
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

On the Parameterized Complexity of
Clustering Incomplete Data into Subspaces of Small Rank

Robert Ganian,1 Iyad Kanj,2 Sebastian Ordyniak,3 Stefan Szeider1

1Algorithms and Complexity Group, TU Wien, Austria. Emails: rganian@gmail.com, stefan@szeider.net
2School of Computing, DePaul University, USA. Email: ikanj@cs.depaul.edu

3Department of Computer Science, The University of Sheffield, UK. Email: sordyniak@gmail.com

Abstract

We consider a fundamental matrix completion problem where
we are given an incomplete matrix and a set of constraints
modeled as a CSP instance. The goal is to complete the ma-
trix subject to the input constraints and in such a way that
the complete matrix can be clustered into few subspaces with
low rank. This problem generalizes several problems in data
mining and machine learning, including the problem of com-
pleting a matrix into one with minimum rank. In addition to
its ubiquitous applications in machine learning, the problem
has strong connections to information theory, related to binary
linear codes, and variants of it have been extensively studied
from that perspective. We formalize the problem mentioned
above and study its classical and parameterized complexity.
We draw a detailed landscape of the complexity and param-
eterized complexity of the problem with respect to several
natural parameters that are desirably small and with respect to
several well-studied CSP fragments.

Introduction

Problem Definition and Motivation Motivated by a wide
range of applications from data completion, clustering, and
prediction, we study the computational complexity of the
following fundamental COMPLETION TO SUBSPACE CLUS-
TERING problem (CSC):

Given an incomplete matrix M over some fixed finite
field, a set C of constraints, and t, d ∈ N, find a comple-
tion of M satisfying all constraints in C and a partition-
ing of its rows into at most t subspaces, each of rank at
most d.

CSC generalizes and/or has connections to several well-
studied matrix completion problems. The first problem it
generalizes is referred to as the LOW-RANK MATRIX COM-
PLETION problem, in which the goal is to complete the matrix
into one with minimum rank, whose decision version corre-
sponds to the constant parameter value t = 1 in the CSC
problem. The LOW-RANK MATRIX COMPLETION prob-
lem has been extensively studied (Candès and Plan 2010;
Candès and Recht 2009; Candès and Tao 2010; Fazel 2002;
Hardt et al. 2014; Keshavan, Montanari, and Oh 2010a;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2010b; Recht 2011) and is known to be NP-hard (Peeters
1996) even for binary matrices (i.e., over GF(2)) with d = 3.

The second problem generalized by CSC is the LOW IDEN-
TICAL ROW MATRIX COMPLETION PROBLEM (Ganian et
al. 2018); the decision version of this problem corresponds to
the case of d = 1 in the CSC problem and is NP-hard already
for matrices over GF(2).

CSC also has strong connections to the RANK PARTITION
problem: partition the rows of a given binary matrix into two
submatrices of specified sizes in a way that minimizes the
sum of the ranks of the two submatrices. RANK PARTITION is
closely related to the notion of the Trellis complexity of binary
linear codes, and has been extensively studied in information
theory (Horn and Kschischang 1996; Kashyap 2008; Vardy
1997a; 1997b; Jain, Mandoiu, and Vazirani 1998); in fact,
settling the complexity of these problems and their variants
was a long-standing open problem in that field.

Moreover, CSC reflects a recent line of research in the
area of ranking problems over incomplete data, pioneered
by Choi, den Broeck, and Darwiche (2015), and which has
shown great promise in subsequent work (Choi, Tavabi, and
Darwiche 2016; Chen et al. 2016; Choi, Shen, and Darwiche
2017; Yao, Choi, and Darwiche 2017). Finally, the subspace
clustering problem, in the two settings where the matrix is
complete or incomplete, has been the subject of a vast amount
of research works (see, e.g., Eriksson, Balzano, and Nowak,
2012; Li and Vidal, 2016; Pimentel-Alarcón et al., 2016).

Related results are also presented in very recent works
which investigated the complexity of different matrix editing
and clustering problems from the parameterized and approx-
imation perspectives (Fomin, Golovach, and Panolan 2018;
Fomin et al. 2019; Eiben et al. 2019). All of these papers
except for the last one are concerned with the complete data
setting.
Contribution We initiate the study of the complexity land-
scape of CSC not only from the classical viewpoint, but also
from the perspective of parameterized complexity—a mod-
ern paradigm that allows us to make more precise statements
about the asymptotic performance of algorithms and corre-
sponding lower bounds1. In the parameterized setting, we

1We refer to the respective books for an introduction to parame-
terized complexity (Downey and Fellows 2013; Cygan et al. 2015)

3906

domain C d t k complexity result

2 ∅ 3 1 ∞ NPc Peeters (1996)
2 ∅ 2 ∞ 0 NPc Theorem 1
2 ∅ ∞ 2 0 NPc Theorem 2

O(1) ∅ parm parm 0 FPT Corollary 4
O(1) LinEq parm parm parm FPT Theorem 6

2 Horn 3 1 4 NPc Theorem 7
O(1) LinEq ∞ 1 parm FPTR Theorem 10
O(1) Cst 1 ∞ parm FPT Theorem 13

Table 1: An overview of the results for CSC[C]. Column domain: 2 means the domain size is 2, O(1) means that the domain size
is bounded by any constant. Column C: ∅ means there are no constraints in place, LinEq means the CSP is a conjunction of linear
equations, Horn means the CSP is a Horn formula, and Cst means that the CSP belongs to a strongly tractable class. Columns
d, t and k: numbers mean the respective value is set to these constants, ∞ means that the respective value is unbounded, and
parm means that the value is taken as a parameter. Column complexity: the problem corresponding to the respective line is either
NP-complete (NPc), fixed-parameter tractable (FPT), or randomized fixed-parameter tractable (FPTR).

consider the complexity of a problem modulo the assumption
that some parts of the input, referred to as the parameters, are
expected/desired to be small, and the aim is to obtain algo-
rithms which run in time f(k′) · nO(1) for some computable
function f of the sum k′ of the parameters sum, and input
size n). Parameterized problems admitting such algorithms
are called fixed-parameter tractable (FPT).

