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Abstract

Much of machine learning relies on the use of large amounts
of data to train models to make predictions. When this data
comes from multiple sources, for example when evaluation
of data against a machine learning model is offered as a ser-
vice, there can be privacy issues and legal concerns over the
sharing of data. Fully homomorphic encryption (FHE) allows
data to be computed on whilst encrypted, which can provide a
solution to the problem of data privacy. However, FHE is both
slow and restrictive, so existing algorithms must be manipu-
lated to make them work efficiently under the FHE paradigm.
Some commonly used machine learning algorithms, such as
Gaussian process regression, are poorly suited to FHE and
cannot be manipulated to work both efficiently and accu-
rately. In this paper, we show that a modular approach, which
applies FHE to only the sensitive steps of a workflow that
need protection, allows one party to make predictions on their
data using a Gaussian process regression model built from an-
other party’s data, without either party gaining access to the
other’s data, in a way which is both accurate and efficient.
This construction is, to our knowledge, the first example of
an effectively encrypted Gaussian process.

1 Introduction

As increasingly large amounts of data are becoming avail-
able, machine learning techniques are increasingly essen-
tial for gaining insights into trends and patterns which can
be used to make predictions about new data. Indeed, many
industries already benefit greatly from the use of machine
learning for tasks such as drug discovery and fraud detec-
tion, and thus as the application areas continue to broaden,
the servitization of machine learning capabilities seems in-
evitable. However, this capability relies on the sharing of
data for training the required machine learning models, or
for predicting on new data, and is thus limited by any con-
straints on the disclosure of this information.

For many reasons, including legal restrictions or compet-
itive advantage, people and organisations may wish to keep
their data private. In the case where machine learning is of-
fered as a service, if the client wishes to keep their data pri-
vate then they may be unwilling to share it with the service
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provider. The service provider is unlikely to be willing to
share their model or data with the client, as this would un-
dermine their ability to continue offering the service. Since
neither party is willing to share their data with the other,
combining the data to make predictions poses a problem.

One potential solution to this problem is found in fully
homomorphic encryption (FHE), which allows for calcu-
lations to be made on encrypted data. Privacy is ensured
by encrypting the client’s data and sending it to the ser-
vice provider, then allowing the service provider to per-
form calculations on the encrypted data before returning
the results to the client, who can then decrypt them. This
problem has been considered for several machine learning
algorithms. The paper Implementing ML Algorithms with
HE (Du et al. 2017) describes implementations of linear
regression and K-means clustering under FHE, and gives
an overview of other machine learning algorithms which
have been implemented by others, including Ridge Regres-
sion (Nikolaenko et al. 2013), Linear Means Classifiers
(Graepel, Lauter, and Naehrig 2012), Naive Bayes, Decision
Trees and Support Vector Machines (Bost et al. 2014), K-
Nearest Neighbour (Samet, Miri, and Orozco-Barbosa 2007;
Clifton 2003), and Neural Networks (Dowlin et al. 2016).

The use of FHE for machine learning is not, however,
the panacea it may at first appear to be. Performing com-
putation on encrypted data is much slower than performing
the same computation on plain-text, and there are limits on
the types of operations which can be used. Some machine
learning algorithms will therefore lend themselves to FHE
better than others. For example, parts of some popular al-
gorithms cannot realistically be accurately computed under
FHE and must be approximated, with more accurate approx-
imations requiring greater computational expense, and so a
choice must be made between speed and accuracy.

Gaussian process regression is one example of a machine
learning algorithm which provides a challenge when ap-
plying FHE, and as a result there does not (to our knowl-
edge) currently exist any application of FHE to Gaussian
processes. Smith et al. (Smith, Zwiessele, and Lawrence
2018) have considered an alternative approach to the prob-
lem of applying privacy-enhancing techniques to Gaussian
processes, using differential privacy, but their approach pro-
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tects only the target values of the data and not the feature
vectors.

In this paper we identify why parts of Gaussian pro-
cess regression are unsuited for computation under FHE and
demonstrate that this problem can be avoided by splitting
the algorithm into parts in such a way that only some parts
need to be computed homomorphically. This enables the
user to circumvent some stages of the algorithm which are
not amenable to computation under FHE, and to optimize
those which are computed under FHE individually, with the
end result being both faster and more accurate than perform-
ing the whole algorithm in a single block.

