assumes compression is
applied to the gradients of the entire model, many practical
implementations operate individually on the gradients of each
layer of the model.
In this paper, we prove that layer-wise compression is, in the-
ory, better, because the convergence rate is upper bounded
by that of entire-model compression for a wide range of bi-
ased and unbiased compression methods. However, despite the
theoretical bound, our experimental study of six well-known
methods shows that convergence, in practice, may or may not
be better, depending on the actual trained model and compres-
sion ratio. Our findings suggest that it would be advantageous
for deep learning frameworks to include support for both layer-
wise and entire-model compression.

1 Introduction

Despite the recent advances in deep learning and its wide-
spread transformative successes, training deep neural net-
works (DNNs) remains a computationally-intensive and time-
consuming task. The continuous trends towards larger vol-
umes of data and bigger DNN model sizes require to scale out
training by parallelizing the optimization algorithm across a
set of workers. The most common scale out strategy is data
parallelism where each worker acts on a partition of input
data. In each iteration of the optimization algorithm – typi-
cally the stochastic gradient descent (SGD) algorithm – every
worker processes a mini-batch of the input data and produces
corresponding stochastic gradients. Then, gradients from all
workers are aggregated to produce an update to model param-
eters to be applied prior to the next iteration. The gradient
aggregation process involves network communication and is
supported via a parameter-server architecture or collective
communication routines (e.g., all reduce).
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A major drawback of distributed training across parallel
workers is that training time can negatively suffer from high
communication costs, especially at large scale, due to the
transmission of stochastic gradients. To alleviate this problem,
several lossy compression techniques have been proposed
(Seide et al. 2014; Dettmers 2016; Alistarh et al. 2017; Wen
et al. 2017; Alistarh et al. 2018; Bernstein et al. 2018; Tang
et al. 2018; Wangni et al. 2018; Horváth et al. 2019).

Two main classes of compression approaches are sparsifi-
cation and quantization. Sparsification communicates only
a subset of gradient elements. For instance, this is obtained
by selecting uniformly at random k% elements or the top
k% elements by magnitude (Alistarh et al. 2018). Quantiza-
tion, on the other hand, represents gradient elements with
lower precision, thus using fewer bits for each element. For
instance, this is done by transmitting only the sign of each
element (Bernstein et al. 2018), or by randomized rounding
to a discrete set of values (Alistarh et al. 2017).

In theory, such methods can reduce the amount of commu-
nication and their analysis reveal that they provide conver-
gence guarantees (under certain analytic assumptions). Fur-
ther, such methods preserve model accuracy across a range
of settings in practice.

However, we observe a discrepancy between the theoret-
ical analysis and practical implementation of existing com-
pression methods. To the best of our knowledge, the the-
oretical analysis of every prior method appears to assume
that compression is applied to the gradient values of the
entire model. However, from our study of existing imple-
mentations (Zhang et al. 2017; Shi, Wang, and Chu 2017;
Lim, Andersen, and Kaminsky 2019; Shi, Chu, and Li 2019;
Horváth et al. 2019) and experience with implementing com-
pression methods, we observe that compression is applied
layer by layer, as illustrated in Figure 1. In fact, based on
the existing programming interfaces in modern distributed
machine learning toolkits such as PyTorch (pytorch.org ) and
TensorFlow (tensorflow.org ), a layer-wise implementation is
typically most straightforward because wait-free backpropa-
gation (Zhang et al. 2017) – where gradients are sent as soon
as they are available – is a commonly used optimization.

Importantly, layer-wise compression in general differs
from entire-model compression (though for certain quantiza-
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Figure 1: Contrived example of compressed communication
illustrating how layer-wise Top k compression (with k =
50%) differs from entire-model compression.

tion methods the results are identical). For example, Figure 1
shows the effects of Top k with a sparsification ratio of 50%,
highlighting that when entire-model compression is used, no
gradient for the last layer is transmitted at that specific step,
which may affect convergence. This suggests that the choice
of a compression approach may warrant careful consideration
in practice.