We study the complexity of CSC with respect to the fol-
lowing three dimensions:
(1) the set of constraints C, modeled as an instance of the

constraint satisfaction problem (CSP), used to constrain
the completion of the matrix;

(2) the natural parameters d and t that define the rank and
the number, respectively, of the resulting subspaces; and

(3) the restrictions on the occurrences of missing entries in
the incomplete matrix.

For (1), we consider several natural and well-studied types
of constraints, notably linear equations (CSC[LinEq]) and
various other tractable fragments of CSP.

In order to formally capture (3), we follow up on the work
of Ganian et al. (2018), who introduced and motivated the
covering number k—a natural restriction on the occurrence
of missing entries in matrix completion instances.

We begin by showing that CSC remains NP-complete even
in severely restricted settings: when there are no constraints,
no missing entries (and hence the aim is merely to partition
the matrix), and either t = 2 or d = 2. These lower bounds
are tight, in the sense that the considered fragments become
tractable for t = 1 or d = 1.

On the positive side, we show that CSC[LinEq] is FPT
parameterized by t, d, and k, and this parameterization is
in fact tight: one cannot drop any of these three parameters
without losing tractability. As for the choice of constraints,
we also show that the FPT result cannot be extended to
arbitrary tractable constraints—for instance, CSC[Horn] (i.e.,
binary instances with Horn constraints) is NP-hard already
for t = 1, d = 3, and k ≤ 4.

We then turn our attention to the two special cases of
CSC that have been studied in previous work, namely low-

rank matrix completion and distinct row minimization. In
the former setting (i.e., when t = 1), we show that the FPT
result for CSC[LinEq] can be transferred to the setting of low-
rank matrix completion without taking the target rank d as a
parameter. Our result in the latter setting (i.e., when d = 1)
is even more surprising, as we show that: for any tractable
class C of constraints, CSC[C] is FPT parameterized by t
and k. A summary of our results is provided in Table 1.

Preliminaries

Matrices For positive integers i and j > i, we write
[i] for the set {1, 2, . . . , i}, and i : j for the set {i, i +
1, . . . , j}. For an m × n matrix M (i.e., a matrix with
m rows and n columns), and for i ∈ [m] and j ∈ [n],
M[i, j] denotes the element in the i-th row and j-th col-
umn of M. Similarly, for a vector d, we write d[i] for
the i-th coordinate of d. We write M[∗, j] for the column-
vector (M[1, j],M[2, j], . . . ,M[m, j]), and M[i, ∗] for the
row-vector (M[i, 1],M[i, 2], . . . ,M[i, n]). |M| denotes the
number of columns of M.

The domain of a matrix is the set of elements that the ma-
trix’s entries belong to. We mostly consider matrices where
the domain is the finite field GF(p) of order p; recall that if p
is a prime number, such a field can be equivalently repre-
sented as the set of integers modulo p.

The row-rank (resp. column-rank) of a matrix M
is the maximum number of linearly independent rows
(resp. columns) in M. It is well known that the row-rank
of a matrix is equal to its column-rank, and this number
is referred to as the rank of the matrix. We let rk(M) and
dr(M) denote the rank and the number of distinct rows of
the matrix M, respectively.

An incomplete matrix over GF(p) is a matrix that may
contain not only elements from GF(p) but also the special
symbol •. An entry is a missing entry if it contains •. A
(possibly incomplete) m×n matrix M′ is consistent with an
m× n matrix M if and only if, for each i ∈ [m] and j ∈ [n],
either M′[i, j] = M[i, j] or M′[i, j] = •.
Constraint Satisfaction Problems We will consider a va-
riety of very general classes of constraint satisfaction prob-

3907

lems, which we will define in this subsection.
An instance I = (V,D,C) of the constraint satisfaction

problem (CSP) consists of a set V of variables, a finite do-
main D of values, and a set C of constraints, each c ∈ C
specifies allowed combinations of values for some subset
scope(C) ⊆ V . The domain of considered CSP instances
will be equal to the domain of the corresponding matrices.

A partial instantiation is an assignment α : V ′ → D de-
fined on some subset V ′ ⊆ V . If V ′ = V then α is total. A
constraint c ∈ C can be specified by a table with all allowed
instantiations or in terms of a global constraint (van Hoeve
and Katriel 2006). A partial instantiation α satisfies a con-
straint c if α restricted to scope(c) is allowed by c. A CSP
instance I is satisfiable (or consistent) if there exists a total
instantiation α which satisfies all constraints in C.

A class C of CSP instances is strongly tractable if for
each partial instantiation α we can determine in polynomial
time whether α can be extended to a total instantiation that
satisfies I. We note that most known tractable classes C are
strongly tractable. We denote by LinEq ⊆ CSP the set of all
CSP instances defined via a system of linear equations over
GF(p). Further, we denote by Horn the set of all Boolean
CSP instances where each constraint is a Horn clause (i.e., is
equivalent to a disjunction of literals where at most one of
them is positive). It is well-known that both LinEq and Horn
are strongly tractable classes (Carbonnel and Cooper 2016).

Problem Formulation and Parameters
With the above definitions and notation of matrices and CSP
at hand, we can now formally define the general matrix com-
pletion problem that we consider. Let C ⊆ CSP be a class of
CSP instances, and p be a fixed prime.
COMPLETION TO SUBSPACE CLUSTERING (CSC[C])
Input: An incomplete matrix M over GF(p), a CSP

instance I = ({x1, . . . , xn},GF(p), C) ∈ C
where n = |M|, and d, t ∈ N.