In Section 2 we review the relevant details of Gaussian
process regression and FHE. In Section 3 we look at the
complications and restrictions of adapting Gaussian pro-
cess regression to FHE and introduce our proposed solution,
which splits the homomorphic computation into smaller
components. We also analyse the security of our solution and
give details of an implementation. In Section 4 we present
our results and show that, compared to an implementation
which does not split up the homomorphic computation, our
approach is both faster and more accurate.

2 Methods

2.1 Gaussian Processes

A Gaussian process (GP) is a stochastic process such that
every finite set of random variables has a multivariate Gaus-
sian distribution. A Gaussian process can be used to define a
probability distribution over the set of continuous functions,
and by incorporating training data we can construct a model
of the relationship represented by the data. In constructing
this model we assume there is an underlying function f and
our training data consists of a sample of values in the func-
tion’s domain (feature vectors), and the corresponding out-
puts of the function (target vectors), possibly with some er-
ror in measurement. A Gaussian process model can be used
for regression, to make predictions about the behaviour of
the function on feature vectors outside of the sample.

We build the GP model by first placing a prior distribution
over functions based only on our beliefs about the general
form that the function should take, then updating this distri-
bution using known function values. The prior distribution
is Gaussian and has mean value 0 at all points, so the distri-
bution is defined entirely by the covariances of the function
values. These covariances are given by a kernel function,
k(x, x′). A common class of kernel functions are isotropic
kernels, which measure the distance d(x, x′) with respect to
some distance metric d(·, ·), then calculate the covariance
based on just this distance. In this paper we consider only
isotropic kernels.

Although the kernel function gives a covariance for all
pairs of points in the function’s domain, when building
a GP model to make predictions on new feature vec-
tors, we only need to calculate the covariances between
each pair of feature vectors in the training data and new
data. Given training data x = [x1, x2, . . . , xn] and y =
[y1, y2, . . . , yn] = [f(x1), f(x2), . . . , f(xn)], and new data
x∗ = [x∗

1, x
∗
2, . . . , x

∗
m] for which we wish to predict y∗ =

[f(x∗
1), f(x

∗
2), . . . , f(x

∗
m)], we calculate:

• the n × n covariance matrix K defined by ki,j =
k(xi, xj),

• the m× n matrix K∗ defined by k∗i,j = k(x∗
i , xj),

• the m×m matrix K∗∗ defined by k∗∗i,j = k(x∗
i , x

∗
j ).

Then our assumed prior distribution gives us[
y
y∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
.

From this we get that the elements of y∗ have Gaussian dis-
tributions with means given by ȳ∗ = K∗K−1y and vari-
ances given by var(y∗) = diag(K∗∗)− diag(K∗K−1KT

∗ ).
One common isotropic kernel function is the squared ex-

ponential function, also commonly known as the radial basis
function (RBF) kernel or the Gaussian kernel:

k(a, b) = exp

(
−d(a, b)2

2l2

)
,

for some choice of lengthscale parameter l. In theory, any
true metric can be used as the distance measure, but here we
focus on the Hamming, Jaccard and Euclidean distance met-
rics, which are commonly used in machine learning tasks,
with the Jaccard being particularly prevalent in cheminfor-
matics. Other metrics could certainly be used in the scheme
we propose, but care must be taken to implement them effi-
ciently under homomorphic encryption.

2.2 Fully Homomorphic Encryption

The concept of homomorphic encryption was proposed by
Rivest, Adleman, and Dertouzos (Rivest, Adleman, and Der-
touzos 1978), but the ideas were not realized until 2009
when Gentry designed a functional (but prohibitively slow)
fully homomorphic encryption scheme (Gentry 2009). Since
then, many homomorphic encryption schemes have been
developed, such as the Brakerski-Gentry-Vaikuntanathan
(BGV) (Brakerski, Gentry, and Vaikuntanathan 2011)
scheme, and many optimizations have been made. These
schemes are homomorphic in addition and multiplication,
in that Encrypt(x) + Encrypt(y) = Encrypt(x + y) and
Encrypt(x)Encrypt(y) = Encrypt(xy).

