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Abstract

The needs of a business (e.g., hiring) may require the use
of certain features that are critical in a way that any dis-
crimination arising due to them should be exempted. In this
work, we propose a novel information-theoretic decompo-
sition of the total discrimination (in a counterfactual sense)
into a non-exempt component, which quantifies the part of
the discrimination that cannot be accounted for by the criti-
cal features, and an exempt component, which quantifies the
remaining discrimination. Our decomposition enables selec-
tive removal of the non-exempt component if desired. We ar-
rive at this decomposition through examples and counterex-
amples that enable us to first obtain a set of desirable proper-
ties that any measure of non-exempt discrimination should
satisfy. We then demonstrate that our proposed quantifica-
tion of non-exempt discrimination satisfies all of them. This
decomposition leverages a body of work from information
theory called Partial Information Decomposition (PID). We
also obtain an impossibility result showing that no observa-
tional measure of non-exempt discrimination can satisfy all
of the desired properties, which leads us to relax our goals
and examine alternative observational measures that satisfy
only some of these properties. We then perform a case study
using one observational measure to show how one might train
a model allowing for exemption of discrimination due to crit-
ical features.

1 Introduction

As artificial intelligence becomes ubiquitous, it is impor-
tant to understand whether a machine-learnt model is per-
petuating existing biases, and if so, how we can engineer
fairness into such a model. The field of fair machine learn-
ing (Dwork et al. 2012; Agarwal et al. 2018; Hardt et al.
2016; Calmon et al. 2017; Kamishima et al. 2012; Wang,
Ustun, and Calmon 2019; Menon and Williamson 2018;
Komiyama and Shimao 2017; Donini et al. 2018; Ghas-
sami, Khodadadian, and Kiyavash 2018; Heidari et al. 2018;
Liao et al. 2019; Varshney 2019) provides several measures
of fairness, and uses them to reduce discrimination based
on protected attributes, e.g., as a regularizer during training
(Agarwal et al. 2018; Kamishima et al. 2012).
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In particular applications, there are some features that
are critical in a way that they are required to be weighed
strongly in the decision even if they perpetuate bias, e.g.,
educational qualification for a job, merit and seniority in de-
ciding salary etc. (Kamiran, Žliobaitė, and Calders 2013).
Hence, the discrimination arising due to these features can
be exempted. In this work, our goal is to formalize and quan-
tify the non-exempt discrimination, i.e., the part of the dis-
crimination that cannot be accounted for by critical features,
and selectively remove it if desired.

While such categorization of features is application-
dependent and might require domain knowledge and ethical
evaluation, such exemptions do exist. E.g., the US Equal Pay
Act (US Equal Employment Opportunity Commission) ex-
empts for any difference in salary based on gender that can
be explained by merit and seniority. Similarly, the US em-
ployment discrimination law (Manley 2009) contains a Bona
Fide Occupational Qualification (BFOQ) defense where dis-
crimination based on protected attributes may be exempted
if the discrimination is due to a BFOQ reasonably neces-
sary to the normal operation of that particular business, or
other reasonable differentials. E.g., fire departments may re-
quire firemen to be able to lift a given weight to demonstrate
that they will be able to carry fire victims out of a burn-
ing building. This feature is therefore allowed to be weighed
strongly in hiring even if it is correlated with protected at-
tributes. Similarly, UK employment discrimination law also
allows exemptions based on the privacy and decency of the
people the employer would be dealing with, e.g., staff in a
care home (Dept. of Trade and Industry 2008).

In this work, we assume that the critical features are
known (similar to Kamiran, Žliobaitė, and Calders (2013),
Kilbertus et al. (2017), Salimi et al. (2019)). Let Xc and Xg

denote the critical and the non-critical or general features,
respectively. We denote the protected attribute(s) as Z and
the model output as Ŷ . Note that Ŷ is a function of the en-
tire feature vector X = (Xc, Xg).

Why should a model use the “general” features at all for
prediction if they are not critical? The general features can
improve accuracy, or reduce the candidate pool, e.g., if 60%
of applicants clear a test but resources are available to in-
terview only 10%. Not using the general features at all may
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reduce accuracy or produce a very large candidate pool. Our
goal is to use both critical and general features in a way that
maximizes accuracy (to the extent possible) while prevent-
ing only the non-exempt discrimination.1

In this work, our contributions are as follows:
1. Quantification of Non-Exempt Discrimination: As

a first step towards this quantification, we propose an
information-theoretic quantification of the total discrimina-
tion (exempt and non-exempt) that is 0 if and only if the
“counterfactual causal influence” (Kusner et al. 2017) is 0,
i.e., the model is counterfactually fair. Intuitively speaking,
we extend the idea of “proxy-use”(Datta et al. 2017) from
white-box models to black-box models, where we regard a
model as being discriminatory if a virtual component (P )
is formed inside the model that has high mutual informa-
tion about Z (i.e., P is a virtual proxy of Z) and that also
causally influences the final output Ŷ . Interestingly, note that
this discrimination may not exhibit itself entirely in I(Z; Ŷ ),
which is the “statistically visible” information about Z in Ŷ

because of “statistical masking effects,” e.g., Ŷ = P + G
where G ⊥⊥ Z.

