
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Adaptive Convolutional ReLUs

Hongyang Gao,1 Lei Cai,2 Shuiwang Ji1

1Texas A&M University, College Station, TX, USA
2Washington State University, Pullman, WA, USA
{hongyang.gao, sji}@tamu.edu, lei.cai@wsu.edu

Abstract

Rectified linear units (ReLUs) are currently the most popular
activation function used in neural networks. Although ReLUs
can solve the gradient vanishing problem and accelerate train-
ing convergence, it suffers from the dying ReLU problem in
which some neurons are never activated if the weights are not
updated properly. In this work, we propose a novel activation
function, known as the adaptive convolutional ReLU (Con-
vReLU), that can better mimic brain neuron activation behav-
iors and overcome the dying ReLU problem. With our novel
parameter sharing scheme, ConvReLUs can be applied to con-
volution layers that allow each input neuron to be activated by
different trainable thresholds without involving a large num-
ber of extra parameters. We employ the zero initialization
scheme in ConvReLU to encourage trainable thresholds to
be close to zero. Finally, we develop a partial replacement
strategy that only replaces the ReLUs in the early layers of
the network. This resolves the dying ReLU problem and re-
tains sparse representations for linear classifiers. Experimental
results demonstrate that our proposed ConvReLU has consis-
tently better performance compared to ReLU, LeakyReLU,
and PReLU. In addition, the partial replacement strategy is
shown to be effective not only for our ConvReLU but also for
LeakyReLU and PReLU.

Introduction

Convolutional neural networks (CNNs) (LeCun et al. 1998b)
have shown great capability in various fields such as com-
puter vision (Ren et al. 2015; Laina et al. 2016) and natural
language processing (Johnson and Zhang 2017). In CNNs, ac-
tivation functions play important roles for introducing nonlin-
earity to networks. Among various activation functions such
as tanh(·) and sigmoid(·), ReLU is the most popular one.
ReLU computes the identity for positive arguments while
outputs zero for negative ones. It was initially proposed for
Boltzmann machines (Nair and Hinton 2010) and has been
successfully applied to neural networks for its non-saturating
property, which alleviates the gradient vanishing problem
and accelerates convergence speed.

Though effective and efficient, ReLUs suffer from the
dying ReLU problem, which makes some neurons in the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

network never activated again (Chen et al. 2017). Many at-
tempts have tried to resolve or alleviate this problem such
as LeakyReLUs (Maas, Hannun, and Ng 2013) and PRe-
LUs (He et al. 2015). These works tackle the problem by
using a small constant or trainable slope for negative argu-
ments. However, the behaviors of such activation functions
are different from how biological neurons are activated, as bi-
ological neurons actually employ different thresholds within
a certain range (Islam and Islam 2016).

In this work, we propose a simple but effective method
known as adaptive ReLUs, which activates the arguments
based on trainable thresholds. Based on the adaptive ReLUs,
we develop a novel parameter sharing scheme that is espe-
cially applicable to convolution layers. This leads to adaptive
convolutional ReLUs (ConvReLUs). For the parameters in-
volved in ConvReLUs, we employ the zero initialization with
L2-regularization as it encourages the trainable thresholds to
be close to zero. Finally, we propose the partial replacement
strategy for ReLUs replacement in the network to relieve
dying ReLU problem and retain sparse representations for
linear classifiers in neural networks.

Related Work

Activation functions have been a popular research field due
to its importance in deep neural networks. Initially, tanh(·)
and sigmoid(·) were applied in neural networks with tanh(·)
being preferred for its zero-centering property (LeCun et al.
1998a). To solve the gradient vanishing problem suffered by
saturating activation functions like tanh(·) and sigmoid(·),
the non-saturating function ReLU (Nair and Hinton 2010)
was proposed and successfully applied in various state-of-the-
art deep neural networks (He et al. 2016; Huang et al. 2017;
Gao et al. 2019).