Task: Find a matrix M′ such that (i) M′ is consistent
with M; (ii) the rows of M′ can be partitioned
into at most t submatrices each of rank at most
d; and (iii) for each row vector M′[i, ∗], the
total instantiation α : xj 	→ M′[i, j] satisfies
I.

Without loss of generality, we assume that the rows of the
input matrix are pairwise distinct. To avoid any confusion,
we remark that while the focus lies on the completion part
of the problem (i.e., finding M′), all our algorithms can also
output a valid partitioning satisfying property (ii).

It is easy to observe that CSC[C] is at least as hard as C.
Indeed, an instance I ∈ C is satisfiable if and only if the
1×m matrix with all entries containing • is a yes-instance
of CSC[C]. Hence, it is necessary to restrict C to a tractable
class of instances. By a similar argument, it follows that C
must—in fact—be strongly tractable (in particular, one can
model partial instantiations by replacing • with a specific
value from D). We will use the notation CSC[∅] to refer to
instances of CSC with no constraints.
Problem Parameterizations As mentioned earlier, we
will require a parameter that restricts the placement of miss-

ing entries in the input matrix. Such a restriction is necessary
since even the simplest matrix completion problems become
intractable when missing entries are unrestricted.

The parameter we consider here is the covering num-
ber (Ganian et al. 2018), which we will henceforth denote
as k. The covering number of a matrix is the minimum num-
ber of rows and columns required to cover all missing entries
in the matrix2. The parameter has recently been used to ob-
tain a complexity map for two subcases of CSC without
constraints (Ganian et al. 2018), and is motivated by situa-
tions where a known matrix is extended by a few new rows
or columns for which only partial information is available.

It is known that k can be computed in polynomial time (Ga-
nian et al. 2018, Proposition 2).

The Complexity of Subspace Partitioning

In this section, we draw a parameterized complexity land-
scape for CSC. For our initial lower bounds, we consider
the restriction of CSC[∅] over GF(2) where k = 0; that is,
there are no missing entries, and the problem merely asks
for a partitioning of the matrix rows into at most t subspaces,
each of rank at most d. We will refer to this problem as BA-
SIC SUBSPACE CLUSTERING (BSC). Note that the hardness
results we obtain can trivially be lifted to the more general
settings of CSC.

We start by showing that BSC remains NP-hard even when
d = 2, and that it also remains NP-hard even when t = 2.

Theorem 1. BSC is NP-hard for d = 2.

Proof. We prove the theorem by giving a polynomial-time
reduction from the NP-hard problem (Holyer 1981) EDGE-
PARTITION INTO TRIANGLES: Given an undirected graph G,
decide whether E(G) can be partitioned into triangles. Given
an instance G of EDGE-PARTITION INTO TRIANGLES,
where V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em},
we construct an instance I of BSC as follows. The matrix M
has m rows and n columns, corresponding to the edges and
vertices of G, respectively; w.l.o.g., we label the rows and
columns by the indices of their corresponding edges and ver-
tices, respectively. The matrix I is basically the characteristic
matrix of E(G) w.r.t. V (G), in which M[i, j] = 1 iff ei is
incident to vj in G. We set d = 2 and t = m/3. This com-
pletes the construction of I, which clearly can be performed
in polynomial time.

Observe that each row in M contains exactly two 1’s, and
that a set of 3 rows in M has rank 2 iff the edges corre-
sponding to the 3 rows form a triangle/cycle in G. With the
aforementioned observation in mind, it is now easy to verify
that a partitioning of E(G) into m/3 triangles corresponds
to a partitioning of the rows of M into m/3 subspaces each
of rank exactly 2. On the other hand, if the rows of M can be
partitioned into at most m/3 subspaces each of rank at most 2,
then from the above observation combined with the fact that
any 4 rows of M form a subspace with rank greater than 2,
it follows that the rows of M can be partitioned into exactly
m/3 subspaces each of rank exactly 2; this partitioning cor-
responds to a partitioning of E(G) into m/3 triangles.

2An entry at position M[i, j] is covered by row i and column j.

3908

Theorem 2. BSC is NP-hard even for t = 2.

Proof. (Sketch) The polynomial-time reduction is from an
NP-hard restriction of MAX CUT, and is an adaptation of the
reduction from MAX CUT given by Horn and Kschischang
(1996) to show that the n/2-PARTITION RANK PERMUTA-
TION problem (n/2-PRP) is NP-hard, which is, in turn, an
adaptation of a reduction given by Garey, Johnson, and Stock-
meyer (1976) to show that MINIMUM CUT INTO EQUAL-
SIZED SUBSETS is NP-hard. (Recall that in the unweighted
MAX CUT problem, we are given an undirected graph G and
w ∈ N, and the question is whether the vertex-set of G can
be partitioned into two parts such that the number of edges
across the partition is at least w.) In the n/2-PRP problem,
we are given an m × n binary matrix and w ∈ N, and the
question is whether the columns of the matrix can be par-
titioned (or permuted) into two equal-size parts, each with
n/2 columns, such that the sum of the ranks of the two sub-
matrices induced by the two parts is at most w. Since in an
instance of BSC with t = 2 we can transpose the matrix and
instead ask whether the columns of the transpose matrix can
be partitioned into two subspaces each with rank at most d,
the only differences between BSC and n/2-PRP are the re-
quirement that the two submatrices have equal number of
columns and the requirement that the sum of their ranks is
upper bounded by a given number, as opposed to that each of
their ranks is upper bounded by the same given number. We
will sketch how the proof of the NP-hardness of n/2-PRP
can be modified to work for the restriction of BSC to t = 2.
As noted above, in what follows, we may assume that, for an
instance of BSC, we ask for a partition of the matrix columns
(not the rows) into two subspaces each of rank at most d;
denote this restriction of BSC as 2-BSC.

