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Abstract

Distance Metric Learning (DML) involves learning an em-
bedding that brings similar examples closer while moving
away dissimilar ones. Existing DML approaches make use of
class labels to generate constraints for metric learning. In this
paper, we address the less-studied problem of learning a met-
ric in an unsupervised manner. We do not make use of class
labels, but use unlabeled data to generate adversarial, syn-
thetic constraints for learning a metric inducing embedding.
Being a measure of uncertainty, we minimize the entropy of
a conditional probability to learn the metric. Our stochastic
formulation scales well to large datasets, and performs com-
petitive to existing metric learning methods.

Introduction

“Are two given examples similar (or dissimilar)?” This is a
crucial question in problems like classification (Chen et al.
2018; Xie et al. 2018), clustering and retrieval (Duan et al.
2018; Wang et al. 2017), prevalent in machine learning and
computer vision. Distance Metric Learning (DML) aims
at learning a new embedding of the data such that simi-
lar examples are brought closer, while dissimilar examples
are moved further apart. The importance of DML is even
more crucial in challenging scenarios like Zero-Shot Learn-
ing (ZSL) (Xian et al. 2018; Oh Song et al. 2016), and Fine-
Grained Visual Categorization (FGVC) (Qian et al. 2015).
For instance, in the ZSL setting, where test examples be-
long to classes not seen during training, DML is a preferred
choice over standard softmax-based classification models.
This is because it aims at learning a generic notion of sim-
ilarity among examples, as opposed to class-specific con-
cepts.

To provide weak-supervision for learning a distance met-
ric, DML approaches require constraints, that can be of
various types: pairs (Chen et al. 2018; Harandi, Salzmann,
and Hartley 2017; Xie et al. 2018; Koestinger et al. 2012;
Davis et al. 2007), triplets (Shi, Bellet, and Sha 2014;
Ye et al. 2017; Weinberger, Blitzer, and Saul 2006), tu-
ples (Sohn 2016), or batches (Oh Song et al. 2016). De-
spite the success of state-of-the-art DML methods proposed
in the recent years (Duan et al. 2018; Chen et al. 2018;
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Figure 1: Illustration of our proposed approach SUML.

Xie et al. 2018), they make use of class labels to gener-
ate such constraints. In this paper, we address the follow-
ing question: “How do we learn a metric, when there are no
class labels present?” This is an important problem, partic-
ularly in newer applications involving large datasets, where
obtaining class labels may be infeasible (e.g., invasive med-
ical imaging techniques, 3D point cloud data, unsupervised
domain adaptation etc.).

Classically, learning of embeddings in an unsupervised
manner has been done in the context of manifold learn-
ing (Cox and Cox 2000; Tenenbaum, De Silva, and Lang-
ford 2000; He and Niyogi 2003; He et al. 2005), or diffu-
sion processes (Donoser and Bischof 2013; Bai et al. 2017;
Iscen et al. 2017) that capture the intrinsic manifold structure
of the data. More recently, a few unsupervised feature learn-
ing approaches have been proposed (Dosovitskiy et al. 2016;
Li et al. 2016; Caron et al. 2018; Wu et al. 2018). However,
they ignore the basic semantic relationships among the ex-
amples and are not particularly designed for metric learning.
(Iscen et al. 2018) proposed an approach to mine hard con-
straints for unsupervised metric learning, and is considered
as a state-of-the-art.

In this paper, we propose a novel, unsupervised approach
to learn an embedding that induces a metric (Bellet, Habrard,
and Sebban 2015) in the learned space. We do not make use
of class labels to learn the metric, but rather sample ran-
dom triplets from the unlabeled data. As illustrated in Fig-
ure 1, for each random triplet τi, we imagine an associated
hypothetical label yτi that represents all possible semantic
permutations of examples xi

a, xi
p and xi

n, present in τi. De-
pending on a possible value of yτi , we generate synthetic
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triplets (si, s
+
i , s

−
i ) or pairs (si, s

+
i ) (or (si, s

−
i )), which

are finally used to learn an embedding, parameterized by
L ∈ R

d×l. This is achieved by minimizing the entropy of
a conditional probability defined on τi, considering all cases
of hypothetical labels. The synthetic constraints are gener-
ated using a mapping parameterized by S ∈ R

2d×d, such
that they are adversarial to the metric learning process. De-
spite being unsupervised, our proposed approach performs
competitive to existing DML approaches on various tasks.