ReLUs compute the function

f(x) = max(0, x), (1)

which solves the gradient vanishing problem and accelerates
convergence in training (Krizhevsky, Sutskever, and Hinton
2012). However, it suffers from a problem known as the “dy-
ing ReLU” (Chen et al. 2017). In this scenario, a large weight
update may cause the ReLU neuron to be never activated
again. Thus gradients that flow through those neurons will

3914



Figure 1: Illustrations of ReLU, LeakyReLU, PReLU, and the proposed adaptive ReLU (AdaReLU). ReLU computes the
function f(xi) = max(0, xi). LeakyReLU computes f(xi) = max(αxi, xi), where α is a small constant. PReLU computes
the same function as LeakyReLU with a trainable β. Our AdaReLU computes the function f(xi) = max(θi, xi), where θi is a
trainable parameter corresponding to xi. AdaReLU can be naturally used in convolutional layers, leading to ConvReLU.

be zero. Leaky ReLU (LeakyReLU) (Maas, Hannun, and
Ng 2013) attempts to address the dying ReLU problem by
employing a small slope instead of zero when x < 0. It
computes the function

f(x) = max(αx, x), (2)

where α is a small constant like 0.01. Parametric Recti-
fied Linear Unit (PReLU) (He et al. 2015) generalizes this
function by making α to be a trainable parameter. ReLU,
LeakyReLU, and PReLU functions are illustrated in Figure 1.

Other types of activation functions (Xu et al. 2015) have
been proposed with different functional forms. Exponential
Linear Units (ELUs) (Clevert, Unterthiner, and Hochreiter
2015) computes the function

f(xi) =

{
xi, if xi > 0

α(exp(x)− 1), if xi ≤ 0.
(3)

Based on ELUs, Scaled Exponential Linear Units (SELUs)
induced self-normalizing properties (Klambauer et al. 2017).
However, both ELUs and SELUs only fitted fully-connected
layers, and the use in convolution layers is not clear.

Adaptive Convolutional Rectified Linear Units

In this section, we firstly present the adaptive ReLUs
(AdaReLU). Then we propose the parameter sharing mech-
anism in neural networks especially for convolution layers,
leading to convolutional ReLUs (ConvReLUs). In addition,
we discuss the parameter initialization and activation function
replacement in neural networks for ConvReLUs.

Background and Motivations

It is well known that neural networks mimic computational
activities in biological brains. Each neuron, the basic compu-
tational unit in brain, receives signals from its dendrites and
outputs signal when its strength is above a certain threshold
known as threshold potentials (Chen et al. 2006). Figure 2
(a) illustrates a simplified version of this process, which is
also called feed-forward network with ReLUs. In brain, the
thresholds above which neurons fire are not the same but
are largely in the range between -50 and -55 mV (Seifter,

Sloane, and Ratner 2005). This is different from our popular
activation functions ReLUs in which the same zero threshold
is applied to every neuron as illustrated in Figure 2 (b). With
the support from biological theories (Seifter, Sloane, and Rat-
ner 2005), we propose that each input neuron should have
different activation thresholds, which can better mimic brain
functions.

Adaptive ReLU

To enable different thresholds for different input neurons, we
propose the Adaptive ReLUs (AdaReLUs) activation function
defined as

f(xi) =

{
xi, if xi > θi
θi, if xi ≤ θi,

(4)

where xi is the argument of the activation function f(·),
and θi is the corresponding threshold for input xi. Note that
θi is learned automatically from data. Figure 1 illustrates
the adaptive ReLU. The subscript i in θi indicates that the
nonlinear activation function can vary for different inputs in
terms of thresholds. This gives an extra degree of flexibility
for its applications in neural networks. Each input neuron
can have different thresholds, which are learned from data.
In addition, the input neurons of the same channel or even
the same layer can share the same threshold. Adaptive ReLU
reduces to ReLU when θi = 0 for all i.

AdaReLUs can be trained by back-propagation algo-
rithms (LeCun et al. 1989) along with other layers simul-
taneously. The update equation for trainable parameters {θi}
can be derived from the chain rule. For one layer, the gradient
of θi can be expressed as:

∂E
∂θi

=
∑
xi

∂E
∂f(xi)

∂f(xi)

∂θi
, (5)

where E is the objective function and ∂E
∂f(xi)

represents the
gradient back-propagated from the deeper layer. The sum-
mation

∑
xi

runs over all positions on the feature map that
employ θi as the activation threshold. The gradient of the
activation threshold θi can be written as:

∂f(xi)

∂θi
=

{
0, if xi > θi
1, if xi ≤ θi.