In particular, this discrepancy has important implications
that motivate this paper. First, since implementation artifacts
differ from what has been theoretically analyzed, do theo-
retical guarantees continue to hold? Second, how does the
convergence behavior in the layer-wise compression setting
theoretically compare to entire-model compression? Third, in
practice, are there significant differences in terms of conver-
gence behavior when entire-model or layer-wise compression
is applied? And if so, how do these differences vary across
compression methods, compression ratios, and DNN mod-
els? To the best of our knowledge, this is the first paper to
observe the above discrepancy and explore these questions.
To answer these questions, this paper makes the following
contributions.
Layer-wise bidirectional compression analysis: We in-
troduce a unified theory of convergence analysis for dis-
tributed SGD with layer-wise compressed communication.
Our analysis encompasses the majority of existing com-
pression methods and applies to both biased (e.g., Top
k, Random k, signSGD (Bernstein et al. 2018)) and un-
biased methods (e.g., QSGD (Alistarh et al. 2017), Tern-
Grad (Wen et al. 2017), CNAT (Horváth et al. 2019)). Ad-
ditionally, our analysis considers bidirectional compression,
that is, compression at both the worker side and parame-
ter server side, mimicking the bidirectional strategy used
in several compression methods (Bernstein et al. 2018;
Horváth et al. 2019). Our theoretical analysis gives a proof
of tighter convergence bounds for layer-wise compression as

compared to entire-model compression.
Evaluation on standard benchmarks: We confirm our an-
alytical findings by empirically evaluating a variety of com-
pression methods (Random k, Top k, TernGrad, Adaptive
Threshold, Threshold v, and QSGD) with standard CNN
benchmarks (Coleman et al. 2017) for a range of models
(AlexNet, ResNet-9, and ResNet-50) and datasets (CIFAR-10
and ImageNet). We mainly find that, in many cases, layer-
wise compression is better or comparable to entire-model
compression in terms of test accuracy at model convergence.
However, despite the theoretical findings, our empirical re-
sults reveal that in practice there are cases, such as the Top
k method with small sparsification ratio k and small model
sizes, where layer-wise compression performs worse than
entire-model compression. This suggests that the current
practice of implementing compression methods in a layer-
wise fashion out of implementation expedience may not be
optimal in all cases. Thus, it would be advantageous for dis-
tributed deep learning toolkits to include support for both
layer-wise and entire-model compression.

2 Preliminaries

Distributed DNN training builds on the following optimiza-
tion problem:

minx∈Rd f(x) := minx∈Rd
1
n

∑n
i=1 Eξ∼DiFi(x, ξ)︸ ︷︷ ︸

:=fi(x)

. (1)

Without loss of generality, consider the above problem as a
classical empirical risk minimization problem over n work-
ers, where Di is the local data distribution for worker i, ξ is a
random variable referring to a sample data. These problems
typically arise in deep neural network training in the syn-
chronous data-parallel distributed setting, where each worker
has a local copy of the DNN model. Each worker uses one
of n non-intersecting partitions of the data, Di, to jointly
update the model parameters x ∈ R

d, typically the weights
and biases of a DNN model. In this paradigm, the objective
function f(x) is non-convex but has Lipschitz-continuous
gradient. One of the most popular algorithms for solving (1)
is the stochastic gradient descent (SGD) algorithm (Robbins
and Monro 1951). For a sequence of iterates {xk}k≥0 and a
step-size parameter ηk > 0 (also called learning rate), SGD
iterates are of the form: xk+1 = xk − ηkg(xk), where g(xk)
is an unbiased estimator of the gradient of f , that is, for a
given xk we have E(g(xk)) = ∇f(xk).
Notations. We write the matrices in bold uppercase letters
and denote vectors and scalars by simple lowercase letters.
We denote a vector norm of x ∈ R

d by ‖x‖, the �1-norm
by ‖x‖1, the �2-norm by ‖x‖2, and for a positive definite
matrix M, we define ‖x‖M :=