Proposed Approach

Given an unlabeled dataset X = {ri}|X |
i=1, let xi ∈ R

d de-
note the descriptor of a raw example ri. Let L ∈ R

d×l,
l ≤ d be a matrix such that L�xi ∈ R

l, denotes the
learned embedding of an example xi ∈ R

d. As LL� � 0,
the matrix L induces a pseudo squared Mahalanobis dis-
tance metric: δ2L(xi,xj) = (xi − xj)

�LL�(xi − xj),
for a pair of examples xi,xj ∈ R

d. To learn the param-
eter L of the metric, a popular form of weak-supervision
is by providing a triplet constraint set (Shi, Bellet, and Sha
2014; Ye et al. 2017; Weinberger, Blitzer, and Saul 2006):
Tlabeled = {(xi,x

+
i ,x

−
i )}

|Tlabeled|
i=1 , where x+

i and xi are from
the same class, x−

i and xi are from different classes. Typ-
ically, xi is called the anchor, x+

i the positive and x−
i the

negative. The idea is to move anchor and positive closer,
while moving away anchor and the negative (Figure 2).

Figure 2: Illustration of metric learning using triplet con-
straints (best viewed in color). The sample input images be-
long to the AwA2 dataset (Xian et al. 2018).

Using synthetic examples for metric learning

In the absence of any class labels, we propose to randomly
sample a triplet set: T = {τi = (xi

a,x
i
p,x

i
n)}

|T |
i=1. Let

C(xi
a), C(xi

p) and C(xi
n) respectively denote the actual se-

mantic classes of xi
a, xi

p and xi
n, which are unknown to us.

Hence, we cannot directly force to move xi
a and xi

p closer,
while moving away xi

a and xi
n, as done in supervised triplet

based DML approaches. For this, we associate an imaginary
hypothetical label yτi = c to a triplet τi. c intuitively repre-
sents the possible semantic permutations of the examples in
τi, and can take values as follows:

Case 1: (c = 1), if C(xi
a) = C(xi

p) �= C(xi
n).

Case 2: (c = 2), if C(xi
a) = C(xi

n) �= C(xi
p).

Case 3: (c = 3), if C(xi
p) = C(xi

n) �= C(xi
a).

Case 4: (c = 4), if C(xi
a) = C(xi

p) = C(xi
n).

Case 5: (c = 5), if C(xi
a) �= C(xi

p) �= C(xi
n).

Depending on the value of the hypothetical label, we
generate synthetic constraints for metric learning. Specifi-
cally, for cases c = 1, 2, 3, we generate a synthetic triplet
(si, s

+
i , s

−
i ); for case c = 4, a similar synthetic pair

(si, s
+
i ), and for case c = 5, a dissimilar synthetic pair

(si, s
−
i ). In all cases, si, s+i , s

−
i ∈ R

d. By concatenating
examples within a triplet as a single vector, and using an
appropriate mapping, we can generate new representations
of examples belonging to the same data distribution, for ex-
ample, (Duan et al. 2018) generated negatives by a concate-
nation. Hence, we consider various forms of concatenation
among the examples within the triplet to generate synthetic
examples. The ways of concatenation depend on the hypo-
thetical label yτi = c. We define our synthetic examples as
follows: si = S�ci, s+i = S�c+i and s−i = S�c−i , where
S ∈ R

2d×d is the parameter of the mapping used to gen-
erate synthetic examples. si, s+i and s−i are called as the
synthetic anchor, synthetic positive and synthetic negative
respectively. ci, c+i and c−i are concatenations obtained us-
ing the examples within the triplet τi, and can be defined as
follows:

Case 1: (c = 1), ci =
[
xi
a

xi
a

]
, c+i =

[
xi
a

xi
p

]
, c−i =

[
xi
a

xi
n

]
.

Case 2: (c = 2), ci =
[
xi
a

xi
a

]
, c+i =

[
xi
a

xi
n

]
, c−i =

[
xi
a

xi
p

]
.

Case 3: (c = 3), ci =
[
xi
p

xi
p

]
, c+i =

[
xi
p

xi
n

]
, c−i =

[
xi
p

xi
a

]
.

Case 4: (c = 4), ci =
[
xi
a

xi
p

]
, c+i =

[
xi
a

xi
n

]
.

Case 5: (c = 5), ci =
[
xi
a

xi
p

]
, c−i =

[
xi
a

xi
n

]
.

Idea of our method

We assume that there are two functions in our approach: a
synthetic loss s(S) that learns the parameter S ∈ R

2d×d,
and a metric learning loss m(S,L) that learns the pa-
rameter L using the synthetic examples generated by S.
Let us say we have two examples from different classes.
Their distance should be usually larger, say, by a mar-
gin. If it is not the case (i.e., hard negatives), and they
are relatively closer, then it would be more beneficial to
push them apart by m(S,L). On the other hand, m(S,L)
would not benefit much if it tries to push away examples
from different classes that are already well-separated. In
fact, the hardness of constraints in DML is very crucial for
the training convergence, and is well studied (Sohn 2016;
Oh Song et al. 2016). Hence, we design the losses s(S) and
m(S,L) such that s(S) synthesizes tougher examples that
may violate what m(S,L) is trying to achieve. Essentially,
by making them compete each other, we expect them to get
better, and eventually learn a better metric.
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Motivation of our method