(6)

3915



��

��

�� ��
��	


��

��

��
�� ��

��

��
�� ��

�� ��

��

��	


��	


��	


Figure 2: Illustrations of one-layer (a) and multi-layer (b) feed-forward networks. In the one-layer network (a), the output neuron
xi is activated by ReLU after the element-wise multiplication and summation. But in the view of multi-layer network (b), all
input neurons x1 and x2 for the second layer are activated by the same activation function or threshold.

Adaptive Convolutional ReLUs

By employing different thresholds for different input neu-
rons, AdaReLUs may potentially incur a large number of
extra parameters as compared to ReLUs. For example, we
can simply use different thresholds for each input neuron,
thereby requiring a large number of extra parameters and
increasing the risk of over-fitting. On the other hand, we can
use parameter sharing schemes to reduce the number of extra
parameters. For example, we can require the input neurons of
the same layer to share one trainable threshold like PReLUs.
Then the number of extra parameters involved in this sharing
scheme will be negligible.

In this work, we propose a new parameter sharing scheme
that works especially well for convolutional layers. In our
scheme, the input units sharing the same outgoing weight in
convolution are also required to share the same threshold. We
term this version of adaptive ReLUs as convolutional ReLUs
(ConvReLUs). In convolution layers, each input unit is con-
nected to multiple outgoing weights depending on the sizes
of convolution kernels. For instance, in an 1D convolution
layer with a kernel of size k × 1, an input unit (not on the
boundary) is used k times with k different outgoing weights
wi acting on it. In ConvReLUs, we have k corresponding
different thresholds {θ1 . . . θk} for each input unit. When wi

is acting on the input unit, a unit x is activated by computing

f(x) = max(θi, x), (7)

where wi and θi share the same index.
Note that the trainable thresholds θ in ConvReLUs are

shared across output channels but not input channels. Sup-
pose we have nin input and nout output channels in convolu-
tion layer, the number of trainable thresholds in ConvReLUs
is nin × k while the number of weights is nin × k× nout. In
this way, we set different thresholds for input neurons without
inducing excessive extra parameters. Figure 3 illustrates how
ConvReLUs share parameters in 1D convolution layers. The
same parameter sharing scheme can be extended to 2D and
3D convolution layers.

The unit xl
i,j in output feature map d is calculated as:

xl
i,j,d =

nin−1∑
c=0

k−1∑
a=0

k−1∑
b=0

wa,b,c,d max(xl−1
i+a,j+b,c, θa,b,c) (8)

where kernel size k × k is used in this 2D convolution and
nin is the number of input channels. xl−1 and xl are the
input and output of layer l. θ and w are trainable thresholds
and weights in our ConvReLU layer, respectively. In our
ConvReLU, θ is shared across output feature maps. Suppose
we have an input [2, 3, 4], weights [1,−1], and thresholds
[0, 3.5]. When applying 1D ConvReLU without padding, the
output is [−1.5,−1].

Parameter Initialization

We observe that parameter initialization has an impact on
model performance. In this section, we discuss a few methods
for initialing parameters involved in our proposed ConvRe-
LUs.

Random initialization: In deep neural networks, the
weights are commonly initialized randomly from Gaus-
sian or uniform distributions with zero means (Krizhevsky,
Sutskever, and Hinton 2012). Compared to zero initialization,
random initialization serves as a symmetry-breaking tool that
makes every neuron perform different computations.

Glot initialization: Glorot and Bengio (Glorot and Ben-
gio 2010) used a scaled uniform distribution for parameter
initialization, which is also known as the Xavier initialization.
In this scheme, the weights are drawn from a distribution
with zero mean but a specific variance. The variance recom-
mended in that work is var(w) = 2/(nin + nout), where
nin and nout are the numbers of input and output channels,
respectively. However, this recommendation is based on the
assumption that the activation functions are linear, which is
not the case with ReLUs and its variants (He et al. 2015).