√
x�Mx. By xi,j

k , we de-
note a vector that results from the kth iteration, at the ith

worker, and represents the jth layer of the deep neural net-
work. Similar notation follows for the stochastic gradients.
When j is implied, we simplify the notation as xi

k and vice-
versa. Also, by x1:n

k we denote a collection of n vectors xi
k,

where i = 1, . . . , n. Further, for the ease of notation, denote
f(xk) = fk.
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Algorithm 1 Layer-wise gradient compression framework
Input: Number of workers n, learning rate η, compression
operators QW (worker side) and QM (master side)
Output: The trained model x

1: On each worker i:
2: for k = 0, 1, . . . do

3: Calculate stochastic gradient gi,jk of each layer j
4: g̃i,jk = QW |j(g

i,j
k )

5: Send compressed gradient g̃i,jk

6: Receive aggregated gradient g̃jk
7: Collate entire-model gradient g̃k = g̃1:Lk
8: xk+1 = xk − ηkg̃k
9: end for

10: return x

1: On master node, at each step k and for each layer j:
2: Receive g̃i,jk from each worker
3: g̃jk = QM |j( 1n

∑n
i=1 g̃

i,j
k )

4: Broadcast aggregated compressed gradient g̃jk

3 Layer-wise Gradient Compression

We define a general bidirectional compression framework
that is instantiated via two classes of user-provided func-
tions: (1) a compression operator QW at each worker (which
for simplicity, we assume is the same at each worker and
for every layer), and (2) a compression operator QM at the
master node. The master node abstracts a set of parameter
servers. We now introduce the framework and then formalize
the setup under which we analyze it. Our analysis follows in
the next section.

Conceptually, based on its local copy of the model at step k,
each worker first computes the local stochastic gradient gi,jk
of each layer j (from 1 to L) and then performs layer-wise
compression to produce g̃i,jk = QW |j(g

i,j
k ). After that, each

worker transmits g̃i,jk to the master. The master collects all
the gradients from the workers, aggregates them (via averag-
ing), and then uses the compression operator QM to generate
g̃jk := QM |j( 1n

∑n
i=1 g̃

i,j
k ). The master then broadcasts the

results back to all workers. Each worker recovers the entire-
model gradient g̃k by collating the aggregated gradient of
each layer g̃jk and then updates the model parameters via the
following rule (where η is the learning rate):

xk+1 = xk − ηkg̃k. (2)

This process continues until convergence. Algorithm 1 lists
the steps of this process.

We note that this framework is agnostic to the optimiza-
tion algorithm. We consider SGD in this paper. However,
given access to xi,j

k and g̃jk, Algorithm 1 can be adapted to
any other popular optimizer used to train DNNs, such as
ADAM (Kingma and Ba 2015), ADAGrad (Duchi, Hazan,
and Singer 2011) or RMSProp.

Moreover, the framework supports different compression
operators at the worker side and master side as our general
theory supports it. In the limit, the compression operator may

also differ between layers, including the identity function as
an operator for specific layers to avoid compressing those.
This is also covered by our theory.

Finally, while we cast our framework on the parameter-
server architecture, it is easy to see that it generalizes to
collective routines (specifically, all reduce) since in that
case, there is no master and this behavior is modeled by
taking QM as the identity function.

3.1 Setup

We now formalize the above concepts and state the general
assumptions we make (several of which are classical ones).

Assumption 1. (Lower bound) The function f is lower
bounded; that is, there exists an f� ∈ R such that f(x) ≥ f�,
for all x.

Assumption 2. (L-smoothness) The function f is L smooth
if its gradient is L-Lipschitz continuous, that is, for all x, y ∈
R

d, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Assumption 3. (Unbiasedness of stochastic gradient) The
stochastic gradient is unbiased, that is,

E(gk|xk) = ∇fk. (3)

If one assumes that the stochastic gradient has bounded
variance denoted as Σ, then, for a given symmetric positive
definite (SPD) matrix A, one has

E(‖gk‖2A|xk) = Trace(AΣ) + ‖∇fk‖2A,

where Trace(X) denotes the sum of the diagonal elements
of a matrix X. A relaxed assumption of the bounded variance
is the strong growth condition on stochastic gradient.