Next, we quantify the non-exempt part of this discrimi-
nation. Our quantification leverages a body of work in in-
formation theory called Partial Information Decomposition
(PID). We consider examples and thought experiments to
arrive at a set of desirable properties that any measure of
non-exempt discrimination should satisfy, and then provide
a measure that satisfies them (see Theorem 1). First, we re-
quire the measure to be 0 if all the features are in the exempt
set Xc. Next, it is desirable that the measure be non-zero if
Ŷ has any “unique” information about Z that is not present
in Xc because then that information content is also attributed
to Xg . However, because of statistical masking effects, even
if this unique information is 0, there may still be non-exempt
masked discrimination. Lastly, the measure should not cap-
ture false positives, e.g., it should be 0 if such virtual prox-
ies cancel each other such that the final model output has no
counterfactual causal influence of Z.
2. Decomposition of Total Discrimination: Next, we pro-
pose the decomposition of total discrimination into four non-
negative components, namely, exempt and non-exempt visi-
ble discrimination and exempt and non-exempt masked dis-
crimination (see Theorem 2).
3. An Impossibility Result: We show that no purely obser-
vational measure of non-exempt discrimination can satisfy
all our desirable properties (see Theorem 3).
4. Observational Relaxations: Relaxing our requirements,
we obtain purely observational measures that satisfy some
of the desirable properties (summarized in Table 1) and then
use one of them, namely, conditional mutual information, to

1Example (inspired by Barocas and Selbst (2016)): To choose
a “good” employee, an employer could evaluate standardized test
scores and reference letters (human-graded performance reviews).
Both features are “job-related” in that they have statistical correla-
tion with the prediction goal and can help improve accuracy. How-
ever, test-scores, a critical feature, should be weighed strongly in
the decision even if biased whereas reference letters may be used
only to the extent that they do not discriminate.

demonstrate how to selectively reduce non-exempt discrim-
ination in practice through a case study.

Related Work: We are aware that the idea of using
conditional mutual information as a metric for non-exempt
discrimination has surfaced in another work (Anonymous
2019), where the focus is on conditional debiasing of neu-
ral networks using novel estimators. Other observational
measures of non-exempt discrimination have also been dis-
cussed in Kamiran, Žliobaitė, and Calders (2013), Zafar et
al. (2015), Salimi et al. (2019), Corbett-Davies et al. (2017).
In this work, our focus is on an axiomatic examination of
such measures and their relationship with the concept of
counterfactual fairness2 which has not received detailed at-
tention. We also examine and acknowledge the utility and
limitations of our observational measures (e.g., see an im-
possibility result in Theorem 3).

Causal approaches for fairness have been explored in Kus-
ner et al. (2017), Kilbertus et al. (2017), Russell et al. (2017),
Chiappa and Gillam (2018), Datta et al. (2017), including
impossibility results on purely observational measures (Kil-
bertus et al. 2017; Datta et al. 2017). The main novelty arises
from our adoption of a proxy-use viewpoint for black-box
models that allows for feature exemptions. The decompo-
sition of total discrimination into exempt and non-exempt
components is tricky: one might be tempted to examine spe-
cific causal paths from Z to Ŷ that pass (or do not pass)
through Xc, and deem those influences as the two measures.
However, as the PID literature notes, discrimination can also
arise from synergistic information (Venkatesh, Dutta, and
Grover 2019; Bertschinger et al. 2014; Williams and Beer
2010) about Z in both Xc and Xg , that cannot be attributed
to any one of them alone, i.e., I(Z;Xc) and I(Z;Xg) may
both be 0 but I(Z;Xc, Xg) may not (see Counterexample 3).
Purely causal measures (that do not rely on the PID frame-
work) can attribute such discrimination entirely to Xc. We
contend that such synergistic information, if influencing the
decision, must be included in the non-exempt component of
discrimination because, operationally, both Xc and Xg are
contributors. We also note that identifying synergy is im-
portant: synergy arises frequently in machine-learning (Tax,
Mediano, and Shanahan 2017).

In a sense, this work treads a middle ground between
two schools of thought, namely, demographic parity (Agar-
wal et al. 2018; Ghassami, Khodadadian, and Kiyavash
2018), which enforces the criterion Z ⊥⊥ Ŷ , and equal-
ized odds (Hardt et al. 2016; Ghassami, Khodadadian, and
Kiyavash 2018), which enforces Z ⊥⊥ Ŷ |Y (directly or
through practical relaxations) where Y denotes the true la-
bels of the historic dataset. Our selective quantification of
non-exempt discrimination helps address one of the major
criticisms against demographic parity, namely, that it can de-
liberately choose unqualified members from the protected
group (Zemel et al. 2013), e.g., by disregarding the criti-
cal features if they are correlated with Z. Another strength
of our approach is that it does not use the true labels for

2Our measure of total (exempt and non-exempt) discrimination
is zero if and only if the “counterfactual causal influence” of Z on
Ŷ is zero (see Lemma 1).
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Table 1: Observational Measures (MNE) of Non-Exempt Discrimination (Utility and Limitations)

Desirable Properties Uni(Z : Ŷ | Xc) I(Z; Ŷ | Xc) I(Z; Ŷ | Xc, X
′)

1. Complete exemption if Xc = X . Yes Yes Yes
2. Detects unique information about Z in Ŷ not in Xc. Yes Yes Not Always
3. Detects Non-Exempt Masked Discrimination. No Masked by g(Xc) Masked by g(Xc, X

′)
4. No causal influence from Z to Ŷ ⇒ MNE = 0. Yes Not Always Not Always

fairness (unlike equalized odds). The use of true labels has
been criticized in Barocas and Selbst (2016) because “of-
ten the best labels for different classifications will be open
to debate,” e.g., if the labels themselves are biased. This
work also shares intellectual connections with individual
fairness (Dwork et al. 2012) in the sense that it enables indi-
viduals with similar Xc to be treated similarly, if desired.