Zero initialization: Compared to the previous two initial-
ization methods, zero initialization was rarely used in neural
networks, since neurons initialized to zero perform the same
computation. However, the parameters in our proposed Con-
vReLUs correspond to activation thresholds. We expect the

3916



�� �� �� ��

�� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� ��

�� �� �� ��

�� �� ��

��

��

��

��

��

����

�� ��

�� ��

�� �� ��

��

��

��
�� �� ��

��

Figure 3: Illustrations of parameter sharing of ConvReLUs in 1D convolution layers. The left figure (a) shows the sharing scheme
in which each input unit has a different trainable threshold. Apparently, this scheme incurs a large number of extra parameters.
When θi = 0, ConvReLUs reduce to ReLUs. The right figure (b) illustrates our proposed parameter sharing scheme in which
the input units sharing the same outgoing weights also share the same threshold. The network in (b) is a decomposed version
of the network in (a). Nodes with the same symbol are replicated versions of the same node for illustration purposes. In this
example, we have three thresholds θi (i = 1, 2, 3) corresponding to three weights wi (i = 1, 2, 3) used in this convolution layer.
When computing y1, the weight w2 acts on the input unit x2. We apply threshold θ2 on x2. For computing y2, the threshold θ1 is
applied on the unit x2 since the weight w1 is used.

Inputs Outputs

Transit Fully 
Connected

Conv

Dense Block 2 Dense Block 3Dense Block 1 

Transit

Figure 4: The DenseNet-40 used for image classification tasks. There are three dense blocks, each of which has 8 layers with a
growth rate of 12.

thresholds to be close to, but may not exactly equal to, zero.
From this point, initializing these trainable thresholds to zero
is a valid strategy. We observe from our experiments that zero
initialization with L2-regularization performs the best.

Activation Functions in Deep Multi-Layer
Networks

In previous studies on improving ReLUs (Maas, Hannun, and
Ng 2013; He et al. 2015; Klambauer et al. 2017), ReLUs in
all layers are completely replaced by their proposed new acti-
vation functions. Despite the possibility of resulting in dying
neurons in the network, ReLUs have the advantage of induc-
ing higher sparsity for the computed features as compared
to other activation functions. This may consequently reduce
the risk of over-fitting (Glorot, Bordes, and Bengio 2011).
Although these activation functions can overcome the dying
ReLU problem, the sparsity of the outputs is significantly
reduced, especially for the final linear classifier layer. This
may increase the risk of over-fitting.

To alleviate the dying ReLU problem and also preserve
sparsity patterns in the computed features, we propose to

use a partial replacement strategy, in which only the first
several ReLU layers are replaced by our proposed ConvRe-
LUs in the network. The use of ConvReLUs in early layers
ensures the neurons are activated by some non-zero values.
The remaining ReLU layers in the top part of networks can
provide sparse feature representations for final linear classi-
fiers, thus avoiding the over-fitting problem. In this work, we
observe that our proposed partial replacement strategy yields
better performance not only for our proposed ConvReLUs,
but also for LeakyReLUs and PReLUs. We provide detailed
experiments and discussions in experimental studies.

Experimental Studies

In this section, we evaluate our proposed ConvReLUs activa-
tion function on both image classification and text classifica-
tion tasks. We conduct experiments to compare ConvReLUs
with popular rectified activation functions, including ReLUs,
LeakyReLUs, and PReLUs. In addition, performance studies
are used to compare three parameter initialization strategies
and the replacement strategies.

3917



Table 1: Comparison between ConvReLU and other acti-
vation functions in terms of top-1 accuracy on image clas-
sification datasets, including Cifar10, Cifar100, and Tiny
ImageNet.

Function Cifar10 Cifar100 ImageNet

ReLU 94.29% 75.87% 56.31%
LeakyReLU 94.45% 76.06% 56.38%
LeakyReLU (A) 94.32% 75.29% 55.97%
PReLU 94.58% 75.78% 56.09%
PReLU (A) 94.03% 74.87% 54.38%
ConvReLU 94.72% 76.41% 56.47%

Table 2: Comparison between ConvReLU function and other
activation functions in terms of top-1 accuracy on text classi-
fication datasets, including MR, AG’s News, and Yelp Full
datasets.