Assumption 4. (Strong growth condition on stochastic gra-
dient) For a given SPD matrix A, a general strong growth
condition with an additive error is

E(‖gk‖2A|xk) ≤ ρ‖∇fk‖2A + σ2, (4)

where ρ > 0 and σ > 0.

A similar assumption was proposed in (Vaswani, Bach, and
Schmidt 2019; Bottou, Curtis, and Nocedal 2018; Bertsekas
and Tsitsiklis 1996) when A is the identity matrix, that is, for
the �2-norm. For overparameterized models such as DNNs, it
is common practice to assume σ = 0; and the condition says
that the growth of stochastic gradients is relatively controlled
by the gradient ∇fk (Vaswani, Bach, and Schmidt 2019).
That is, there exists a ρ > 0 such that

E(‖gk‖2A) ≤ ρ‖∇fk‖2A.

Before defining compression operators formally, below we
introduce an assumption that compressor operators should
obey. Consider a compression operator Q(·) : Rd → R

d.

Assumption 5. (Compression operator) For all vectors x ∈
R

d the compression operator Q(·) satisfies

EQ‖Q(x)‖22 ≤ (1 + Ω)‖x‖22. (5)

where the expectation EQ(·) is taken over the internal ran-
domness of the operator Q(·) and Ω > 0.
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Remark 1. A broad range of compression operators, whether
biased or unbiased, satisfy Assumption 5. In particular, ex-
isting compression operators such as Random k, Top k,
signSGD, unbiased Random k, QSGD, CNAT, TernGrad,
stochastic rounding, adaptive compression, respect this as-
sumption. Moreover, if there is no compression, then Ω = 0.

Following (Bergou, Gorbunov, and Richtárik 2019), we
generalize their assumption (c.f. Assumption 3.3) that im-
poses a descent property to the stochastic gradient. This as-
sumption lower bounds the expected inner product of the
stochastic gradient g̃k with the gradient ∇fk with a positive
quantity depending on a power of the gradient norm while
allowing a small residual on the lower bound.
Assumption 6. There exists 0 < α ≤ 2 such that

E
[
g̃�k ∇fk

] ≥ E‖∇fk‖α +Rk, (6)

where ‖ · ‖ is a vector norm in R
d and Rk is a small scalar

residual which may appear due to the numerical inexactness
of some operators or due to other computational overheads.

By setting α = 1 and Rk = 0, we recover the key assump-
tion made by (Bergou, Gorbunov, and Richtárik 2019).

In light of our framework and the assumptions made, we
now define a general layer-wise compression operator.
Definition 1. (Layer-wise compression operator.) Let Q(·) :
R

d → R
d be a layer-wise compression operator such that

Q := (Q1 Q2 · · ·QL), where each Qj(·) : R
dj → R

dj ,
for j = 1, 2, · · · , L with

∑L
j=1 dj = d be a compression

operator.
The following lemma characterizes the compression made

by biased layer-wise compression operators.
Lemma 1. Let Q(·) : Rd → R

d be layer-wise biased com-
pression operator with Q := (Q1 Q2 · · ·QL), such that,
each Qj(·) : Rdj → R

dj for j = 1, 2, · · · , L satisfies As-
sumption 5 with Ω = Ωj . Then we have

EQ

(‖Q(x)‖22
) ≤

∑
1≤j≤L

(1 + Ωj)‖xj‖22

≤ max
1≤j≤L

(1 + Ωj)‖x‖22. (7)

4 Convergence Analysis
We now establish the convergence of the above-
defined layer-wise bidirectional compression scheme.
The proofs are available in a companion tech-
nical report (Dutta et al. 2019). Let the matrix
WW := diag((1 + Ω1

W )I1 (1 + Ω2
W )I2 · · · (1 + ΩL

W )IL)
be a diagonal matrix that characterizes the layer-wise com-
pression at each worker, such that for each j = 1, 2, · · · , L,
Ij be a dj × dj identity matrix. Similarly, to characterize
the layer-wise compression at the master node, we define
WM . Given that Ωj

W ,Ωj
M ≥ 0 for each j = 1, 2, · · · , L,

therefore, WW and WM are SPD matrices. Denote
ΩM := max1≤j≤L Ωj

M , ΩW := max1≤j≤L Ωj
W . Further

define A := WMWW .
In the next lemma, we consider several compression oper-

ators that satisfy Assumption 6. For instance, these include
unbiased compression operators, as well as Random k and
signSGD.