Background on Partial Information Decomposition
(PID): Here, we provide a brief background on the PID
framework (Bertschinger et al. 2014; Williams and Beer
2010) to help follow this paper. The extended version (Dutta
et al. 2019) provides more details and specific properties
used in the proofs.

The PID framework decomposes the mutual information
I(Z; (A,B)) about a random variable Z contained in the tu-
ple (A,B) into four non-negative terms as follows:

I(Z; (A,B)) = Uni(Z : A\B) + Uni(Z : B\A)

+ Red(Z : (A,B)) + Syn(Z : (A,B)). (1)

Here, Uni(Z : A\B) denotes the unique information about
Z that is present only in A and not in B. Likewise,
Uni(Z : B\A) is the unique information about Z that is
present only in B and not in A. Red(Z : (A,B)) denotes
the redundant information about Z, present in both A and
B, and Syn(Z : (A,B)) denotes the synergistic informa-
tion not present in either of A or B individually, but present
jointly in (A,B) (see Dutta et al. (2019) for illustrations).
Example 1 (Partial Information Decomposition). Let Z =
(Z1, Z2, Z3), Zi ∼ i.i.d. Bern(1/2). Let A = (Z1, Z2, Z3 ⊕
N) where ⊕ denotes XOR, B = (Z2, N), and N ∼
Bern(1/2) is independent of Z. Here, I(Z; (A,B)) = 3 bits.

Observe that, the unique information about Z that is con-
tained only in A and not in B is effectively contained in
Z1 and is given by Uni(Z : A\B) = I(Z;Z1) = 1 bit.
The redundant information about Z that is contained in both
A and B is effectively contained in Z2 and is given by
Red(Z : (A,B)) = I(Z;Z2) = 1 bit. Lastly, the syner-
gistic information about Z that is not contained in either A
or B alone, but is contained in both of them together is ef-
fectively contained in the tuple (Z3 ⊕ N,N), and is given
by Syn(Z : (A,B)) = I(Z; (Z3 ⊕N,N)) = 1 bit. This ac-
counts for the 3 bits in I(Z; (A,B)). Here, B does not have
any unique information about Z that is not contained in A.

Irrespective of the formal definition of these individual
terms, the following identities also hold:

I(Z;A) = Uni(Z : A\B) + Red(Z : (A,B)). (2)
I(Z;A | B) = Uni(Z : A\B) + Syn(Z : (A,B)). (3)

Figure 1: An SCM with protected attribute Z, features X =

{X1, X2, X3}, and output Ŷ . Z does not have any parents
and Ŷ is completely determined by {X1, X2, X3}.

Given the three independent equations (1), (2) and (3) in four
unknowns (the four PID terms), defining one of the terms
(e.g., Uni(Z : A\B)) is sufficient to obtain the other three.
For completeness, we include the definition of unique in-
formation from Bertschinger et al. (2014) (that also allows
for estimation via convex optimization (Banerjee, Rauh, and
Montúfar 2018)) with details in the extended version (Dutta
et al. 2019). To follow the paper, only an intuitive under-
standing is sufficient.

Definition 1 (Unique Information). (Bertschinger et
al. 2014) Let Δ be the set of all joint distributions
on (Z,A,B) and Δp be the set of joint distribu-
tions with the same marginals on (Z,A) and (Z,B)
as their true distribution, i.e., Δp = {Q ∈ Δ :
q(z, a)=Pr(Z=z,A=a) and q(z, b)=Pr(Z=z,B=b)}
Then, Uni(Z : A\B) = minQ∈Δp IQ(Z;A|B).

2 System Model and Assumptions

Definition 2 (Structural Causal Model: SCM(U, V,F)). A
structural causal model (U, V,F) consists of a set of latent
(unobserved) and mutually independent variables U which
are not caused by any variable in the set of observable vari-
ables V , and a collection of deterministic functions (struc-
tural assignments) F = {f1, f2, . . .}, one for each Vi ∈ V ,
such that: Vi = fi(Vpai

, Ui). Here Vpai
⊆ V \Vi are the

parents of Vi, and Ui ⊆ U . The structural assignment graph
(SAG) of SCM(U, V,F) has one vertex for each Vi, and di-
rected edges to Vi from each parent in Vpai , and is always a
directed acyclic graph.

For our problem, the latent variables U represent possi-
bly unknown social factors. The observables V consist of
the protected attributes Z, the features X = {Xc, Xg} and
the output Ŷ (see Fig. 1). For simplicity, we assume ances-
tral closure of the protected attributes, i.e., the parents of any
Vi ∈ Z also lie in Z and hence Z is not caused by any of
the features in X (Vi ∈ Z are source nodes in the SAG).
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Therefore, Z = fz(UZ) for UZ ⊆ U . Any feature Xj in X
is a function of its corresponding latent variable and its par-
ents, which are again functions of their own latent variables
and parents. Note that, X can also be written as f(Z,UX)
for some deterministic f(·), where f(·) may be constant in
some of its arguments, and Z ⊥⊥ UX (see Peters, Janzing,
and Schölkopf, Proposition 6.3). This holds because the un-
derlying graph is acyclic. A model takes X = {Xc, Xg} as
its input and produces an output Ŷ which depends only on
X . Therefore, Ŷ = h(Z,UX) for some function h(·).

For completeness, we define Counterfactual Causal Influ-
ence (CCI) inspired from Kusner et al. (2017), Russell et al.
(2017), Breiman (2001), Datta, Sen, and Zick (2016), Koh
and Liang (2017), Adler et al. (2018), Henelius et al. (2014).