Our work is inspired by the spirit of Virtual Adversarial
Training (VAT) (Miyato et al. 2018), a state-of-the-art ap-
proach for semi-supervised learning, where a tiny amount of
perturbation is added to an unlabeled example. This pertur-
bation is learned in such a way that the perturbed unlabeled
example affects the objective function in the worst possible
manner. Such a perturbed example is interpreted as an ad-
versarial example. In our work, we do not learn a perturba-
tion for adding to an example, but directly learn a mapping
S� that generates the perturbed synthetic examples, which
are adversarial to the metric learning process achieved by
m(S,L).

Justification of the concatenations

We provide a brief explanation on our choice of the above
concatenations. For case (c = 3), as we have C(xi

p) =

C(xi
n) �= C(xi

a), the example xi
p can be treated as the an-

chor, xi
n can be treated as the positive, and xi

a can be treated
as the negative. Ideally, we expect that the descriptors of xi

p

and xi
n should be similar, as they are from the same class.

Also, descriptors of xi
p and xi

a should be dissimilar, as they
are from different classes. Following the VAT principle, and
under some perturbations, the combined representation of
xi
p and xi

n could be mapped to a “better” positive represen-
tation of xi

n with respect to the anchor xi
p.

We do not learn an explicit perturbation specific to an ex-
ample, but hypothesize the existence of a global mapping
S� that serves this purpose. Hence, we map the concate-
nation c+i to a “better” synthetic positive s+i . Similarly, we
hope to learn a “better” synthetic negative s−i . In terms of
the VAT principle, s−i can be interpreted as a “perturbed”
version of xi

a, which poses as a more difficult negative
with respect to the “perturbed” version of the anchor. For
the synthetic anchor, we simply concatenate the current an-
chor with itself. Similar explanations hold for the cases
(c = 1, 2). For the case (c = 4), where all three examples
in τi are from the same class, we arbitrarily form a synthetic
anchor and a synthetic positive, which are brought closer
by the learned embedding. For the case (c = 5), where all
three examples in τi are from different classes, we arbitrarily
form a synthetic anchor and a synthetic negative, which are
moved away by the learned embedding.

Synthetic loss and metric learning loss

Cases 1, 2 and 3: For (c = 1, 2, 3), having obtained a
synthetic triplet (si, s+i , s

−
i ), we use the following metric

learning loss: m(S,L) = log(1 + exp(fm
i )), where fm

i =

δ2(L�si,L
�s+i ) − 4 tan2α δ2(L�s−i ,L

�smi ), such that
smi = (si+s+i )/2. Here, δ2(xi,xj) = (xi−xj)

�(xi−xj).
fm
i intuitively optimizes an angular constraint (Wang et al.

2017) on the synthetic triplet, in order to learn the parameter
L of the embedding. α > 0 can be intuitively seen as an an-
gle with respect to a triplet (Wang et al. 2017). The function
m(S,L) essentially minimizes a smoothed version of the
hinge loss [fm

i ]+ = max(0, fm
i ). For generating “better”

synthetic examples, we propose a synthetic loss s(S) which

aims at generating synthetic examples that are adversarial to
m(S,L). s(S) can be defined as follows: s(S) = log(1 +
exp(fs

i )), where fs
i = 4 tan2α δ2(s−i , s

m
i )− δ2(si − s+i ).

Case 4: For (c = 4), we only consider a pair of syn-
thetic examples, namely, a synthetic anchor si and a syn-
thetic positive s+i . The metric loss aims at minimizing the
distance of the similar synthetic pair, and can be defined
as: m(S,L) = δ2(L�si,L

�s+i ). The adversarial synthetic
loss can be defined as: s(S) = −δ2(si, s+i ).

Case 5: For (c = 5), we consider a pair consisting
of a synthetic anchor si and a synthetic negative s−i . The
metric loss aims at maximizing the distance of the dis-
similar synthetic pair, and can be defined as: m(S,L) =

−δ2(L�si,L
�s−i ). The adversarial synthetic loss can be

defined as: s(S) = δ2(si, s
−
i ).

Optimization problem of the proposed approach

Having formulated the different possibilities of synthetic
constraint generation, based on the semantic permutation
of examples present in a triplet, we define the following
loss: lic(S,L) = sic(S) + mi

c(S,L). Note that we add
the subscript c and superscript i to account for the differ-
ent combinations of values hypothetical label yτi can take,
for each triplet τi. Given a randomly sampled triplet τi, we
now encode the loss lic(S,L) as a probability, as follows:
pic = p(yτi = c|τi;S,L) = 1

1+exp(lic(S,L)) ;
∑

c p
i
c = 1.