Lemma 2. We note the following:
i. (For unbiased compression) If g̃k is unbiased (the case

when QM and QW are unbiased), then

E
[
g̃�k ∇fk

]
= E‖∇fk‖22. (8)

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ =
‖ · ‖2 and Rk = 0.

ii. If QM and QW are the Random k compression operator
with sparsification ratios kM and kW , respectively, then

E
[
g̃�k ∇fk

]
= kMkW

d2 E‖∇fk‖22. (9)

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ =
kMkW

d2 ‖ · ‖2, and Rk = 0.
iii. Let QM be the layer-wise Random kMj

compression
operator for each layer j. Similarly, QW is the layer-
wise Random kWj

compression operator for each layer
j, then

E
[
g̃�k ∇fk

]
= E‖∇fk‖2B, (10)

where B=diag
(
kM1

kW1

d2
1

I1
kM2

kW2

d2
2

I2 · · · kML
kWL

d2
L

IL

)
.

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ =
‖ · ‖B and Rk = 0.

iv. Let QM and QW be the sign function, similar to that in
signSGD, then

E
[
g̃�k ∇fk

] ≥ E‖∇fk‖1 +Rk. (11)

Therefore, g̃k satisfies Assumption 6 with α = 1, ‖ · ‖ =
‖ · ‖1, and Rk = O (

1
BS

)
, where BS is the size of used

batch to compute the signSGD.
Similar to the cases mentioned in Lemma 2, we can char-

acterize several other well-known compression operators or
their combinations. Our next lemma gives an upper bound on
the compressed stochastic gradient g̃k.
Lemma 3. Let Assumption 4 hold. With the notations defined
above, we have

E‖g̃k‖22 ≤ ρ‖∇fk‖2A + σ2. (12)

Remark 2. If gik has bounded variance, Σ, say, then
Trace(AΣ) = σ2.

Now we quote our first general inequality that the iterates
of (2) satisfy. This inequality does not directly yield conver-
gence of the scheme in (2). However, this is a first necessary
step to show convergence. We note that the matrix A and the
quantity σ quantify layer-wise compression.
Proposition 1. With the notations and the framework defined
before, the iterates of (2) satisfy

ηk

(
E‖∇fk‖α − Lηk

2 E‖∇fk‖2A
)

≤ E(fk − fk+1) (13)

−ηkRk +
Lη2

kσ
2

2 .

Remark 3. If g̃k is an unbiased estimator of the gradient, then
α = 2, ‖ · ‖ = ‖ · ‖2, A = I, and Rk = 0. Therefore, (13)
becomes

ηkE‖∇fk‖22
(
1− Lρηk

2

)
≤ E(fk − fk+1) +

Lη2
kσ

2

2 .

The above is the classic inequality used in analyzing SGD.
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In the non-convex setting, it is standard to show that over
the iterations the quantity mink∈[K] E(‖∇fk‖2) approaches
to 0 as K → ∞. Admittedly, this is a weak statement as it
only guarantees that an algorithm converges to a local mini-
mum of f . To facilitate this, next we quote two propositions:
one is for the special case when α = 2; the other one cov-
ers all cases α ∈ (0, 2]. In the propositions, for simplicity,
we use a fixed step-size η. One can easily derive the conver-
gence of Algorithm 1 under general compression Q to the
ε-optimum by choosing a sufficiently small or decreasing
step-size, similarly to the classical analysis of SGD.
Proposition 2. (Special case.) Consider α = 2, and Rk = 0.
Let C > 0 be the constant due to the equivalence between
the norms ‖ · ‖ and ‖ · ‖A, and K > 0 be the number of

iterations. If ηk = η = O
(

1√
K

)
< 2

LCρ then

∑K
k=1 E‖∇fk‖2

K ≤ O
(

1√
K

)
.