Definition 3 (Counterfactual Causal Influence:
CCI(Z → Ŷ )). If Ŷ = h(Z,UX) for some determin-
istic function h(·) where UX are latent variables that do not
cause Z in the true SCM, and Z ′, Z are i.i.d., then

CCI(Z → Ŷ ) = EZ,Z′,UX
[|h(Z,UX)− h(Z ′, UX)|] .

Remark 1. Statistical independence does not imply absence
of causal effects. E.g., Ŷ = Z ⊕ UX where Z,UX ∼ i.i.d.
Bern(1/2). Here, Ŷ ⊥⊥ Z, but Z still has a causal effect on Ŷ .
If we vary Z while fixing all other sources of randomness in
Ŷ as constants (i.e., fixing UX = ux), then Ŷ also varies.
This is in fact an example of masked discrimination, where
I(Z; Ŷ ) = 0, but Z causally influences Ŷ .

Next, we define a variable W as follows:

Definition 4 (Variable W ). We define a variable W =

[h(Z, u
(1)
x ), . . . , h(Z, u

(k)
x )], where {u(1)

x , . . . , u
(k)
x } is the

set of all values with Pr(Ux = ux) > 0.

Here, W is a deterministic function of Z alone, consisting
of all the functional forms that Ŷ = h(Z,UX) takes for all
values ux attainable by UX .

Lemma 1 (Information-Theoretic Equivalent of CCI). Let
Ŷ = h(Z,UX) for some deterministic function h(·). Then
CCI(Z → Ŷ ) 	= 0 if and only if I(Z;W ) > 0.

Remark 2. We also show that CCI(Z → Ŷ ) = 0 (or,
I(Z;W ) = 0) is equivalent to the counterfactual fairness
criterion of Kusner et al. (2017) (proved in the extended ver-
sion (Dutta et al. 2019)). Therefore, in this work, we will
regard I(Z;W ) as an information-theoretic quantification
of the total discrimination (exempt and non-exempt).

3 Main Results

We formally state the desirable properties, intuitively stated
in Section 1, and then introduce our proposed measure that
satisfies all of them (Theorem 1 in Section 3.1). While the
proof is presented in the extended version (Dutta et al. 2019),
in Section 3.2 we present the main intuition behind our pro-
posed measure through several examples, counterexamples
and thought experiments, that also help us arrive at the de-
sirable properties. Our proposed measure leads to a non-
negative decomposition of the total discrimination I(Z;W )

into four components, i.e., statistically visible and masked
portions, each with exempt and non-exempt components
(see Section 3.3). Lastly, in Section 3.4, we demonstrate how
to modify our measure to account for other kinds of masked
discrimination under different sociological contexts.

3.1 Desirable Properties and Proposed Measure

We introduce a set of desirable properties for any measure of
non-exempt discrimination (MNE). Firstly, we require the
measure to be 0 if all the features are in the exempt set Xc:

Property 1 (Complete Exemption). MNE should be 0 if all
features are categorized into Xc, i.e., Xc = X and Xg = φ.

Next, it is desirable that the measure be non-zero if Ŷ has
any unique information about Z that is not present in Xc

because then that information is also attributed to Xg .

Property 2 (Non-Exempt Visible Discrimination). MNE

should be strictly greater than 0 if Uni(Z : Ŷ \Xc) > 0.

However, as we discussed in Section 2, statistical masking
can sometimes prevent the entire non-exempt discrimination
component from exhibiting itself in Uni(Z : Ŷ \Xc). As an
extreme example, consider the following scenario.

Example 2. Let Ŷ = Z ⊕ f(UX) for some function f(·) on
Xc = UX with Z and f(UX) being i.i.d. Bern(1/2). E.g., an
ad for expensive housing is presented to white people (Z =
1) with income above a threshold (f(UX) = 1), and also
to black people (Z = 0) with income below a threshold
(f(UX) = 0) (while being largely irrelevant to the latter).

Not all forms of masked effects are undesirable. An exam-
ple is if the only available features are Xg = (Z,UX), where
Z is the race and UX is Bern(1/2), a random coin flip. Then,
performing Ŷ = Z⊕UX1

randomizes the race, and can be a
preventive measure against discrimination even if CCI(Z →
Ŷ ) > 0. In the following property, we will assume that the
discrimination (masked/unmasked) is exempt if the Markov
chain Z − Xc − Ŷ holds. This property only accounts for
masking that is entirely due to Xc, e.g., Ŷ = Z + f(Xc)
for some function f(·) where CCI(Z → f(Xc)) = 0 and
exempts other forms of masking (revisited in Remark 3).

Property 3 (Non-Exempt Masking). A measure MNE may
be non-zero even if I(Z; Ŷ ) = 0. However, MNE should be
0 if Z −Xc − Ŷ form a Markov chain.

Remark 3. In general, one might also choose to consider
a subset of latent factors Ũ ⊆ UX such that any statistical
masking arising due to these latent variables is also undesir-
able. Then, the Markov chain in Property 3 may be modified
to Z−Xc− (Ŷ , Ũ), and the proposed measure can be mod-
ified accordingly, as also elaborated further in Section 3.4.

Lastly, the measure should also not capture false posi-
tives, e.g., it should be 0 if such virtual proxies cancel each
other causing the final model output to have no counterfac-
tual causal influence of Z, leading to the following property.

Property 4 (Cancellation of Influence). MNE should be 0

if CCI(Z → Ŷ ) = 0 (or equivalently, I(Z;W ) = 0).
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Now, we introduce our proposed measure and then show
that it satisfies all these desirable properties (see Theorem 1).
Definition 5 (Non-Exempt Discrimination). Our proposed
measure of non-exempt discrimination is given by:

MNE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc). (4)

Remark 4. The proposed measure is essentially the volume
of the overlap between I(Z;W ) and I(Z; Ŷ |Xc), that be-
comes 0 when either of them is 0 (see Fig. 2).