The reduction is from a restriction of MAX CUT to in-
stances (G,w) satisfying three properties: (i) The edge-
complement graph of G is connected, (ii) |E(G)| − |V (G)|
is even, and (iii) |V (G)|2 − w is even. Such a restriction
can be easily shown to be NP-hard. For instance, one can
start from an instance of the NP-hard problem (Garey and
Johnson 1990) MAX CUT ON CUBIC GRAPHS, which can be
easily verified to satisfy (i), and add a small gadget to make
it satisfy (ii) and (iii), in case it does not already satisfy them.
(For example, assuming that it does not satisfy (ii), to make it
satisfy it without violating (i), a triangle and an edge joining
a vertex of the triangle to a vertex in G can be added, and
we increase w by 3. Now assuming that the resulting graph
does not satisfy (iii), to make it satisfy it without violating (i)
and (ii), we can add a new triangle and two edges between
two vertices of the triangle and the same vertex in the graph,
and increase w by 4.) This certainly results in an NP-hard
restriction of MAX CUT; denote this restriction as RES-MAX
CUT. The reason for using such a restriction of MAX CUT (as
opposed to MAX CUT) is that (i) it is crucial for an argument
in the adapted NP-hardness proof by Horn and Kschischang,
(ii) it simplifies the construction (as there will be no need
anymore for distinguishing two cases in the construction),
and (iii) it is needed for ensuring that the upper bound on the
sum of the ranks is even, and hence, can be split equally into
an upper bound on the rank of each subspace.

Next, we briefly discuss the required additional changes
in the NP-hardness proof for n/2-PRP to make it work for
2-BSC. We follow the terminology of Horn and Kschischang
as much as possible. Let (G,w) be an instance of RES-MAX
CUT, where G has M vertices and N edges. We construct
the following graph G′ from G, which is the same construc-
tion as that of Horn and Kschischang, albeit without the
need to distinguish the two cases based on whether or not
|E(G)| − |V (G)| is even. Let V (G) = {v1, . . . , vM}. Intro-
duce a new set of M vertices {vM+1, . . . , v2M}. Start with
V (G) ∪ {vM+1, . . . , v2M} (and no edges), and add the fol-
lowing edges: (1) Form a clique on {vM+1, . . . , v2M}; (2)
form a complete bipartite graph with V (G) as one part and
{vM+1, . . . , v2M} as the other; and (3) add the complement
of the edge-set of G between the vertices in V (G). Finally,
replace each vi, i ∈ [2M], with a clique Ci on M3 many
vertices {ci,j | j ∈ [M3]} and connect vertex ci,j in Ci to
vertex cj,i in Cj , for i, j ∈ [2M], iff vi and vj are connected.
Let the resulting graph be G′. Finally, let M be the incident
binary matrix whose rows correspond to the vertices of G′
and columns to the edges of G, and such that an entry in M
is 1 iff the corresponding vertex and edge are incident in G′;
set t = 2 and d = M4 − (M2 − w)/2− 1.

From this point on, the proof of Horn and Kschischang
follows with some minor modifications.

The above results imply the parameterized intractability
(i.e., para-NP-hardness) of BSC w.r.t. each of the param-
eterizations by d and t. This begs the question about the
parameterized complexity of BSC parameterized by both d
and t (i.e., by d+ t). The following simple observation helps
us answer the aforementioned question:

Observation 3. Let M be a complete matrix with distinct
rows over some finite domain Ω. Then any subspace of M of
rank at most d contains at most |Ω|d rows.

The above observation follows by fixing a basis of the
subspace of rank at most d, and noting that each vector/row
in the subspace (including the basis vectors) can be written
as a linear combination of the (at most) d vectors in the basis.

Corollary 4. BSC is FPT parameterized by d+ t.

Proof. Observation 3 implies that the input matrix M in
any yes-instance of BSC must have at most t · |Ω|d rows;
otherwise, the instance can be rejected. This means that the
instance can be solved by brute force in FPT-time.

Next, we consider the possibility of lifting this FPT result
to the more general setting of CSC[C]. However, even for the
case when C = ∅, the result of Peeters (1996) implies the
para-NP-hardness of the problem parameterized by d+ t, as
they show the NP-hardness of the problem of completing a
binary matrix into one of rank 3. This implies:

Observation 5. CSC[∅] is NP-hard even for t = 1 and
d = 3.

It follows from the above observation that restrictions must
be imposed on the missing entries in the matrix if any FPT
results are to be obtained. As the main positive result for this
section, we show that parameterizing by d+ t+ k allows us

3909

to obtain a fixed-parameter algorithm not only for CSC[∅],
but also in the presence of linear equations.

Theorem 6. CSC[LinEq] is FPT parameterized by d+t+k.

Proof. We give an FPT algorithm for CSC[LinEq] param-
eterized by d + t + k. Let (M,Γ, t, d) be an instance of
CSC[LinEq], where Γ ∈ LinEq is a set of linear constraints
(equations) having to hold at each row, and as before, let Ω
denote the domain from which the matrix values are drawn.
Let R and C denote the sets of the rows and columns in
M, respectively, that cover the missing entries, and note that
|R|+ |C| ≤ k.