Intuitively, it represents the conditional probability parame-
terized by the distance metric. This probability can be used
to compute the entropy, a measure of uncertainty. To learn
our metric, we propose to minimize the randomness or un-
certainty among all possible cases, leading to the following
optimization problem:

min
S∈R2d×d,L∈Rd×l

−
|T |∑
i

∑
c

pic log p
i
c + λ

∥∥∥L�L− I l

∥∥∥2
F
.

(1)

The term
∥∥∥L�L− I l

∥∥∥2
F

in (1) is a regularizer added to en-

force the orthogonality constraint L�L = I l, which avoids
a model collapse and overfitting to training data. λ > 0 is
a trade-off parameter. We call our proposed method as Syn-
thetic Unsupervised pseudo Metric Learning (SUML). It
should be noted that synthetic examples are used only for the
training process. After learning L, one could directly com-
pute the distance between two test examples xt

i and xt
j as:

δ2L(x
t
i,x

t
j) = (xt

i − xt
j)

�LL�(xt
i − xt

j). The gradient of
the term pic log p

i
c can be expressed as:

∂

∂Θ
[pic log p

i
c]

=
−pic(1 + log pic)

1 + exp(−lic(S,L))

{
∂

∂Θ
sic(S) +

∂

∂Θ
mi

c(S,L)

}
.

(2)

Here, Θ could be any of S or L. Let, δan = ci − c−i ,
δap = ci − c+i , δnm = c−i − cmi . Here, cmi = (ci + c+i )/2.
We now define the gradients of the synthetic and metric
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losses corresponding to each case (we omit subscripts and
superscripts for brevity):

Cases 1, 2 and 3:

∂

∂S
[s(S)]

=
2

1 + exp(−fs
i )

[4 tan2α δnmδ�nm − δapδ
�
ap]S

∂

∂S
[m(S,L)]

=
2

1 + exp(−fm
i )

[δapδ
�
ap − 4 tan2α δnmδ�nm]SLL�

∂

∂L
[m(S,L)]

=
2

1 + exp(−fm
i )

S�[δapδ
�
ap − 4 tan2α δnmδ�nm]SL.

Case 4:

∂

∂S
[s(S)] = −2δapδ�apS

∂

∂S
[m(S,L)] = 2δapδ

�
apSLL�

∂

∂L
[m(S,L)] = 2S�δapδ

�
apSL.

Case 5:

∂

∂S
[s(S)] = 2δanδ

�
anS

∂

∂S
[m(S,L)] = −2δanδ�anSLL�

∂

∂L
[m(S,L)] = −2S�δanδ

�
anSL.

Stochastic Extension: Let, Rd � xi = P�z(ri; θz) with
ri being the raw example, such that Φ = (θz,P ) denote
the parameters of a network, where z : X → R

D with
parameters θz provides a non-linear embedding of ri, and
P ∈ R

D×d is the parametric matrix of a Fully-Connected
(FC) layer at the end. Being fully differentiable by virtue of
eq (2), our method can have a deep extension, wherein we
can Back-Propagate (BP) the gradients by Stochastic Gra-
dient Descent (SGD) and jointy learn (Φ,S,L). To han-
dle large-scale datasets, we propose a stochastic version of
SUML, in Algorithm 1.

Algorithm 1 stochastic SUML (sSUML)

Input: Unlabeled data X , initial Φ; λ ,α, maxiter > 0.
1: Initialize Sprev,Lprev randomly.
2: while not converged do

3: Randomly mine T = {(xi
a,x

i
p,x

i
n)}

|T |
i=1, using a

sampled mini-batch.
4: for iter = 1 to maxiter do
5: [S,L]← SUML(Sprev,Lprev).
6: end for
7: Sprev = S; Lprev = L; Optionally BP to learn Φ.
8: end while
9: return Lprev

Table 1: Comparison of proposed method SUML against
SOTA supervised DML approaches for the classification
task in terms of classification accuracy (in %, higher the bet-
ter).