Proposition 3. (General case.) Assume ‖∇fk‖ ≤ G. Let
C > 0 be the constant coming from the equivalence between
‖ · ‖ and ‖ · ‖A. Let ηk = η = O

(
1√
K

)
< 2

LCρG2−α . Let

a :=
(
1− LCρG2−αη

2

)
> 0, then

∑K
k=1 E‖∇fk‖α

K ≤ O
(

1√
K

)
+

∑K
k=1 Rk

aK .

Remark 4. Note that if we assume small residuals
such that for all k, Rk = O

(
1√
K

)
, then we have

∑K
k=1 E‖∇fk‖α

K ≤ O
(

1√
K

)
.

Remark 5. From the above propositions, immediately one
can observe, Kmink∈[K] E(‖∇fk‖α) ≤

∑k
k=1 E(‖∇fk‖α)

and hence the above propositions directly imply convergence
of the iterative scheme in (2) under layer-wise compression.
Remark 6. Note that for all the cases we mentioned in
Lemma 2, except for signSGD, we have α = 2, and
Rk = 0, so we are in Proposition 2. For signSGD, |Rk| ≤
O(1/BS) so if one uses BS = O(

√
K), then we get

∑K
k=1 E‖∇fk‖α

K ≤ O
(

1√
K

)
.

We note that our convergence analysis can be extended to
convex and strongly convex cases.
Layer-wise compression vs entire-model compression.
From our analysis, a natural question arises: can we relate the
noise for layer-wise compression with that of entire-model
compression? The answer is yes and we give a sharper esti-
mate of the noise bound. From our convergence results, we
see that the error for layer-wise compression is proportional
to Trace(A) =

∑L
j=1(1 + Ωj

M )(1 + Ωj
W ). This is less than

or equal to Lmaxj(1+Ωj
M )(1+Ωj

W ), which is the error for
using bidirectional compression applied to the entire model.

5 Empirical Study

We implement several well-known compression methods and
show experimental results contrasting layer-wise with entire-
model compression for a range of standard benchmarks.

5.1 Implementation highlights

We base our proof-of-concept implementation on PyTorch.1
Layer-wise and entire-model compression share the same
compression operations. The difference is the inputs used
with each invocation of the compressor. As with other mod-
ern toolkits, in PyTorch, the gradients are computed layer-by-
layer during the backward pass, starting from the last layer
of the model. As such, layer j’s gradient is available as soon
as it is computed and before backward propagation for layer
j−1 starts. Distributed training typically exploits this charac-
teristic to accelerate training by overlapping some amount of
communication with the still ongoing gradient computation.
In the layer-wise setting, our implementation invokes the
compressor independently for the gradient of each layer as
soon as it is available. In contrast, in the entire-model setting,
our implementation waits until the end of the backward pass
and invokes the compressor once with the entire model gra-
dients as input. Clearly, this introduces an additional delay
before communication starts; however, with smaller volumes
of transmitted data, the benefits of compressed communica-
tion can eclipse this performance penalty.