First, we upper bound the number of rows of M by a
function of the parameter, in any yes-instance (M,Γ, t, d)
of CSC[LinEq]. It suffices to upper bound |R| by a function
of the parameter, where R is the set of rows in M that are
not in R. Partition |R| into groups such that all rows in the
same group agree on all the entries in the columns in C. The
number of resulting groups is at most (|Ω|+ 1)|C| ≤ (|Ω|+
1)k, as each entry whose column is in C contains either • or
a domain value. Fix a group Y . Since M does not contain
identical rows, any two rows in Y must differ on at least one
column not in C, and hence, must be completed into distinct
rows in any solution of (M,Γ, t, d). By Observation 3, the
number of rows in any subspace of M of rank at most d is
|Ω|d, and hence the total number of rows in any completion
of M for a yes-instance (M,Γ, t, d) is at most t · |Ω|d. We
conclude that the number of rows in group Y is at most
t · |Ω|d in any yes-instance of the problem. It follows that the
total number of rows in |R| is at most t · |Ω|d · (|Ω|+ 1)|C|,
and hence the number of rows in M is at most t · |Ω|d ·
(|Ω|+ 1)|C| + k, which is a function of the parameter, in any
yes-instance (M,Γ, t, d) of CSC[LinEq]; otherwise, we can
reject the instance.

Suppose now that M meets the above upper bound on the
number of rows. Next, we enumerate all partitions of the rows
of M into t parts. Clearly, this enumeration takes FPT-time.
Let these parts be R1, . . . , Rs, where s ≤ t.

As the last step, for an enumeration R1, . . . , Rs, we need
to check if each Ri, i ∈ [s], has rank at most d; if this is
the case, we accept the instance. If no enumeration leads to
acceptance, we reject the instance. To check whether a subset
Ri, i ∈ [s], of vectors has rank at most d, we enumerate each
subset B of at most d vectors in Ri as basis for Ri; note
that the total number of vectors in Ri is upper bounded by
a function of the parameter, and hence so is the number of
subsets that needs to be enumerated. We introduce a variable
(over Ω) for each missing entry in a row of Ri; let X be the
set of the introduced variables. For each (remaining) vector
�v ∈ Ri \ B, we enumerate the at most d coefficients over
Ω of �v that result from writing �v as a linear combination of
the vectors in B. We introduce n linear equations, over (a
subset of) the variables in X , corresponding to the equations
resulting from writing each entry in �v as a linear combination
of the corresponding entries in the vectors in B, w.r.t. the
enumerated ≤ d coefficients for �v. Let Γ0 be the system of
linear equations obtained over all vectors �v ∈ Ri \B. Finally,
for each row �v ∈ Ri, we add copies of the equations in Γ

x1 x2 x3 x4 x5 n+ 1 n+ 2 n+ 3
1. • • • • • 0 0 1
2. • • • • • 1 1 1
3. 1 1 0 1 0 1 1 1
4. 0 0 0 0 0 0 1 1

Figure 1: The matrix M in the construction used in Theo-
rem 7 for the instance of SATR with variables x1, . . . , x5,
one positive clause {x1, x2, x4}, and two negative clauses
{x1, x2, x4} and {x3, x5}.

(over the terms corresponding to the entries of �v) to ensure
that every row satisfies the constraints. We solve Γ0 together
with the copies of Γ for each row in Ri in polynomial time
(e.g., using Gaussian elimination). Clearly, Ri has rank at
most d with each row satisfying the constraints in Γ iff one
of the resulting linear systems, over all enumerations, has a
solution. This step takes FPT-time, and so does the whole
algorithm.

Theorem 6 begs the question of whether there is something
specific about linear equations in this setting, or whether the
result can be lifted to any strongly tractable class of CSPs.
As our last result in this section, we show that the latter is
not possible—already for the highly restrictive class of Horn
CSPs, CSC[Horn] becomes NP-hard even when t = 1 and
the number of rows (which naturally upper-bounds k and d)
is at most 4.
Theorem 7. CSC[Horn] is NP-hard even when t = 1 and
the input matrix has 4 rows.

We will prove the above theorem via a polynomial-time
reduction from a restriction of SAT, referred to as SATR,
which we first show to be NP-hard. Call a clause in a CNF
formula positive (resp. negative) if it consists of only posi-
tive (resp. negative) literals. An instance of SATR consists
of a CNF formula F satisfying the following three proper-
ties: (i) each clause in F is either positive or negative; (ii)
the positive clauses are pairwise disjoint; and (iii) for each
positive clause C = {x1, . . . , xr} there is a negative clause
C ′ = {x1, . . . , xr} in F over the same variables, referred to
as the dual of C.
Lemma 8. SATR is NP-complete.

Proof Sketch for Theorem 7. Let F be an instance of SATR

over n variables x1, . . . , xn. Denote by P and N the sets of
positive and negative clauses in F , respectively. We construct
a matrix M with 4 rows and n+ 3 columns, where column
i of M corresponds to variable xi, for i ∈ [n]. The entries
of M are defined as follows. First, the 4 entries in column
n + 3 are all set to 1. In row 1, the entries in the first n
columns (corresponding to the variables) are set to •, and
the two entries in columns n + 1 and n + 2 are set to 0. In
row 2, the entries in the first n columns are set to •, the entry
in column n + 1 is set to 1, and the entry in column n + 2
is set to 0. In row 3, each entry corresponding to a variable
that appears in P is set to 1, all other entries in columns
1, . . . , n (corresponding to variables) are set to 0, and both
entries in columns n + 1 and n + 2 are set to 1. Finally, in

3910

row 4, all entries in columns 1, . . . , n + 1 are set to 0, and
the entry in column n + 2 is set to 1. This completes the
construction of M. We refer to Figure 1 for an example of
this construction.