Dataset AT&T Faces

kNN JDRML LRGMML AML MDMLCLDD SUML (Ours)

k=1 90.42 ± 3.93 93.33 ± 3.66 92.08 ± 3.15 91.17 ± 2.55 90.08 ± 1.82
k=3 81.42 ± 3.71 88.75 ± 5.02 84.00 ± 3.09 83.58 ± 3.47 81.17 ± 2.01

k=10 64.83 ± 3.84 77.50 ± 5.91 61.92 ± 4.34 64.33 ± 5.18 64.92 ± 4.22
k=20 48.17 ± 3.78 55.42 ± 4.97 47.67 ± 4.19 48.67 ± 4.11 48.58 ± 5.12

Dataset COIL-20

kNN JDRML LRGMML AML MDMLCLDD SUML (Ours)

k=1 99.01 ± 0.29 99.24 ± 0.35 98.73 ± 0.49 98.59 ± 0.77 98.96 ± 0.55
k=3 97.67 ± 0.77 98.89 ± 0.40 98.41 ± 0.48 97.78 ± 0.99 98.06 ± 0.51

k=10 93.88 ± 0.91 96.95 ± 0.65 95.33 ± 1.14 93.46 ± 1.57 94.57 ± 1.38
k=20 90.21 ± 1.51 94.76 ± 0.71 90.32 ± 1.92 89.17 ± 2.05 89.63 ± 2.10

Dataset Isolet

kNN JDRML LRGMML AML MDMLCLDD SUML (Ours)

k=1 88.02 ± 0.57 89.44 ± 0.50 87.89 ± 0.74 87.88 ± 0.96 87.78 ± 1.01
k=3 86.60 ± 0.72 88.53 ± 0.47 86.73 ± 0.81 86.58 ± 0.81 86.50 ± 0.82

k=10 89.40 ± 0.54 90.46 ± 0.47 89.50 ± 0.84 89.54 ± 0.67 88.99 ± 0.57
k=20 89.59 ± 0.65 90.44 ± 0.59 89.65 ± 0.74 89.62 ± 0.59 89.22 ± 0.59

Dataset USPS

kNN JDRML LRGMML AML MDMLCLDD SUML (Ours)

k=1 96.99 ± 0.23 97.15 ± 0.34 97.04 ± 0.31 97.05 ± 0.34 97.08 ± 0.29
k=3 96.66 ± 0.34 96.79 ± 0.41 96.65 ± 0.29 96.82 ± 0.24 96.80 ± 0.36

k=10 95.76 ± 0.26 95.98 ± 0.42 95.79 ± 0.23 95.77 ± 0.25 95.85 ± 0.46
k=20 94.77 ± 0.30 94.99 ± 0.49 94.77 ± 0.35 94.81 ± 0.47 94.84 ± 0.29

Labels Yes No

Time complexity analysis

We now present the computational time complexity of the
major steps involved in our approach:
• Cost Function: The matrix multiplications require

O(d2|T |+ ld|T |). A matrix transpose and a matrix-vector
product involved, each require O(l|T |). The cost compu-
tation requires O(|T |).

• Gradients: The gradient with respect to L requires
O(d2|T | + d2l). However, gradient with respect to S re-
quires O(d2|T |+ d2l + d3).

• Parameter updates: As search space of both our param-
eters can be constrained to the Euclidean space, the pa-
rameter update steps require simple additions that can be
done in constant time.

The O(d3) term is due to multiplication of two d× d matri-
ces arising in computation of gradients wrt S. By ensuring
d < D in P ∈ R

D×d, our method is scalable against dimen-
sionality. Also, our approach is linear in terms of |T |.

Experiments

Classification on benchmark datasets

We first compare the proposed SUML approach against the
following recently proposed State-Of-The-Art (SOTA) su-
pervised DML approaches that make use of class labels:
JDRML (Harandi, Salzmann, and Hartley 2017), LRGMML
(Bhutani et al. 2018), AML (Chen et al. 2018) and MDML-
CLDD (Xie et al. 2018). We use the following benchmark
datasets: AT&T Faces(Samaria and Harter 1994), COIL20
(Nene et al. 1996), Isolet (Lichman 2013) and USPS (Hull
1994). For each dataset, we perform 10 random splits with
70%-30% train-test ratio, and report the standard deviation
along with the classification accuracies on the test data. For
the supervised approaches, we learn a distance metric using
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Table 2: Comparison of proposed method SUML against
manifold learning approaches in terms of classification ac-
curacy (in %, higher the better).