5.2 Experimental setting

Compression methods. We experiment with the following
compression operators: Random k, Top k, Threshold v, Tern-
Grad (Wen et al. 2017), Adaptive Threshold (Chen et al.
2018), and QSGD (Alistarh et al. 2017). Given an input vec-
tor, Random k uniformly samples k% of its elements; Top k
selects the largest k% elements by magnitude; Threshold v
selects any element greater or equal to v in magnitude.
Benchmarks. We adopt DAWNBench (Coleman et al. 2017)
as a benchmark for image classification tasks using con-
volutional neural networks (CNNs). We train AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), ResNet-9 and
ResNet-50 (Kaiming et al. 2016) models. We use standard
CIFAR-10 (Krizhevsky 2009) and ImageNet (Deng et al.
2009) datasets.
Hyperparameters. We set the global mini-batch size to
1,024 (the local mini-batch size is equally divided across
workers); the learning rate schedule follows a piecewise-
linear function that increases the learning rate from 0.0 to
0.4 during the first 5 epochs and then decreases to 0.0 till the
last epoch. Unless otherwise noted, CIFAR-10 experiments
run for 24 epochs and ImageNet experiments for 34 epochs.
Where applicable, we use ratio k in {0.1, 1, 10, 30, 50}%.
Environment. We perform our experiments on server-
grade machines running Ubuntu 18.04, Linux 4.15.0-54,
CUDA 10.1 and PyTorch 1.2.0a0 de5a481. The machines
are equipped with 16-core 2.6 GHz Intel Xeon Silver 4112
CPU, 512 GB of RAM and 10 Gbps network interface cards.
Each machine has an NVIDIA Tesla V100 GPU with 16 GB
of memory. We use two machines for CIFAR-10 experiments
while we use four machines for ImageNet experiments.
Evaluation metrics. We report the accuracy on a held-out
testing dataset evaluated at the end of each epoch during the
training process. We compare the test accuracy of layer-wise
and entire-model compression.

1Available at https://github.com/sands-lab/layer-wise-aaai20.
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(a) AlexNet

(b) ResNet-9

Figure 2: CIFAR-10 test accuracy for Random k compres-
sion.

5.3 Experimental Results

Below we illustrate the results for each compression method.
In a nutshell, our results show that both layer-wise and entire-
model compression approaches achieve in most cases similar
convergence behavior and test accuracy. However, certain
compression methods, namely, TernGrad, QSGD, and Adap-
tive Threshold achieve significantly better accuracy using
layer-wise compression. This is because per-layer compres-
sion in these cases capitalizes on more fine-grained represen-
tations that reduce the overall compression error.
Random k. Figure 2 reports results for Random k compres-
sion while training AlexNet and ResNet-9 on CIFAR-10. We
observe that layer-wise Random k achieves comparable re-
sults to entire-model compression at different sparsification
ratios, except for ratio of 0.1% where layer-wise supersedes
entire-model compression. This is not surprising because
both layer-wise and entire-model compression approaches
sample uniformly at random gradient elements, and so, every
element has an equal probability of being sampled regardless
of its magnitude. We also notice that for ratios less than 10%,
Random k has a slower rate of convergence for both com-
pression approaches compared to other compression methods
(shown below). This suggests that randomly selecting a sam-
ple of gradient elements with no regard to their importance is
not ideal, especially for small sparsification ratios.
TernGrad. Figure 3 presents the results of TernGrad com-
pression for several benchmarks. We observe that with Tern-
Grad, layer-wise compression achieves consistently higher
test accuracy compared to entire-model compression. Mostly
this result is attributed to the following. As an unbiased quan-
tization method, TernGrad scales the gradient values (i.e.,
three numerical levels {−1, 0, 1}) by a scalar computed as a
function of the gradient vector and its size. For entire-model

(a) CIFAR-10 test accuracy

(b) ImageNet top-5 test accuracy

Figure 3: TernGrad compression.

(a) CIFAR-10 test accuracy

(b) ImageNet top-5 test accuracy

Figure 4: QSGD compression (with s = 256).

compression, there is a single scalar and this may be looser
than each layer’s scalar used in layer-wise compression. Thus,
when the model is updated (line 8 of Algorithm 1), entire-
model compression has higher probability of error.
QSGD. The results using QSGD, shown in Figure 4 are sim-
ilar to TernGrad. We note that ImageNet layer-wise accuracy
is 1.52× better than entire-model compression.
Adaptive Threshold. Figure 5 shows the results of Adaptive
Threshold compression while training AlexNet and ResNet-9
on CIFAR-10. As before, layer-wise compression achieves
better accuracy compared to entire-model compression. The
reasoning for this is similar to TernGrad: here, a per-layer
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Figure 5: CIFAR-10 test accuracy for Adaptive Threshold.