The Horn formula H associated with the instance of
CSC[Horn], is defined as follows. The variables of F are also
variables in H , where variable xi is associated with column i
in M. We create the new Boolean variables xn+1, xn+2 in H
that are associated with columns n+ 1, n+ 2 of M, respec-
tively. The clauses of H are defined as follows. For each
clause C ∈ N , create the clause C ∪{xn+1} and add it to H;
let N ′ be the set of clauses in H created this way. For each
clause C ∈ P , create the clause C ′ ∪ {xn+2} and add it to
H , where C ′ is the dual of C (i.e., the clause consisting of
the negations of the positive literals in C); let P ′ be the set
of clauses in H created this way. This completes the con-
struction of H . Finally, we set d = 3. Let (M, H, d) be the
resulting instance of CSC[Horn]. Clearly, (M, H, d) can be
constructed from F in polynomial time. We have:

Claim 9. In any valid completion of M into a matrix M′,
we have rk(M′) = 3 or rk(M ′) = 4. Moreover, rk(M′) =
3 iff M′[1, ∗] = M′[2, ∗] + M′[3, ∗] + M′[4, ∗] (addition
in GF(2)), which is equivalent to saying that M′[1, i] =
M′[2, i] iff M′[3, i] = 0, for every i ∈ [n].

To show the correctness of the above claim, we make the
following observations. Since (the complete) rows 3 and 4
of M are independent, and since adding any two rows of M
results in a 0 entry in column n+ 3, which is 1 for all rows
of M, any completion of M results in a matrix of rank at
least 3, and hence, of rank 3 or 4. This shows the first part
of the claim. Now suppose that M has a valid completion
into a matrix M′ of rank 3. By the same token as above, we
can assume that the completed rows 2, 3, and 4 of M′ form
a basis for the rows of M′, and hence we have M′[1, ∗] =
M′[2, ∗] + M′[3, ∗] + M′[4, ∗]. Now since row 4 of M′
contains all 0’s in columns 1, . . . , n, it follows from the above
equation that M′[1, i] and M′[2, i] agree on precisely those
columns i ∈ [n] for which M′[3, i] = 0.

Now suppose that F is satisfiable, and let τ be a satisfying
assignment for F . Consider the completion of M into a ma-
trix M′ that assigns to entry M[1, i], for i ∈ [n], the value
assigned by τ to xi, and completes row 2 of M in accordance
with the equation M′[1, i] = M′[2, i] iff M′[3, i] = 0, for
i ∈ [n]. Clearly, because the previous equation is satisfied,
we have rk(M′) = 3. It is not difficult now to show that each
row in M′ satisfies H .

To prove the converse, suppose that for the instance
(M, H, d) of CSC[Horn] the matrix M has a valid comple-
tion M′ with rk(M′) = 3. Let τ be the truth assignment to
F that assigns variable xi the value M′[1, i], for i ∈ [n]. It
can be easily verified that τ satisfies F .

Special Cases of CSC

In the second part of our paper, we turn our attention to the
two notable special cases of CSC that have been studied in
previous work: low-rank matrix completion and distinct row
minimization.

⎛
⎜⎜⎝

• 7 • 6 9 •
6 7 0 6 • 7
• 7 • • 9 •
6 7 0 • 9 8
• 7 • 6 6 •

⎞
⎟⎟⎠

1 2

34

5

Figure 2: Illustration of a matrix and its compatibility graph.
The vertex label indicates the corresponding row number.

Low-Rank Matrix Completion We consider the special
case where t = 1, i.e., the task of minimizing the rank of the
matrix. We will refer to this problem as LOW-RANK MA-
TRIX COMPLETION (CSCR). Note that the lower bound pre-
sented in Theorem 7 immediately carries over to this setting
as well, implying that CSCR[Horn] is intractable. However,
we will show that in contrast to the more general case of
CSC[LinEq] (which requires all three parameters d, t, and
k), CSCR[LinEq] is already fixed-parameter tractable param-
eterized only by k; note that CSCR[∅] is NP-hard due to
Observation 5.
Theorem 10. CSCR[LinEq] parameterized by k is FPT.

Proof Sketch. Let M be the input matrix and Γ be the set
of linear constraints imposed over the rows of M. At a high
level, we follow a similar strategy as that of Ganian et al.
(2018) to establish the tractability of CSCR[∅]. In particular,
we will compute sets R and C of covering rows and columns
(where |R| + |C| = k), and branch over certain signatures
that capture information about the dependencies among the
rows in R and columns in C. In each branch, we obtain
a system of equations that needs to be solved in order to
determine whether the signatures are valid—i.e., whether it
is possible to choose dependent rows and columns in the way
specified by the signature while satisfying all constraints. A
key distinction is that when checking for the validity of a
signature, here we also need to make sure that all equalities
in Γ are satisfied. Once we determine which signatures are
valid, we choose one that minimizes the total rank.

Distinct Row Clustering Finally, we turn to the special
case where d = 1, i.e., the task of minimizing the number
of distinct rows in the matrix. We will refer to this problem
as DISTINCT ROW CLUSTERING (CSCDR). Here, we can
obtain a result which is surprisingly generic: for any strongly
tractable class C of CSP, CSCDR[C] is FPT parameterized
merely by k. We start with a brief introduction of the compat-
ibility graph and treewidth, two concepts that are key tools
for our result.

Let M be an incomplete matrix over GF(p). We say that
two rows of M are compatible if whenever the two rows
differ at some entry, then one of the rows has a • at that entry.
The compatibility graph of M (Ganian et al. 2018), denoted
by G(M), is the undirected graph whose vertices correspond
to the row indices of M and in which there is an edge between
two vertices if and only if their two corresponding rows are
compatible. An illustration is provided in Figure 2.

Let C be a class of CSP instances and I = (M, IC , t) be
an instance of CSCDR[C]. We say that a set of rows R of M is
compatible if all pairs of rows in R are pairwise compatible.

3911

For a set of rows R and a column index c, let E(R, c) be
the set of all values occurring at column c in any row in R,
i.e., E(R, c) = { r[c] : r ∈ R }. Note that if R is a set of
compatible rows, then E(R, c) contains at most one value
other than • for every column index c. Hence, for a set R
of compatible rows and a column index c, we can define
U(R, c) to be equal to the unique value in E(R, c) \ {•}
if E(R, c) \ {•} �= ∅ and equal to •, otherwise. Moreover,
we denote by U(R) the unique row defined by U(R)[c] =
U(R, c) for every column index c.