Gentry’s design begins with a “somewhat homomorphic”
encryption scheme, which behaves homomorphically for a
limited number of computations, thus limiting the depth of
arithmetic circuits which can be calculated. He then extends
this to a “fully homomorphic” encryption (FHE) scheme
with the introduction of bootstrapping, a process which “re-
freshes” the ciphertext to allow for more computation. Boot-
strapping allows the data to be computed on indefinitely, but
is a very slow process.

The BGV scheme allows for more efficient FHE by intro-
ducing modulus switching either instead of or in conjunc-
tion with bootstrapping. The result is known as leveled ho-
momorphic encryption. In leveled homomorphic encryption,
arithmetic circuits of any depth can be computed without
bootstrapping, but the depth must be known before setting
the encryption scheme’s parameters. The work described in
this paper uses leveled FHE without bootstrapping.
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HElib We make use of the homomorphic encryption li-
brary HElib (Halevi and Shoup), which implements the
BGV scheme. The BGV scheme works over polynomial
rings of the form A = Z[X]/Φm(X), where Z[X] is the
ring of integer-coefficient polynomials in X and Φm(X) is
the mth cyclotomic polynomial. The plaintext space for the
scheme is Apr , for any prime p and positive integer r, where
we define Aq = A/qA for any integer q. In our implemen-
tation of GP regression we set r = 1, so we shall use this
value in the following explanation.

Ciphertexts are vectors in (Aq)
2 for some odd modulus

q. When using modulus switching we have a sequence of
decreasing moduli qL � qL−1 � . . . � q0, so that ci-
phertexts lie on L + 1 different “levels”. Given two moduli
q and q′, elements of Aq can be mapped to Aq′ by first using
the map [·]q which maps an element x ∈ Aq to the unique
element of A which is equal to x mod q but has each coef-
ficient in the range [−q/2, q/2). This element of A can then
be interpreted as an element of Aq′ .

A level-i ciphertext c = (c0, c1) is said to encrypt a plain-
text m ∈ Ap with respect to a secret key s = (1, s) ∈ A

2 if
[〈s, c〉]qi = [c0 + sc1]qi = m+ pe for an error term e which
satisfies p ‖e‖ � qi. Decrypting c is then a matter of cal-
culating [[〈s, c〉]qi ]p. The result of [〈s, c〉]qi is referred to as
“noise”, and decryption works because the noise is equal to
m mod p. However, the maximum possible size of the noise
grows with each calculation: the sum of ciphertexts c0 and
c1 has noise equal to the sum of the noises of c0 and c1, and
the product c0c1 has noise equal to the product of the noises
of c0 and c1. Noise can therefore grow very quickly when
many sequential multiplications are performed. By defini-
tion the noise is guaranteed to have each coefficient in the
range [−qi/2, qi/2). We think of qi/2 as a “noise ceiling”,
and if any coefficient grows too large it may exceed the noise
ceiling and overflow, causing decryption to fail.

The sequence of decreasing moduli described above
(known as the modulus chain) provides a way of managing
the noise level. Freshly encrypted ciphertexts are encrypted
at the highest level in the chain. It is possible to convert a
valid level-i ciphertext c to a valid level-(i − 1) ciphertext
which encrypts the same plaintext by scaling c by (qi−1/qi)
and rounding to the closest level-(i − 1) ciphertext c′ such
that c′ = c mod p. This lowers the level of noise by a factor
of (qi−1/qi) but also lowers the noise ceiling by the same
factor. This can help to manage the increase in noise result-
ing from multiplication. When evaluating an arithmetic net-
work homomorphically, HElib will automatically decrease
the modulus of a ciphertext when necessary. It will often
decrease the modulus level of two ciphertexts before mul-
tiplying them, so the required length of modulus chain is
correlated with the number of sequential multiplications in
the network.