Theorem 1 (Properties). Properties 1, 2, 3 and 4 are sat-
isfied by MNE = Uni(Z : W\Xc) − Uni(Z : W\Ŷ , Xc).

3.2 Main Intuition behind the Proposed Measure

We examine some candidate measures (MNE) of non-
exempt discrimination through examples and counterexam-
ples, leading to our proposed measure.

Candidate Measure 1. MNE = I(Z; Ŷ ).

Counterexample 1. Let Xc = Z + UX1 where Z ∼
Bern(1/2), UX1 ∼ N (0, σ2

1) and Xg = UX2 where
UX2

∼ N (0, σ2
2) and is independent of UX1

. The de-
cision of the model is Ŷ = sgn (Xc +Xg − 0.5) =
sgn (Z + UX1 + UX2 − 0.5).

Here, I(Z; Ŷ ) is non-zero and so is I(Z;Xc). However,
I(Z; Ŷ |Xc) = 0 (see the Markov chain Z − Xc − Ŷ ). The
information that Ŷ contains about Z is redundant informa-
tion also contained in Xc. Therefore, the discrimination here
should be exempted because it arises entirely from Xc.

Candidate Measure 2. MNE = I(Z; Ŷ | Xc).

This measure resolves Counterexample 1. It also has some
provision for selectively capturing the non-exempt compo-
nent: it is 0 in Counterexample 1, consistent with the intu-
ition that there is no non-exempt discrimination. However,
the following example exposes some of its limitations.
Counterexample 2 (Cancellation of Influence). Let Xc =
Z + UX and Xg = Z where Z denotes the gender and UX

denotes the student’s knowledge. The model’s decision on a
student’s ability is Ŷ = Xc −Xg = UX .

The influences of Z along two different causal paths can-
cel each other in the final output, so that CCI(Z → Ŷ ) = 0
(and, I(Z;W ) = 0). Thus, there is no discrimination in
the outcome Ŷ (this is true even if the features in Xc were
not exempt; see Remark 2). However, the measure M =

I(Z; Ŷ |Xc) is positive for this example, leading to a false
positive in detecting discrimination. These two examples
serve as our motivation behind Properties 1 and 4. The next
candidate resolves both these examples.

Candidate Measure 3. MNE = Uni(Z : Ŷ \Xc).

This measure resolves Counterexample 1: Ŷ and Xc

have redundant information about Z, but there is no
unique information about Z in Ŷ that is not in Xc. Thus

Uni(Z : Ŷ \Xc) = 0, consistent with the conclusion that
the discrimination in Counterexample 1 should be exempt.
Uni(Z : Ŷ \Xc) is also 0 in Counterexample 2. In fact,
Uni(Z : Ŷ \Xc) captures the non-exempt discrimination
that is statistically visible in I(Z; Ŷ ), leading to Property 2.

Counterexample 3 (Masked Discrimination). Refer to Ex-
ample 2 in Section 3.1 where Ŷ = Z ⊕ f(Xc).

Here Z ⊥⊥ Ŷ , i.e., I(Z; Ŷ ) = 0, making the model “ap-
pear to have no discrimination.” However, when examined
more deeply, the model racially discriminates against half
of the population (high-income black people) for whom the
ad is relevant. This is also demonstrated by the fact that
CCI(Z → Ŷ ) 	= 0 and the Markov chain Z −Xc − Ŷ does
not hold. Uni(Z : Ŷ \Xc) fails to capture such non-exempt
masked discrimination. In fact, this example motivates Prop-
erty 3. Uni(Z : Ŷ \Xc) does not satisfy this property as it
has to be zero whenever I(Z; Ŷ ) = 0.

Inspired from CCI(Z → Ŷ ), another possible candidate
for quantifying non-exempt discrimination is a causal, path-
specific examination (see also Chiappa and Gillam (2018),
Kusner et al. (2017), Kilbertus et al. (2017)) by varying Z
only along the direct paths through Xg and comparing if it
causes any difference in the decision.

Candidate Measure 4. Let Ŷ = h(Z,UX) in the true
causal model. Assume a new causal graph with a new source
node Z ′ having an independent and identical distribution
as Z where we replace all direct edges from Z to Xg with
an edge from Z ′ to Xg . Let h̃(Z,Z ′, UX) be the model
output in the new causal graph. A candidate measure is
MNE = EZ,Z′,UX

[
|h(Z,UX)− h̃(Z,Z ′, UX)|

]
.

Counterexample 4 (Non-zero Unique Information). Sup-
pose that Xc = Z ⊕UX1 and Xg = UX1 where Z and UX1

are i.i.d. Bern(1/2). Let Ŷ = Xc ⊕Xg = Z.

In this example, Ŷ has unique information about Z that is
not contained in Xc, implying non-exempt visible discrim-
ination. However, a path-specific examination would con-
clude that the causal influence of Z is only propagating
through Xc, and hence should be exempt. Following the PID
literature, here Ŷ receives synergistic information about Z
from both Xc and Xg , that cannot be attributed to Xc alone
(I(Z;Xc) = 0). From an operational perspective, Ŷ and Xc

together lead to a better estimate of Z than Xc alone which
means Xg is definitely a contributor to the discrimination,
and thus MNE > 0. We therefore seek a measure under
which such discrimination qualifies as non-exempt. Moti-
vated by this example, we now consider another candidate
measure that is derived from I(Z;W ).