Observation 11. A set R of rows of M can be completed to
the same row if and only if G(M[R, ∗]) forms a clique and
the partial instantiation given by U(R) can be extended to a
total instantiation that satisfies IC .

The above observation implies that a solution for I can
be thought of as a consistent partition P of the vertex set of
G(M) into cliques, where consistent means that the (partial)
instantiation represented by U(α(P)) can be extended to a
total instantiation satisfying IC , for every P ∈ P , where α
denotes the natural bijection from the set of vertices of G(M)
to the set R of rows of M.

A tree-decomposition T of a graph G = (V,E) is a tuple
(T, χ), where T is a tree and χ is a function that assigns
each tree node x a set χ(x) ⊆ V of vertices such that the
following conditions are met: (i) For every vertex v ∈ V (G),
the set of tree nodes x with v ∈ χ(x) forms a non-empty
subtree of T . (ii) For every edge uv ∈ E(G) there is a tree
node x such that u, v ∈ χ(x). We call the sets χ(x) bags,
where χ(x) is the bag associated with x. The width of a tree-
decomposition (T, χ) is the size of a largest bag minus 1. A
tree-decomposition of minimum width is called optimal. The
treewidth of a graph G, denoted by tw(G), is the width of an
optimal tree decomposition of G.

The following lemma provides us with the main tool
needed for our tractability result as it allows us to reduce
DISTINCT ROW CLUSTERING to the task of obtaining an
upper bound on the treewidth of the compatibility graph.

Lemma 12. Let Cst be a strongly tractable class of CSP
instances. Then CSCDR[Cst] parameterized by the treewidth
of the compatibility graph is fixed-parameter tractable.

Sketch of Proof. Let I = (M, IC , t) with IC =
({x1, . . . , xn}, D,C) be the given instance of CSCDR[Cst]
and let G be its associated compatibility graph, i.e., G =
G(M). We will show the lemma using a dynamic program-
ming algorithm on a tree-decomposition of G. Since it is
well-known (Kloks 1994; Bodlaender 1996; Bodlaender et al.
2016) that a tree decomposition of width ω can be computed
in fixed-parameter tractable-time parameterized by ω, we can
in the following assume that we are given a tree decomposi-
tion (T, χ) of G of width ω.

For a subgraph H of G, we say that P is a partition of a H
into cliques if {V (P) : P ∈ P} partitions the vertex set of
V (H) and H[P] is a clique for every P ∈ P . If it holds ad-
ditionally that the partial instantiation given by U(α(V (P)))
can be extended to a total instantiation satisfying IC , then we
say that P is a consistent partition of H into cliques. For ev-
ery node x ∈ V (T), we will compute the set R(x) of records

containing all pairs (P, c) such that: (i) P is a consistent
partition of G[χ(x)] into cliques, and (ii) c is the minimum
integer such that G[χ(Tx)] has a consistent partition P ′ into
c cliques with P = ({P ′ ∩ χ(n) : P ′ ∈ P ′ } \ {∅}). Note
that given R(x) for every node x ∈ V (T), we can easily
obtain a solution for I. In particular, I is a yes-instance if
and only if R(r), where r is the root of T , contains a record
(∅, t′) with t′ ≤ t.

We can now show the main result of this section.

Theorem 13. Let Cst
D be a class of strongly tractable CSP

instances over a finite domain Ω. Then CSCDR[Cst] parame-
terized by k is FPT.

Proof. Let I = (M, IC , t) with IC = ({x1, . . . , xn}, D,C)
be the given instance of CSCDR[C], let G be its associ-
ated compatibility graph, i.e., G = G(M). We begin by
computing a set R• of rows and C• of columns such that
|R• ∪ C•| ≤ k and every occurrence of • in M is contained
in a row or column in R• ∪ C•. Let R and C be the set of
rows and columns of M, respectively. Let P be the unique
partition of R \R• such that two rows r and r′ belong to the
same set in P if and only if they are identical on all columns
in C \ C•. Then |P | ≤ (|Ω| + 1)k, for every P ∈ P , since
two rows in P can differ on at most |C•| ≤ k entries, each
having (|Ω|+1) values to be chosen from. Moreover, any two
rows in R \R• that are not contained in the same set in P are
not compatible, which implies that they appear in different
components of G \R• and hence the set of vertices in every
component of G \R• is a subset of P , for some P ∈ P . It is
now straightforward to show that tw(G) ≤ k + (|Ω|+ 1)k,
and hence, tw(G) is bounded by a function of the parame-
ter k. The theorem now follows by Lemma 12.

Conclusion

We initiated the study of a fundamental matrix clustering
problem, in the incomplete data setting, and subject to con-
straints imposed on the completed matrix. Here, the addition
of constraints expands the applications of the problem in a
similar manner as in preference learning (Choi, den Broeck,
and Darwiche 2015).

We investigated the parameterized complexity of the prob-
lem with respect to natural parameters and painted a detailed
landscape of its complexity. Our findings give tight param-
eterized complexity results with respect to the parameters
under consideration, as well as show the NP-completeness
of several important matrix partitioning problems. Many of
the obtained fixed-parameter tractability results can be lifted
to the setting where the completion is subject to a tractable
CSP that satisfies mild additional restrictions.

We hope that our encouraging results will evoke further
research on this general topic, as there is much room for gen-
eralization and extension. For instance, a natural extension
is to consider the case where the domain is part of the input,
as this would allow the use of global constraints such as the
all-different and permutation constraints. Moreover, a natural
open problem that ensues from our work is to determine the
parameterized complexity of CSC[C] where C is the class of
bijunctive constraints.