We can make an arbitrarily large number of computations
on a piece of data, so long as we know the arithmetic net-
work in advance and create a long enough modulus chain.
However, the length of the modulus chain has a significant
effect on the speed of computation under BGV. The per-gate
computation in BGV without bootstrapping is Õ(λ · L3),
where λ is the security parameter and L is the length of

the modulus chain (Brakerski, Gentry, and Vaikuntanathan
2011). Any change in the depth of an arithmetic network can
therefore make a large change in the time needed to evaluate
it, so careful planning of algorithms is incredibly important.

3 FHE for Gaussian Processes

3.1 Technical Considerations

When working with FHE we are limited in the types of op-
eration we can use. In BGV the only arithmetic operations
we can use are addition and multiplication, which means we
can calculate only polynomials. The length of the modulus
chain, L, required for decryption to succeed roughly corre-
lates with the number of sequential multiplications in the
algorithm. For a degree d polynomial this is, at best, roughly
equal to log2(d). Since the per-gate computation time is cu-
bic in L we are in practice limited to performing calcula-
tions using just low-degree polynomials, restricting our abil-
ity to approximate non-polynomial functions. Many algo-
rithms involve the evaluation of functions which cannot be
approximated well by a low degree polynomial. This leaves
the user with a choice between using a high degree polyno-
mial, in which case the algorithm will run slowly under FHE,
or a lower degree polynomial, resulting in poor accuracy.

Gaussian process regression is an example of an algorithm
for which these problems are significant. It is impossible
to accurately approximate GP regression using low-degree
polynomials, mainly due to the use of a kernel function.
Most isotropic kernel functions are largest when the dis-
tance is close to zero, and tend to zero as the distance gets
large. However, a polynomial will (unless it is constant) be
much larger in magnitude at large inputs than at 0. The best
polynomial approximation to the squared exponential ker-
nel, which our implementation uses, is a Taylor expansion
around 0, but even a large degree Taylor approximation di-
verges very quickly outside of a relatively small region. The
point at which the approximation breaks down is propor-
tional to the lengthscale, so problems which require a small
lengthscale relative to the size of the domain will be approx-
imated very badly.

Figure 1 shows the Gaussian process algorithm broken up
into small modules. As can be seen in the diagram, there are
three sequences of modules which can be performed in any
order:
a) calculate the distances between training feature vectors,

apply the kernel function to these distances to form a co-
variance matrix, then invert the covariance matrix,

b) calculate the distances between training feature vectors
and the test feature vectors, then apply the kernel function
to these distances,

c) calculate the distances between test feature vectors, then
apply the kernel function to these distances.

The results of (a) and (b) are multiplied together with the
training target vectors. This gives the mean of the prediction,
and another result which is summed together with the result
of (c) to get the variance of the prediction.

A naive application of FHE might require the service
provider to receive the client’s encrypted data, perform the
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Figure 1: The flow of Gaussian process regression broken into components. Boxes with rounded corners are input/output data.
Boxes with square corners are modules in the calculation. If no intermediate results are returned to the client then all the shaded
modules must be performed homomorphically.

whole algorithm homomorphically, and return an encrypted
prediction. With this approach, any module in Figure 1
which relies on the client’s data, either directly or indirectly,
will need to be performed homomorphically. The remaining
steps, which rely only on the training data, can be performed
in plaintext by the service provider. This approach would
need to approximate the entire algorithm as a polynomial,
including the kernel function, which cannot be well approx-
imated with a low order polynomial. Achieving an adequate
level of accuracy with such an approach would therefore re-
quire a very high degree polynomial and as such would be
very slow.

However, if we apply FHE with more consideration, for
each homomorphic step we can consider whether or not the
output from that step needs to be kept secret from the client.
If not, then the service provider can return this encrypted
output to the client, who can decrypt the output and con-
tinue the algorithm in plaintext until the next time the al-
gorithm requires input from the service provider. Analysis
of Figure 1 reveals that the client only requires the service
provider’s input in two steps: calculating distances between
training feature vectors and test feature vectors, and calcula-
tion of the matrix products. Assuming that there is no loss of
privacy for the service provider if the client views the output
of these steps (we shall revisit this assumption in the next
subsection) then these two steps are the only ones which
must be performed homomorphically. The resulting work-
flow (shown in Figure 2) splits up the homomorphic compu-
tation and allows us to altogether avoid applying the kernel
function homomorphically.