Dataset AT&T Faces

Method k=1 k=3 k=10 k=20

NPE 83.67 ± 3.71 67.33 ± 5.12 45.42 ± 10.04 28.42 ± 10.31
LPP 84.92 ± 3.52 65.17 ± 3.88 41.42 ± 5.33 23.08 ± 4.43

SUML (Ours) 90.08 ± 1.82 81.17 ± 2.01 64.92 ± 4.22 48.58 ± 5.12

Dataset COIL-20

NPE 95.91 ± 0.91 94.00 ± 1.21 81.34 ± 1.24 52.29 ± 1.54
LPP 96.05 ± 0.86 93.95 ± 0.74 81.43 ± 1.15 48.59 ± 3.17

SUML (Ours) 98.96 ± 0.55 98.06 ± 0.55 94.57 ± 1.38 89.63 ± 1.38

Dataset Isolet

NPE 82.24 ± 1.38 80.47 ± 0.33 85.00 ± 0.42 84.80 ± 0.42
LPP 81.55 ± 0.87 79.85 ± 1.21 84.66 ± 0.92 84.53 ± 1.09

SUML (Ours) 87.78 ± 1.01 86.50 ± 1.01 88.99 ± 1.01 89.22 ± 0.59

Dataset USPS

NPE 91.19 ± 0.59 88.89 ± 0.66 81.41 ± 0.90 70.30 ± 1.09
LPP 90.91 ± 0.67 88.86 ± 0.74 80.51 ± 0.64 68.80 ± 0.73

SUML (Ours) 97.08 ± 0.29 96.80 ± 0.36 95.85 ± 0.46 94.84 ± 0.29

the labeled training data, and report the classification accu-
racies on the test data using the learned metric. For our ap-
proach, we use the same training data to learn a metric, but
do not provide the class labels. The learned metric is used to
classify the test data using kNN classifier (with varying val-
ues of k). Best results are shown in bold. As seen in Table
1, our method performs competitive despite being unsuper-
vised. We also compare our method against unsupervised
manifold learning techniques NPE (He et al. 2005) and LPP
(He and Niyogi 2003), which easily get outperformed by
SUML (Table 2).

Table 3: Comparison of proposed unsupervised method
SUML against State-Of-The-Art (SOTA) DML approaches.

Dataset
JHMDB Dataset

(Zero-shot scenario)
HMDB Dataset

(Zero-shot scenario)

Method
Class

Labels
NMI F R@1 NMI F R@1

JDRML Yes 70.68 63.33 84.68 48.77 28.80 72.81
LRGMML Yes 69.06 61.33 86.29 49.54 29.57 72.72

AML Yes 69.53 61.38 87.10 53.20 31.52 73.32
MDMLCLDD Yes 69.72 62.28 87.09 51.17 30.27 73.26

MOM No 65.21 57.12 80.91 41.36 24.39 67.14
SUML (Ours) No 70.58 64.62 86.83 50.64 30.32 72.52

Dataset
AwA2 Dataset
+ CUB (noise)

Fashion-MNIST Dataset
+MNIST-Digit (noise)

Method
Class

Labels
NMI F R@1 NMI F R@1

JDRML Yes 83.19 78.73 93.85 59.75 47.69 77.40
LRGMML Yes 82.25 77.59 94.80 59.44 49.47 78.60

AML Yes 83.35 78.12 94.70 64.62 52.52 77.80
MDMLCLDD Yes 84.26 78.76 94.60 63.88 50.20 77.70

MOM No 68.11 62.24 87.05 53.71 42.24 73.10
SUML (Ours) No 83.47 79.06 93.86 63.87 51.42 77.03

Clustering and retrieval in zero-shot learning
scenario, and in the presence of noise

For the task of Zero-Shot Learning (ZSL) we used two
action recognition datasets: JHMDB (Jhuang et al. 2013)
(classes 1-8 are for training and 14-21 are for testing) and
HMDB (Kuehne et al. 2011) (classes 1-21 are for training
and 32-51 are for testing). Due to the disjoint nature of train-
ing and testing classes, it corresponds to the ZSL scenario.
The features were provided as part of (Cherian et al. 2018).

For DML in presence of noise, we used the AwA2 (Xian
et al. 2018) and Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017) datasets. For AwA2, the 10 largest classes were se-
lected. From each chosen class, examples 1-200 are chosen
for training, and examples 401-600 are for testing. Images
from the first 10 classes of the Caltech-UCSD Birds 200
(CUB) dataset (Welinder et al. 2010) are added as noise.
Features of both AwA2 and CUB were used as in (Xian et
al. 2018). From the training split of Fashion-MNIST, the first
200 examples for each class are chosen. The first 200 exam-
ples of each class from the testing split are chosen. For in-
clusion to training data as noise, we add the first 150 training
images from each class of the original MNIST dataset (Le-
Cun et al. 1998), after adding random noise to each pixel.

For each dataset above, the size of the embedding is set
as 64. We project the test data using the mapping learned
from the train data. The test examples in the learned space
are used to perform clustering and retrieval, to evaluate the
compared approaches. As shown in Table 3, SUML per-
forms competitive to the supervised SOTA approaches on
all the four challenging datasets (best method is shown in
bold, and second best is underlined). We also outperform the
state-of-the-art unsupervised metric learning method MOM
(Iscen et al. 2018). Additionally, in Table 4 we show that for
the same four datasets, SUML outperforms the following
classical DML approaches: NCA (Goldberger et al. 2005),
ITML (Davis et al. 2007), KISSME (Koestinger et al. 2012),
RVML (Perrot and Habrard 2015), SCML (Shi, Bellet, and
Sha 2014) and DRIFT (Ye et al. 2017).