Candidate Measure 5. MNE = Uni(Z : W\Xc).

While this measure resolves all the examples so far, it may
not always satisfy Property 1.

Counterexample 5. Suppose that X = Xc = Z⊕UX , and
Ŷ = Xc = Z ⊕ UX .

3829



In this scenario, this measure is not 0 even though
the discrimination is completely exempt. This motivates
our proposed measure MNE = Uni(Z : W\Xc) −
Uni(Z : W\Ŷ , Xc), which accounts for, and effectively re-
moves, such exempt components from Uni(Z : W\Xc),
and finally satisfies all the desirable properties.
MNE being non-zero actually implies that both

I(Z;W ) > 0 and I(Z; Ŷ |Xc) > 0 (overlapping vol-
ume). However, this is only a one-way implication. I(Z;W )

and I(Z; Ŷ |Xc) both being non-zero does not necessarily
capture non-exempt discrimination.
Example 3. Let Z = (Z1, Z2), Xc = (Z1 ⊕ UX1

, Z2),
Xg = (Z1, UX2) and Ŷ = (UX1 , Z2 ⊕ UX2) where
Z1, Z2, UX1 , UX2 are i.i.d. Bern(1/2).

This example should be exempt because Z2 already ap-
pears in Xc, and is hence exempt. Our proposed measure
also suggests the same conclusion. However, both I(Z;W )

and I(Z; Ŷ |Xc) are non-zero here.

3.3 Understanding the Overall Decomposition

This work enables an information-theoretic decomposition
of the total discrimination I(Z;W ) into non-exempt and
exempt components, namely, MNE and I(Z;W ) − MNE

respectively. Alongside, I(Z;W ) can also be decomposed
into statistically visible and masked components, namely,
I(Z; Ŷ ) and I(Z;W ) − I(Z; Ŷ ) respectively. Combining
these two decompositions leads to an overall four-way de-
composition of I(Z;W ) as shown in Theorem 2 (see Fig. 2).
Theorem 2 (Non-Negative Decomposition of Total Dis-
crimination). The total discrimination can be decomposed
into four non-negative components as follows:

I(Z;W ) = MV,NE +MV,E +MM,NE +MM,E . (5)

Here MV,NE = Uni(Z : Ŷ \Xc) is the visible, non-exempt
component and MV,E = Red(Z : (Ŷ , Xc)) is the visible,
exempt component. These two terms add to form I(Z; Ŷ )
which is the total statistically visible discrimination. Like-
wise, MM,NE = MNE−MV,NE is the masked, non-exempt
component, and MM,E = I(Z;W )− I(Z; Ŷ )−MM,NE is
the masked, exempt component.

The proof is in the extended version (Dutta et al. 2019).
Lemma 2 (Masked Discrimination). The total masked dis-
crimination I(Z;W )− I(Z; Ŷ ) is equal to Uni(Z : W\Ŷ ).

Lemma 3 (Masked Discrimination Implications). The fol-
lowing two statements are equivalent:
• I(Z; Ŷ | UX)− I(Z; Ŷ ) > 0.
• ∃ a random variable G of the form G = g(UX) such that

I(Z; Ŷ |G) > I(Z; Ŷ ).
Either of these statements imply I(Z;W )− I(Z; Ŷ ) > 0.

3.4 Modifying the Proposed Measure to Account
for More Masked Effects

Different forms of statistical masking can have different im-
plications under different sociological contexts, e.g., Ŷ =

Figure 2: Information-theoretic decomposition of total dis-
crimination, I(Z;W ): (Left) The red full-circle denotes
I(Z; (Xc, Ŷ )) which is equal to I(Z;Xc) + I(Z; Ŷ | Xc).
Both I(Z;Xc) and I(Z; Ŷ | Xc) are denoted by sub-
volumes within the red full-circle. The volume of over-
lap between I(Z;W ) and I(Z; Ŷ | Xc) is our proposed
measure of non-exempt discrimination MNE . (Right) Note
that, I(Z; Ŷ ) (total statistically visible discrimination) is is
the purple circle that is entirely contained inside I(Z;W )

and I(Z; Ŷ | Xc). This leads to a four-way decompo-
sition of I(Z;W ): the visible non-exempt component
MV,NE = Uni(Z : Ŷ \Xc), the visible exempt component
MV,E = Red(Z : (Ŷ , Xc)), the masked non-exempt com-
ponent MM,NE = MNE −MV,NE , and the masked exempt
component MM,E = I(Z;W ) − I(Z; Ŷ ) − MM,NE . Also
note that I(Z; Ŷ ) has an intersection with I(Z; Ŷ |Xc), but
both I(Z; Ŷ ) and I(Z; Ŷ |Xc) also have components (vol-
umes) outside the intersection which allows either of them
to be greater or less than the other in our Venn diagram.

Z ⊕ UX may be undesirable if UX is the income (recall
Example 2) but not necessarily unfair if UX is the random
flip of a coin. In our proposed measure, we only accounted
for statistical masking effects caused by the critical features
Xc. However, there may be scenarios where we might want
to capture masking effects by other variables also, e.g., Xg .
Let us understand this using the following example.

Example 4. Let Xc = (UX1
, UX2

) and Xg = (Z,UX3
),

where all the latent random variables are i.i.d. Bern(1/2).
Now the output Ŷ can take different forms, such as Z ⊕
f1(Xc) = Z⊕UX1

, or Z⊕f1(Xc)⊕f2(Xg) = Z⊕UX1
⊕

UX3
or Z ⊕ f2(Xg) = Z ⊕ UX3

.