Figure 6: CIFAR-10 test accuracy for Threshold v compres-
sion.

threshold chosen with respect to the layer’s gradient val-
ues performs better than a single threshold selected for the
entire-model gradient values. However, we note that this
compression method, compared to others, induces slower
convergence and only achieves at best ≈ 70% accuracy after
40 epochs.
Threshold v. Figures 6 reports results of Threshold v com-
pression while training ResNet-9 on CIFAR-10 (AlexNet is
qualitatively similar and omitted). We observe that layer-wise
and entire-model compression achieve similar accuracy for
a wide range of thresholds across three orders of magnitude.
This is expected because every gradient element greater than
v in magnitude is transmitted in both approaches.
Top k. Figure 7 presents the results on CIFAR-10 for Top k
compression. Similarly to Random k, layer-wise compression
achieves comparable results to entire-model compression for
a range of sparsification ratios.

Interestingly, for ratios ≤ 10%, where test accuracy is
overall low, entire-model compression performs better than
layer-wise compression. We could attribute this to the rel-
evance of different layers to the model’s convergence, in
accordance to a recent study on the relevance of layers in
DNNs (Montavon, Samek, and Müller 2018). Unlike layer-
wise compression, the top k% gradient elements picked by
entire-model compression could indeed be more important
towards the optimization objective, that is, the loss function.
Small sparsification ratios and models with a relatively small
number of layers stress this behavior. However, to highlight
that layer-wise compression is not necessarily inferior in
these settings, we repeat the experiment training ResNet-9
by using SGD with Nesterov’s momentum (which is outside
the scope of our theoretical analysis). Figure 7c shows that
layer-wise compression is comparable to, if not better than
entire-model compression even at small ratios. We leave a

(a) AlexNet

(b) ResNet-9

(c) ResNet-9 by using SGD with Nesterov’s momentum

Figure 7: CIFAR-10 test accuracy for Top k compression.

Figure 8: ImageNet top-5 test accuracy for Top k compres-
sion.

thorough analysis of these observations to future work.
Figure 8 shows the top-5 test accuracy for the ResNet-50

model trained on ImageNet (only 20 epochs shown for clar-
ity). Layer-wise compression achieves 1.25-1.63× better test
accuracy. In contrast to CIFAR-10 results, layer-wise com-
pression supersedes entire-model compression even at small
ratios (i.e., 0.1%). This reaffirms that layer-wise compression
remains more effective for models with a larger number of
layers compared to previous experiments.
Training Time. We remark that our focus in this study is the
convergence behavior of existing methods. Although total
training time is an important factor, we do not present wall-

3823



clock results because (1) our unoptimized implementation
does not represent a valid proof point for the level of training
speedup that well-engineered compression methods can offer,
and (2) the literature has already established that there are
potentially large speedups to be achieved. Indeed, our mea-
surements show that performance depends on several factors
including the model size and depth, the computational costs
of compression and layer sizes. While layer-wise compres-
sion yields opportunities for overlapping communication and
computation, we note that in some cases, overheads are better
amortized by combining multiple invocations of the commu-
nication routines into a single one. We leave it to future work
to thoroughly study the performance implications.

6 Conclusion

We identified a significant discrepancy between the theoreti-
cal analysis of the existing gradient compression methods and
their practical implementation: while in practice compression
is applied layer-wise, theoretical analysis is presumes com-
pression is applied on the entire model. We addressed the lack
of understanding of converge guarantees in the layer-wise
setting by proposing a bi-directional compression framework
that encompasses both biased compression methods and un-
biased ones as a special case. We proved tighter bounds on
the noise (i.e., convergence) induced on SGD optimizers by
layer-wise compression and showed that it is theoretically no
worse than entire model compression. We implemented many
common compression methods and evaluated their accuracy
comparing layer-wise compression to entire-model compres-
sion. Conforming to our analysis, our results illustrated that
in most cases, layer-wise compression performs no worse
than entire-model compression, and in many cases it achieves
better accuracy, in particular for larger models.
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