Splitting the algorithm in this way offers significant im-
provements for speed and accuracy. Each of the two homo-
morphic steps can now be approximated with its own poly-
nomial, which must necessarily have a smaller degree than
that of a polynomial which approximates the whole algo-
rithm to the same level of accuracy. The individual steps can
also be optimised separately for FHE, in terms of encod-
ing and parameters, rather than finding a single encoding
scheme and set of parameters for the whole algorithm. Most
significantly, the kernel function can be calculated in plain-
text, which allows us to avoid a slow and inexact encrypted
polynomial approximation. We will demonstrate how signif-
icant these improvements are in Section 4.

3.2 Security analysis

One downside to this approach is that it requires more in-
teraction between parties, which requires the parties to be in
more regular contact with each other. This could be a prob-
lem when, for example, the client is in a remote location with
poor quality, or noisy, communication channels, but more
importantly it also has implications for the level of security.

Although the approach does not reveal any information
which directly identifies the protected data, it does give the
client access to the transformed data at a couple of interme-
diate steps of the algorithm, which could be analysed to gain
information about the data. It is worthwhile to note that this
security problem applies to any implementation of encrypted
Gaussian processes, since the predictions made by the algo-
rithm can be used for the same analysis. Returning interme-
diate results to the client does not introduce the problem, but
does potentially worsen it by making more data available
for analysis. However there are measures that can be taken
to significantly mitigate this.

To provide an example of the difficultly of perform-
ing such an attack both with and without the intermedi-
ate data, we consider Gaussian process regression over d-
dimensional binary feature vectors, with n points of training
data.

We first consider the case where the attacker has access
only to the predictions made by the Gaussian process. In
this case an attacker can use the prediction variance to locate
training data. Since the predictive model is more confident
close to the training data, the training data creates local min-
ima in the prediction variance. By using optimisation meth-
ods such as gradient descent, the attacker could find some
of these local minima and thus identify some of the train-
ing data. In this way, the attacker could find up to k training
data points by making kt predictions, where t is the num-
ber of iterations that they run their optimisation algorithm
for. It is possible that several of these optimisations will find
the same local minimum, so k is merely a maximum on the
number of data points identified. Even though the attacker
can identify some training data, without access to any of the
intermediate data they cannot know how many data points
are contained in the training data, and thus cannot be sure
that they have found all the data.
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Figure 2: Our workflow for encrypted Gaussian process regression. Shaded boxes are steps which involve encrypted data. All
other steps are performed on plaintext.

We now consider the case where the attacker does have
access to intermediate data. We start by noting that the sec-
ond of the two homomorphic steps gives the attacker no ex-
tra information to work with. In this step two things are re-
turned to the client: the means of the predicted values and
the matrix product diag(K∗K−1KT

∗ ). The first of these is
part of the prediction that the client wants. The second out-
put differs from the variances of the predicted values only
by taking its negative and adding diag(K∗∗), which is an
entirely reversible operation. Therefore, giving the output of
this homomorphic step to the client gives them no more in-
formation than giving them the prediction directly.

We therefore only need to consider the first of the two
homomorphic steps. This step gives the client access to the
distances between the training feature vectors and their own
feature vectors, which gives them some information about
the training feature vectors. If no measures are taken to ob-
scure this extra information, an attacker can use a simple
attack to find the training data: Predict on each of the unit
vectors ei and the zero vector 0, then each training feature
vector has a 1 in the ith position if and only if its distance
from ei is smaller than its distance from 0. Once all training
feature vectors have been identified in this way, the attacker
simply needs to predict on these values to find an approx-
imation of the target values (this may not return the exact
target values, depending on the model used, but it should be
close). This attack requires only d+ n+ 1 predictions.

There are several measures that can be taken to obscure
the distances, thus increasing the difficulty of an attack. For
example:
• Adding a small amount of noise to each distance will pre-

vent the client from knowing the exact distances. This will
affect the prediction, but is a commonly used procedure in
Gaussian process regression, and has been shown to im-
prove the numerical performance of the method.

• By adding fake data points to the training data before cal-
culating the distances, the service provider can hide the
number of training points from the client.