Table 4: Comparison of proposed unsupervised method
SUML against classical supervised DML approaches.

Dataset
JHMDB Dataset

(Zero-shot scenario)
HMDB Dataset

(Zero-shot scenario)

Method
Class

Labels
NMI F R@1 NMI F R@1

NCA Yes 63.39 50.43 76.08 36.79 21.18 63.23
ITML Yes 68.82 58.26 85.48 46.43 27.66 71.95

KISSME Yes 55.91 47.01 83.70 41.01 24.46 69.61
RVML Yes 64.10 49.03 83.60 46.04 27.42 69.48
SCML Yes 50.54 41.17 80.11 39.71 23.51 66.98
DRIFT Yes 66.20 52.95 82.53 44.35 26.53 69.38

SUML (Ours) No 70.58 64.62 86.83 50.64 30.32 72.52

Dataset
AwA2 Dataset
+ CUB (noise)

Fashion-MNIST Dataset
+MNIST-Digit (noise)

Method
Class

Labels
NMI F R@1 NMI F R@1

NCA Yes 54.71 41.60 85.05 50.06 40.17 67.90
ITML Yes 73.72 66.15 92.15 49.09 37.95 74.60

KISSME Yes 75.70 68.21 91.05 53.92 42.49 74.90
RVML Yes 78.81 72.00 89.50 50.79 39.39 75.00
SCML Yes 73.28 66.44 89.95 52.32 41.49 72.40
DRIFT Yes 80.19 74.44 90.85 51.98 42.64 64.00

SUML (Ours) No 83.47 79.06 93.86 63.87 51.42 77.03

Hyperparameter tuning and Ablation studies

Tuning of hyperparameters in the unsupervised setting is not
trivial. But, due to the simplicity of our model, we only have
a single hyperparameter α > 0 and a trade-off parameter
λ > 0. α > 0 being an angle, is fairly easy to tune in the
range 30◦ to 60◦, as suggested in (Wang et al. 2017). We do
not tune it, but set it to 40◦ for all our experiments. We do not
give too high weightage to the regularizer term, and hence
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Figure 3: a) Convergence behaviour of SUML on the JH-
MDB dataset, b) Sensitivity towards α, with respect to NMI
and F values on the JHMDB test data, c) Sensitivity towards
λ, with respect to NMI and F values on the JHMDB test
data, d) NMI and F values on the JHMDB test data during
progress of training of SUML.

set λ to a low value of 0.5 for all our experiments. We ob-
served that it can also be set to as low as 10−3. We used the
Manopt toolbox (Boumal et al. 2014) to perform Rieman-
nian Conjugate Gradient Descent (RCGD) to jointly learn
S and L. We keep all the default parameters of Manopt,
and trained for a maximum of num ep = 30 epochs for all
datasets. Our method converges quite fast, owing to the Rie-
mannian product manifold based optimization (Figure 3a).

We fix λ = 0.5, num ep = 30 and observe the NMI and
F-values on JHMDB test data with varying α, and observe
that SUML is robust to α (Figure 3b). However, upon fixing
α = 40◦, num ep = 30 and varying λ, we observe that set-
ting too low value of λ decreases performance (Figure 3c).
This shows the importance of the orthogonality constraint.
Figure 3d shows that initially the performance of our method
is poor (as we initialize S and L randomly), but gradually
improves. This also shows that despite a random initializa-
tion, an optimal solution could be reached due to the product
manifold based optimization.

Experiments on large-scale data

We perform large-scale experiments to evaluate our stochas-
tic method sSUML on the following datasets: STL-10
(Coates, Ng, and Lee 2011) and ImageNet (Russakovsky et
al. 2015). Our stochastic method is again competitive with
respect to the baselines (see Table 5). It should be noted that
the performance of all the approaches are relatively poor in
the STL-10 dataset. This is because we intentionally use the
raw pixel values and reduce the dimensionality to 100 caus-
ing severe loss of information, to show that despite a poor
initial representation, our method can perform competitive.

For the ImageNet dataset, we followed the ImNet-2 proto-
col as in (Kodirov, Xiang, and Gong 2017). In both STL-10
and ImageNet, we fix maxiter = 10, α = 40◦, λ = 0.5 in
Algorithm 1. Mini-batch size is 120, and embedding size is
64. Figure 4 shows convergence behaviour of our method on
ImageNet.

Table 5: Comparison of the proposed stochastic SUML
(sSUML) approach against various baselines, on STL-10
and ImageNet datasets.