By our proposed measure, only Ŷ = Z ⊕ UX1
⊕ UX2

and Ŷ = Z ⊕ UX1
are considered non-exempt. Masking

by Xg (e.g., Ŷ = Z ⊕ UX3
) or masking by a combination

of Xc and Xg (e.g., Ŷ = Z ⊕ UX1
⊕ UX3

) is exempted
(Z − Xc − Ŷ is a Markov chain). Statistical masking of
Z by f2(Xg) is viewed more like randomization, e.g., us-
ing a coin flip to prevent discrimination, whereas masking
by f1(Xc) is like discriminating against high-income black
people (Example 2).

In general, which masking effects should be accounted
for depends on the problem design. In some scenarios, one
may be interested in not exempting masking effects due to
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some latent variables. Let ŨX ⊆ UX be the set of latent
random variables such that any statistical masking effect de-
rived from them should be accounted for. Then, we may
redefine Property 3 as follows: the measure M ′

NE = 0 if
Z −Xc − (Ŷ , ŨX) is a Markov chain. This leads to the fol-
lowing modified measure of non-exempt discrimination.
Definition 6 (Modified Non-Exempt Discrimination).
M ′

NE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc, ŨX).

This measure is the volume of overlap between I(Z;W )

and I(Z; Ŷ , ŨX | Xc). Using this measure in Example 4
leads to the conclusion that all the cases are non-exempt if
ŨX is chosen as (UX1 , UX2 , UX3). This unravels the statisti-
cal masking by UX1 , UX2 , UX3 and exposes the discrimina-
tory component Z lying underneath. Again, in some exam-
ples, accounting for only some latent factors makes sense:
Example 5. Let Xc = Z + UX1

and Xg = (UX1
, UX2

)
where all the latent variables are independent with UX1

∼
N (0, 1000) and all others distributed as N (0, 1). The out-
put Ŷ can take different forms, such as, Ŷ = Z + UX1

, or
Z + UX1

+ UX2
, or Z + UX2

.

When Ŷ = Z + UX1 , the output is entirely derived from
Xc and hence should be exempt. Here, Z − Xc − Ŷ is a
Markov chain but Z −Xc − (Ŷ , UX1

) is not. For this exam-
ple, it does not make sense to try to unravel masked effects of
UX1

over Z, or include it in ŨX . When Ŷ = Z+UX1
+UX2

,
it should also be exempt for the same reason. However,
Ŷ = Z + UX2 is not necessarily exempt because it contains
unique information about Z not present in Xc (Xg helps un-
mask and expose Z + UX2

). Here, Z − Xc − Ŷ is not a
Markov chain. To unravel the masked effect caused by UX2

and expose Z entirely, one may include it in ŨX .

4 Observational Relaxations for Practical

Application in Training

Theorem 3 (Impossibility of Observational Measures). No
observational measure of non-exempt discrimination simul-
taneously satisfies Properties 3 and 4.

Nevertheless, because counterfactual measures are diffi-
cult to realize in practice, we examine the following obser-
vational measures of non-exempt discrimination that satisfy
only a few of Properties 1-4.
1. Uni(Z : Ŷ \Xc): This measure satisfies Properties 1, 2
and 4 (proved in the extended version (Dutta et al. 2019)).
However, it does not quantify any masked discrimination.
2. I(Z; Ŷ |Xc): This measure satisfies Properties 1, 2, and 3
(proved in the extended version (Dutta et al. 2019)). How-
ever, it can lead to false positives for Property 4 (absence of
CCI(Z → Ŷ )), e.g., in Counterexample 2.
3. I(Z; Ŷ |Xc, X

′): X ′ consists of features of Xg suspected
of masking Z. This is somewhat of a heuristic relaxation
that only satisfies Property 1 but partly satisfies all the rest
with some exceptions, i.e., it exempts synergistic informa-
tion about Z in (Xc, X

′) that can show up in Ŷ , and cause
non-zero Uni(Z : Ŷ \Xc). It is able to detect more masked
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Figure 3: Histogram of Predicted Scores (Ŷ= − wTX/b):
(Left) p(Ŷ |Z=i) for i=0, 1; (Right) p(Ŷ |Xc≥0.5, Z=i) for
i = 0, 1. Regularizing with I(Z; Ŷ ) (L2) brings p(Ŷ |Z)
closer for Z=0 and 1 by placing higher weight on a less
important feature (proximity score). This increases the vari-
ance and reduces accuracy (see Table 2). Regularizing with
I(Z; Ŷ |Xc) (L3) makes p(Ŷ |Xc≥0.5, Z) approach each
other for Z=0 and 1, aiming to give similar prediction scores
to individuals with similar Xc (λ=10 for these plots).

Table 2: Observations after training a classifier (w1X1 +
w2X2 + w3X3 + b ≥ 0) using three loss functions with
different fairness criteria (100 simulations of 7000 iterations
each with batch size 200).

Loss (λ) −w1

b −w2

b −w3

b Acc%

L1 (−) 1.08 1.08 1.08 98.5
L2 (4) 1.07 1.07 3.76 81.1
L2 (10) 1.01 1.03 13.9 70.2
L3 (4) 1.46 0.73 1.91 89.6
L3 (10) 2.05 0.02 2.57 80.8

discrimination than I(Z; Ŷ |Xc), i.e., when the mask is of the
form G = g(Xc, X

′). However, it can lead to false positives
for Property 4 (absence of CCI(Z → Ŷ )).