• The service provider can randomise the order of the dis-
tances before sending them to the client, then later put the

covariances back in the correct order. This will prevent the
client from knowing which distance corresponds to each
piece of training data.

• If the algorithm is modified so the first homomorphic step
returns the square of the distance (we recommend this for
Euclidean distances, and it can be done with little sacrifice
to speed in other cases), the service provider can choose
a random integer c for each distance and add this num-
ber to the squared distance before sending it to the client.
They can later multiply the corresponding covariance by
ec/2l

2

to cancel out this change, again with little sacrifice
to speed. In this way the service provider can completely
obscure the distances from the client for a small sacrifice
in speed.
These precautions considerably increase the difficulty in

learning the distances and the number of training points, and
therefore significantly increase the number of predictions
necessary for an attack.

3.3 Implementation

The first of the two homomorphic steps is the calculation of
the distances between training feature vectors and test fea-
ture vectors. The implementation is specific to the choice of
distance metric, but we demonstrate that it is possible to im-
plement efficiently for some common distance metrics. We
have implemented Hamming distances, Jaccard distances
and, with a small modification to the workflow, Euclidean
distances.

Hamming distance The Hamming distance between two
vectors is the number of positions in which they differ from
each other. This is commonly used for binary vectors, for ex-
ample in chemoinformatics where MACCS keys are a com-
mon way of describing molecules as 167 dimensional bi-
nary vectors. For calculation of Hamming distances we use
Z2 to encode non-negative integers as binary digits. We can
then add integers through the appropriate addition and mul-
tiplication of the digits. We encode feature vectors in Z

n×1
2 .

We regard this as n binary vectors of length 1, each repre-
senting an integer stored with a single binary digit. Since
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1 + 1 = 0 in Z2, for feature vectors x,x′ ∈ Z
n×1
2 , the sum

xi,1 + x′
i,1 equals 1 if and only if xi,1 and x′

i,1 differ. The
sum x + x′ ∈ Z

n×1
2 is therefore equal to 1 in each position

where x and x′ differ, and we get the Hamming distance by
adding together these 1s. This is done in steps, where in each
step we pair up integers which are stored using k binary dig-
its and add them together, resulting in integers stored using
k+1 binary digits. After the first step we are left with an ele-
ment of Z�n/2�×2

2 , which is regarded as 	n/2
 binary vectors
each representing a 2-digit binary number. After the second
step we have an element of Z�n/4�×3

2 , regarded as 	n/4
 bi-
nary vectors each representing a 3-digit binary number, and
so on until we get an element of Z1×�log2(n)+1�

2 , containing
the binary digits of the Hamming distance.

When running this distance algorithm on a single pair
of feature vectors, each element of Z2 is encrypted into a
separate ciphertext. By using ciphertext packing (Smart and
Vercauteren 2014) we can store many elements of Z2 in
the same ciphertext and compute on them simultaneously,
which can be used to run the distance algorithm on many
pairs of feature vectors at no extra computational cost. We
use the same packing strategy for Jaccard distances.

Jaccard distance The Jaccard distance between two finite
sets A and B is |A∪B|−|A∩B|

|A∪B| . Binary vectors can be re-
garded as subsets of some larger finite set (xi = 1 if and
only if the ith element is present in the subset) so we can
take Jaccard distances between binary vectors. This is also
commonly used in chemoinformatics. For this calculation
we encode feature vectors in Z

n×1
2 in the same way as for

Hamming distance. As the distance is a fraction, and we can-
not perform division on encrypted data, we return the frac-
tion as a pair of integers - numerator and denominator - for
the client to divide. The denominator is the size of the union,
which is the number of indices where one or both vectors
are equal to 1. The sum xi,1 + x′

i,1 − xi,1x
′
i,1 is equal to 1 if

and only if one or both of xi,1 and x′
i,1 is equal to 1, so we

calculate the denominator by calculating x + x′ − xx′ and
summing the 1s in the same way as for the Hamming dis-
tance. The size of the intersection is the number of indices
where both vectors are equal to 1. Thus the numerator is the
number of indices where exactly one vector is equal to 1,
which is precisely the Hamming distance.