Dataset STL

Method
Class

Labels
Mini-batch

based
NMI R@1 R@2 R@4 R@8

KISSME Yes No 12.1 25.5 38.5 55.1 73.1
JDRML Yes No 14.9 30.2 44.9 61.3 77.5

LRGMML Yes No 15.2 30.4 45.5 61.8 77.6
AML-stoch Yes Yes 15.0 30.3 44.8 61.2 76.9

MDMLCLDD Yes No 15.1 30.1 44.7 61.1 77.0
sSUML (Ours) No Yes 14.3 29.4 44.1 60.5 76.7

Dataset ImageNet

KISSME Yes No 56.5 39.4 49.2 58.8 68.1
AML-stoch Yes Yes 58.1 42.2 52.5 62.1 71.1

sSUML (Ours) No Yes 56.6 38.9 48.8 58.7 68.3
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Figure 4: Convergence behaviour of our proposed stochastic
method on the ImageNet dataset.

Empirical runtime evaluation

The softmax-based metric learning method NCA takes 864s
on the HMDB dataset, whereas ours take only 1.38s. Triplet-
loss based DRIFT is 8.74 times slower than ours. ITML
is 1.9 times slower than us. Faster, low-rank approach
LRGMML (1.36s) is almost similar to ours. We require
small mini-batch sizes (e.g., 120). For each mini-batch, we
only need about 103 triplets, evaluating on which, takes very
less time even on ImageNet (0.77 seconds). Even increas-
ing number of triplets to 104, we only require 6.6 seconds
per mini-batch, which is quite less in practice. Due to the
product manifold based optimization, our method converges
quite fast, and we do not have problem scaling up.

Clustering and retrieval for Fine-Grained Visual
Categorization (FGVC)

We also compare our proposed stochastic method against
the following recently proposed, deep unsupervised feature
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and metric learning methods: Exemplar (Dosovitskiy et al.
2016), NCE (Wu et al. 2018), DeepCluster (Caron et al.
2018) and MOM (Iscen et al. 2018). The following bench-
mark fine-grained datasets were used: CUB 200 (Welinder
et al. 2010), Cars 196 (Krause et al. 2013) and Stanford
Online Products (SOP) (Oh Song et al. 2016). GoogLeNet
(Szegedy et al. 2015) pretrained on ImageNet (Russakovsky
et al. 2015), has been used as the backbone CNN, using the
MatConvNet (Vedaldi and Lenc 2015) tool. Recent metric
learning approaches concluded their robustness towards em-
bedding size in FGVC, and hence, following the evaluation
protocol in (Wang et al. 2017; Iscen et al. 2018), we set the
embedding size to 512, except for Cars, where we set it as
128. We fix α = 45◦ and λ = 0.5. We used mini-batch size
of 120 and set maxiter = 10 in Algorithm 1. The results
of comparison have been shown in Table 6. Our method per-
forms the best in Cars and SOP datasets, and second best on
CUB, where the MOM approach performs better than ours
because of their careful mining strategy. We also report our
own initial performance obtained using a random initializa-
tion. Despite a poor initialization, our method is capable of
improving the performance.

Table 6: Comparison against deep unsupervised approaches
on three benchmark fine-grained datasets.

Dataset CUB 200

Method
Class

Labels
NMI R@1 R@2 R@4 R@8

Initial (Random) No 34.3 31.7 42.7 54.8 67.0
Exemplar No 45.0 38.2 50.3 62.8 75.0

NCE No 45.1 39.2 51.4 63.7 75.8
DeepCluster No 53.0 42.9 54.1 65.6 76.2

MOM No 55.0 45.3 57.8 68.6 78.4
sSUML(Ours) No 53.4 43.5 56.2 68.3 79.1

Dataset Cars 196

Method
Class

Labels
NMI R@1 R@2 R@4 R@8

Initial (Random) No 23.4 22.3 31.4 41.9 54.1
Exemplar No 35.4 36.5 48.1 59.2 71.0

NCE No 35.6 37.5 48.7 59.8 71.5
DeepCluster No 38.5 32.6 43.8 57.0 69.5

MOM No 38.6 35.5 48.2 60.6 72.4
sSUML(Ours) No 37.6 42.0 54.3 66.0 77.2

Dataset Stanford Online Products (SOP)

Method Class Labels NMI R@1 R@10 R@100

Initial (Random) No 79.7 25.4 35.6 48.6
Exemplar No 85.0 45.0 60.3 75.2

NCE No 85.8 46.6 62.3 76.8
DeepCluster No 82.8 34.6 52.6 66.8

MOM No 84.4 43.3 57.2 73.2
sSUML(Ours) No 81.2 47.8 63.6 78.3

Conclusion

An unsupervised metric learning approach has been pro-
posed that learns a metric using synthetic constraints, which
are obtained using randomly sampled triplets from unlabeled
data. This is done by minimizing the entropy of a condi-
tional probability over the triplets. The proposed method
performs competitive to many state-of-the-art and classical
metric learning approaches, despite not using class labels for
training.
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