3912

Acknowledgements Robert Ganian acknowledges support
from the Austrian Science Fund (FWF, Project P 31336:
NFPC). Stefan Szeider acknowledges the support of the Aus-
trian Research Funds (FWF), Project P 32441.

References

Bodlaender, H. L.; Drange, P. G.; Dregi, M. S.; Fomin, F. V.;
Lokshtanov, D.; and Pilipczuk, M. 2016. A O(ckn) 5-
approximation algorithm for treewidth. SIAM J. Comput.
45(2):317–378.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Candès, E. J., and Plan, Y. 2010. Matrix completion with
noise. Proceedings of the IEEE 98(6):925–936.
Candès, E. J., and Recht, B. 2009. Exact matrix comple-
tion via convex optimization. Foundations of Computational
Mathematics 9(6):717–772.
Candès, E. J., and Tao, T. 2010. The power of convex
relaxation: near-optimal matrix completion. IEEE Trans.
Information Theory 56(5):2053–2080.
Carbonnel, C., and Cooper, M. C. 2016. Tractability in con-
straint satisfaction problems: a survey. Constraints 21(2):115–
144.
Chen, E. Y.; Shen, Y.; Choi, A.; and Darwiche, A. 2016.
Learning Bayesian networks with ancestral constraints. In
NIPS 2016, 2325–2333.
Choi, A.; den Broeck, G. V.; and Darwiche, A. 2015.
Tractable learning for structured probability spaces: A case
study in learning preference distributions. In IJCAI 2015,
2861–2868.
Choi, A.; Shen, Y.; and Darwiche, A. 2017. Tractability in
structured probability spaces. In NIPS 2017, 3480–3488.
Choi, A.; Tavabi, N.; and Darwiche, A. 2016. Structured
features in naive Bayes classification. In AAAI 2016, 3233–
3240.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals of
Parameterized Complexity. Springer.
Eiben, E.; Ganian, R.; Kanj, I.; Ordyniak, S.; and Szeider, S.
2019. On clustering incomplete data. CoRR abs/1911.01465.
Eriksson, B.; Balzano, L.; and Nowak, R. 2012. High-rank
matrix completion. In AISTATS 2012, 373–381.
Fazel, M. 2002. Matrix rank minimization with applications.
Ph.D. Dissertation, Stanford University.
Fomin, F. V.; Golovach, P. A.; Lokshtanov, D.; Panolan, F.;
and Saurabh, S. 2019. Approximation schemes for low-
rank binary matrix approximation problems. ACM Trans.
Algorithms 16(1):12:1–12:39.
Fomin, F. V.; Golovach, P. A.; and Panolan, F. 2018. Param-
eterized low-rank binary matrix approximation. In ICALP
2018, 53:1–53:16.

Ganian, R.; Kanj, I.; Ordyniak, S.; and Szeider, S. 2018.
Parameterized algorithms for the matrix completion problem.
In ICML 2018, 1642–1651.
Garey, M. R., and Johnson, D. S. 1990. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Garey, M. R.; Johnson, D. S.; and Stockmeyer, L. J. 1976.
Some simplified NP-complete graph problems. Theor. Com-
put. Sci. 1(3):237–267.
Hardt, M.; Meka, R.; Raghavendra, P.; and Weitz, B. 2014.
Computational limits for matrix completion. In The 27th
Conference on Learning Theory, volume 35, 703–725.
van Hoeve, W.-J., and Katriel, I. 2006. Global constraints.
In Rossi, F.; van Beek, P.; and Walsh, T., eds., Handbook of
Constraint Programming. Elsevier. chapter 6.
Holyer, I. 1981. The NP-completeness of some edge-partition
problems. SIAM J. Comput. 10(4):713–717.
Horn, G. B., and Kschischang, F. R. 1996. On the intractabil-
ity of permuting a block code to minimize trellis complexity.
IEEE Transactions on Information Theory 42(6):2042–2048.
Jain, K.; Mandoiu, I. I.; and Vazirani, V. V. 1998. The ’art
of trellis decoding’ is computationally hard for large fields.
IEEE Transactions Information Theory 44(3):1211–1214.
Kashyap, N. 2008. Matroid pathwidth and code trellis com-
plexity. SIAM J. Discrete Math. 22(1):256–272.
Keshavan, R. H.; Montanari, A.; and Oh, S. 2010a. Matrix
completion from a few entries. IEEE Trans. Information
Theory 56(6):2980–2998.
Keshavan, R. H.; Montanari, A.; and Oh, S. 2010b. Matrix
completion from noisy entries. JMLR 11:2057–2078.
Kloks, T. 1994. Treewidth: Computations and Approxima-
tions. Berlin: Springer.
Li, C., and Vidal, R. 2016. A structured sparse plus structured
low-rank framework for subspace clustering and completion.
IEEE Transactions on Signal Processing 64(24):6557–6570.
Peeters, R. 1996. Orthogonal representations over finite
fields and the chromatic number of graphs. Combinatorica
16(3):417–431.
Pimentel-Alarcón, D.; Balzano, L.; Marcia, R.; Nowak, R.;
and Willett, R. 2016. Group-sparse subspace clustering with
missing data. In 2016 IEEE Statistical Signal Processing
Workshop (SSP), 1–5.
Recht, B. 2011. A simpler approach to matrix completion.
JMLR 12:3413–3430.
Vardy, A. 1997a. Algorithmic complexity in coding theory
and the minimum distance problem. In STOC 1997, 92–109.
ACM.
Vardy, A. 1997b. The intractability of computing the mini-
mum distance of a code. IEEE Transactions on Information
Theory 43(6):1757–1766.
Yao, T.; Choi, A.; and Darwiche, A. 2017. Learning bayesian
network parameters under equivalence constraints. Artif.
Intell. 244:239–257.

3913