Euclidean distance The Euclidean distance between vec-
tors x and y is

√∑n
i=0(xi − yi)2. This involves taking the

square root, which we cannot reasonably do on encrypted
data. This can be worked around by homomorphically cal-
culating the square of the Euclidean distance and letting the
client take the square root. This does not give any extra in-
formation to the client since there is a one-to-one mapping
between the (positive) distances and their squares. We there-
fore only need to calculate

∑n
i=0(xi − yi)

2, which is a very
low degree polynomial so is perfectly suited for FHE. In this
case we run into another issue. The BGV scheme only works
on elements of Zp for some prime p, whereas the Euclidean
distance is defined over all real numbers. We work around

this using the same method as (Dowlin et al. 2016). We
scale real numbers by some large scaling factor then round
to the nearest integer. Since the integers obtained are po-
tentially very large we use the Chinese Remainder Theorem
to split them into vectors of smaller integers, each modulo
some prime base. We use primes roughly equal to 10000 and
choose a suitably large number of primes to store the scaled
numbers. Each number is therefore encoded as a sequence
of integers, each an element of Zpi for some sequence of
plaintext moduli p.

When running this algorithm on a single pair of feature
vectors, each element of Zpi

is encrypted into a separate ci-
phertext. Again, using ciphertext packing we can perform
several instances of the algorithm in parallel. In this case
the number of elements we can store in a single ciphertext
varies with pi, so, to compute a fixed number of distances,
the number of ciphertexts required for each pi also varies.
We use the same packing strategy for multiplying matrices,
allowing us to make several predictions at once.

Multiplying matrices The second homomorphic step in-
volves multiplying matrices of real numbers. In particular,
this step calculates K∗K−1y and diag(K∗K−1KT

∗ ), which
requires the evaluation of polynomials of degree 3. This is
also a very low degree polynomial with real valued inputs,
so is encoded in the same way as for Euclidean distance.

4 Results

We apply our modular approach to a data set which is a re-
alistic representation of the kind of data for which this tech-
nique would provide significant real world value. This data
consists of hits from Plasmodium falciparum (P. falciparum)
whole cell screening as released through the Medicines for
Malaria Venture website (mmv.org) and originates from the
GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS),
Novartis-GNF Malaria Box Data set and St. Jude Children’s
Research Hospital’s Dataset, and consists of molecules de-
scribed using MACCS keys (Durant et al. 2002) - a com-
mon cheminformatics descriptor, generated using the RD-
Kit software (Landrum), consisting of 167-dimensional bi-
nary feature vectors. Pharmaceutical companies are unlikely
to want to expose any intellectual property during the drug-
discovery process, but may want to use machine learning
models built on external data to accelerate the discovery pro-
cess. The owner of this data, if it is not openly available, is
unlikely to want to expose their IP either, given the potential
value it has for the user.

We compare to a non-modular approach which does not
return anything to the client until the (encrypted) prediction
has been calculated. All steps up to this point which rely on
the client’s data must therefore be performed homomorphi-
cally. Steps which do not rely on the client’s data can still be
performed in plaintext by the service provider (see Figure
1). Since the results are real numbers, we use the same tech-
nique as for multiplying matrices: multiply by a large scaling
factor, round to the nearest integer, and split the large integer
into several smaller ones using the CRT.
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Since the kernel cannot be calculated exactly we approx-
imate it with a degree 6 Taylor expansion about 0, which
provides a good approximation for distances which are small
relative to the lengthscale, but quickly becomes inaccurate as
the distances become larger. For Jaccard distances we need
to calculate the reciprocal of |A ∪ B|. In the dataset we are
using, the value of |A ∪ B| lies between 35 and 105 about
99.9% of the time. We approximate the reciprocal function
with a degree 6 Taylor expansion about 70, which gives a
fairly close approximation between these values.