Case Study: The goal is to decide whether to show ads
for an editorial job requiring English proficiency, based on
whether a score generated from internet activity is above a
threshold. Z ∼ Bern(1/2) is a protected attribute denoting
whether a person is a native English speaker or not. Now,
consider three features X = (X1, X2, X3), such that: (i)
X1: a score based on online writing samples; (ii) X2: a score
based on browsing history, e.g., interest in English websites
as compared to websites of other languages; and (iii) X3: a
preference score based on geographical proximity. Let Xc =
X1 and Xg = (X2, X3).

Suppose the true SCM is as follows: X1 = Z + U1,
X2 = Z + U2, X3 = U3 and the historic scores of selected
candidates are S = X1+X2+X3 where U1, U2, U3 ∼ i.i.d.
N (0, 1). Let the historic true labels be Y = (S ≥ 1) indi-
cating whether S ≥ 1 or not. We train a classifier of the form
Ŷ = 1/(1 + e−(wTX+b)) (logistic regression). The classi-
fier decides to show the ads if Ŷ ≥ 0.5, i.e., if wTX+b ≥ 0.
We train using the following loss functions:
Loss L1: minw,b LCross Entropy(Y, Ŷ ).
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Loss L2: minw,b LCross Entropy(Y, Ŷ )+λ̃I(Z; Ŷ ), where λ is a
regularizer and Ĩ(Z; Ŷ ) = − 1

2 log (1− ρ2
Z,Ŷ

) is an approx-
imate expression of mutual information where ρZ,Ŷ is the
correlation between Z and Ŷ . This approximation is exact if
Z and Ŷ are jointly Gaussian.
Loss L3: minw,b LCross Entropy(Y, Ŷ )+λ̃I(Z; Ŷ |Xc), where
the range of Xc is first divided into multiple discrete bins,
and Ĩ(Z; Ŷ |Xc) is

∑
iPr(Xc∈Bin i)̃I(Z; Ŷ |Xc∈Bin i)

=− 1
2

∑
i Pr(Xc∈Bin i) log (1− ρ2

Z,Ŷ ,i
) and ρZ,Ŷ ,i is the

conditional correlation of Ŷ and Z given that Xc is in the
i-th discrete bin.

Observations: For L1, the separation boundary is very
close to that based on the historic scores. But, because the
past scores are correlated with browsing history (X2), there
is a danger that even when a non-native speaker has good
writing score, they may not be shown an ad due to their
browsing history. Regularizing with I(Z; Ŷ ) (Loss L2) does
not work well because the model begins to weigh both X1

and X2 less, and many proficient candidates are dropped in
favour of a less-important feature, namely, proximity (X3),
also reducing the accuracy (see Table 2). However, regu-
larizing with I(Z; Ŷ | Xc) (Loss L3) is able to reduce the
importance (weight) of browsing history relative to online
scores, leading to an intermediate accuracy between L1 and
L2 for same λ (see also Fig. 3). In a sense, our measure en-
ables individuals with similar Xc to be treated similarly.

5 Discussion

This work provides a novel information-theoretic quantifica-
tion of fairness under exemptions by adopting an axiomatic
approach. We note that our properties, as stated, do not lead
to a unique measure of non-exempt discrimination. They
provide a qualitative separation of exempt and non-exempt
discrimination, but, in line with much of the literature on
fairness, do not quantify its “scaling.” However, it is not ob-
vious what properties one can use to constrain this scaling,
and remains an open question to pursue as future work. In
fact, we believe that there is value in the fact that the prop-
erties do not yield a unique measure: this allows for tuning
the measure for the needs of an application. E.g., Shannon
established uniqueness on Shannon’s entropy with respect
to some properties in Shannon (1948) but the needs of the
application can still drive the use of alternate measures, e.g.
Renyi entropy (Rényi 1961) that weighs outliers differently
than Shannon entropy.

While our properties do not quantify the scaling, the
measure we propose does capture important aspects of the
problem, e.g., it captures both masked and statistically vis-
ible components when they are present together, that exist-
ing measures such as I(Z; Ŷ ) or Uni(Z : Ŷ \Xc) do not.
E.g., let Xc = U ∼ N (0, 1), Xg = Z ∼ Bern(1/2), and
Ŷ = Z+U , i.e., Z is partially masked by U even though the
visible discrimination is nonzero (a modification of Coun-
terexample 3). Here, our measure is equal to the Shannon en-
tropy H(Z), whereas I(Z; Ŷ ) or Uni(Z : Ŷ \Xc) are smaller

than H(Z) because they do not account for the masked com-
ponent.

We also acknowledge that given the probability distribu-
tion on the data, an SCM is not always unique (Peters, Janz-
ing, and Schölkopf 2017) making it difficult to use coun-
terfactual measures in practice (as also noted for other re-
sults in the field, e.g., Kilbertus et al. (2017), Kusner et al.
(2017)). To address this, we also propose observational re-
laxations of our measure and analyze what they capture and
what they miss (see Table 1). In practice, this can inform
which measure can be used when, e.g., I(Z; Ŷ |Xc) can be
used when cancellation of influences (Counterexample 2)
does not occur (i.e., if the SCM satisfies certain faithful-
ness assumptions). Similarly, Uni(Z : Ŷ \Xc) may be used
when accounting for masked discrimination is not required.
Since the assumptions in relaxing the measure to observa-
tional ones are explicitly identified, corrections can be made
if it is found that these assumptions are not satisfied. Finally,
in scenarios where the SCM is known or can be evaluated
from the data (see Chapters 4 and 7 in Peters, Janzing, and
Schölkopf (2017)), the proposed measure exactly captures
the non-exempt discrimination.
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