These approximations, combined with the calculation of
distances and multiplication of matrices, result in a degree
27 polynomial for the whole GP algorithm when using Ham-
ming distances, for which we used a modulus chain of length
13, a degree 255 polynomial when using Jaccard distances,
for which we used a modulus chain of length 22, and a
degree 15 polynomial when using Euclidean distances, for
which we used a modulus chain of length 11. The inaccu-
racy caused by approximating with these polynomials turns
out to be so large that the predictions are essentially random,
so these provide nothing more than a lower bound on the de-
gree (and modulus chain length) required for accurate pre-
dictions. Attaining a reasonable level of accuracy for predic-
tions would have required much larger degree polynomials,
which we were unable to implement due to the exploding
computational time.

We record the time taken between the test data being en-
crypted and the result being decrypted, and also the accu-
racy of the calculation as compared to a plaintext version
of the algorithm. In both cases we calculate the inverse of
the covariance matrix K before we start timing, as this does
not depend on the client’s data. We record times for the rest
of the process using Hamming, Jaccard and Euclidean dis-
tances with 5 training data points and 5 test data points, and
in the modular approach we also record the time taken for
each step. When using Hamming distances we use a length-
scale of 11.0315, for Jaccard distances we use a lengthscale
of 0.1175 and for Euclidean distances we use a lengthscale
of 3.8058. These lengthscales were found by optimising the
log marginal likelihood of the data given the lengthscale, and
thus represent realistic lengthscales for data of this kind. All
implementations use a security parameter of 80. Real world
applications would likely require a larger security parameter
than this, but for the sake of comparing methods we chose a
low security level to make the runtime and memory footprint
of the non-modular approach more managable.

We tested on a POWER8+ processor with Infiniband in-
terconnect, using 10 threads. Table 1 shows that the modu-
lar approach is both faster and more accurate than the non-
modular approach, with speedups of up to 566x even when
the non-modular approach’s approximation was so rough
as to be meaningless. The level of inaccuracy of the non-
modular approach would render the algorithm useless for
any real world application. Thus it would be necessary to
use a higher-degree approximation, which would increase
the time taken even further. Figure 3 shows how the size of
the dataset affects speed under the modular approach.

Time (s) Modular Non-modular
Hamming distance 32 -

Jaccard distance 80 -
Euclidean distance 39 -

Kernel function 0 -
Matrix multiplication 6 -

Total (Hamming) 38 2684
Total (Jaccard) 86 48677

Total (Euclidean) 45 411

Accuracy Modular Non-modular
Total (Hamming) ± 0.00004 % ± 587863 %

Total (Jaccard) ± 0.00286 % ± 145803473 %
Total (Euclidean) ± 1.754 % ± 59.206 %

Table 1: A comparison of the computation times and ac-
curacy for regression using a Gaussian process on 5 train-
ing data points and 5 test data points for modular and non-
modular approaches. Accuracy is recorded as the average
difference between the result and the same result taken from
a plaintext implementation of the algorithm, expressed as a
percentage of the plaintext result.

101 102 103
100

102

104

Size of training dataset

Ti
m

e
ta

ke
n

(s
)

Figure 3: A graph showing how execution time of a GP
scales with the size of the training dataset. All timings are
for the whole GP regression workflow using Hamming dis-
tance with a test dataset of size 10.

5 Summary

In this paper we have demonstrated how FHE can be effec-
tively applied to Gaussian process regression, a popular lazy
learning technique. In order to mitigate the large computa-
tional cost of operations on encrypted data within FHE, with
respect to their plaintext equivalents, we break the Gaussian
process methodology into stages, not all of which are re-
quired to be performed under encryption. This can be used to
offer efficient, accurate prediction against a machine learn-
ing model as a service without the need to establish trust
between client and service provider. The ability to make ef-
ficient, accurate predictions on encrypted data would be of
great value in fields such as healthcare or banking, where
machine learning can be used for tasks such as drug discov-
ery or fraud detection, but privacy of data is essential.

We have shown that this modular approach offers signif-

3872



icant improvements when compared to an approach with a
single encryption stage. In a single stage approach, parts of
the Gaussian process algorithm would need to be approxi-
mated, leading to a loss of accuracy and an increase in com-
putational cost. The modular approach removes the need to
approximate these parts, thus making the calculation signif-
icantly more accurate, as well as faster. We believe that this
represents the first time a Gaussian process workflow has
been performed under encryption, possibly due to the im-
practicalities of implementing such an algorithm in a non-
modular fashion.
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