Function MR AG Yelp

ReLU 78.51% 88.64% 62.69%
LeakyReLU 77.48% 88.98% 62.93%
LeakyReLU (A) 78.33% 88.55% 62.69%
PReLU 77.19% 88.77% 63.03%
PReLU (A) 79.83% 88.52% 62.94%
ConvReLU 80.39% 89.13% 63.19%

Datasets

We evaluate our methods on six datasets, including three
datasets on image classification tasks and three datasets on
text classification tasks.

Image classification datasets: For image classification
tasks, we use three image datasets including Cifar10, Ci-
far100 (Krizhevsky, Hinton, and others 2009), and Tiny Ima-
geNet (Yao and Miller 2015). Cifar10 and Cifar100 contain
natural images with 32×32 pixels. Cifar10 consists of images
from 10 classes, while the images in Cifar100 are drawn from
100 classes. Both datasets contain 50,000 training and 10,000
testing images. Tiny ImageNet dataset is a tiny version of
ImageNet dataset (Deng et al. 2009). It has 200 classes, each
of which contains 500 training, 50 validation, and 50 testing
images.

Text classification datasets: For text classification tasks,
we choose three datasets; those are, MR, AG’s News, and
Yelp Full. MR is a Movie Review dataset (Pang and Lee
2005), which includes positive and negative reviews for sen-
timent classification. Each sample in MR is a sentence with
positive or negative sentiment label. AG’s News is a topic
classification dataset with four topics: World, Sports, Busi-
ness, and Sci/Tech (Zhang, Zhao, and LeCun 2015). Yelp Full
is formed based on the Yelp Dataset Challenge 2015 (Zhang,
Zhao, and LeCun 2015).

Experimental Setup

For image and text classification tasks, we use different set-
tings in terms of the model architecture.

Image classification settings: For image tasks, we mainly
use the DenseNet architecture (Huang et al. 2017), which

achieves state-of-the-art performances in various image clas-
sification tasks, including the ILSVRC 2012 challenge (Deng
et al. 2009). On all three image datasets, we use DenseNet-
40 as illustrated in Figure 4 with minor adjustments to ac-
commodate different datasets. The network includes three
dense blocks with a depth of 8 and a growth rate of 12. Dur-
ing training, the standard data augmentation scheme widely
used in (Huang et al. 2017; Simonyan and Zisserman 2015;
He et al. 2016) is applied on these image datasets for fair
comparisons.

Text classification task settings: On text classification
tasks, we employ the state-of-the-art VGG-like architec-
ture in (Zhang, Zhao, and LeCun 2015) without using any
unsupervised learning method. In this VGG-like network,
there are 6 convolution layers, 3 pooling layers, and 3 fully-
connected layers. Note that more recent models like ResNet
and DenseNet have not achieved better performance on these
tasks.

The following setups are shared for both experimental
settings. In training, the SGD optimizer (LeCun, Bengio, and
Hinton 2015) is used with a learning rate that starts from 0.1
and decays by 0.1 at the 150th and 250th epoch. The batch
size is 128. These hyper-parameters are tuned on the Cifar10
and AG’s News datasets, then applied on other datasets.

Comparison of ConvReLU with Other Activation
Functions

Based on DenseNet-40 and VGG networks, we compare
our proposed ConvReLUs with other activation functions
on both image and text classification tasks. The results are
summarized in Tables 1 and 2 for image and text datasets, re-
spectively. In the experiments using ConvReLUs, we replace
the ReLUs in the first dense block by ConvReLUs for image
tasks, and replace the ReLUs in the first two convolution lay-
ers by ConvReLUs for text tasks. For both LeakyReLUs and
PReLUs, we evaluate two replacement strategies; namely,
one using the same replacement strategy as ConvReLU, and
the other one with all layers using LeakyReLUs or PReLUs.
For the LeakyReLU and PReLU experiments, we add (A)
to indicate experiments using LeakyReLU or PReLU in all
layers.

We can observe from both Tables 1 and 2 that our pro-
posed ConvReLUs achieve consistently better performance
than ReLUs, LeakyReLUs, and PReLUs. For baseline val-
ues listed for text classification tasks, they are the state-
of-the-art without using unsupervised learning methods.
Note that some studies (Zhang, Zhao, and LeCun 2015;
Johnson and Zhang 2017) reported better results on these
datasets by employing unsupervised learning methods. Since
our method is orthogonal to these methods, we make use
of the results without unsupervised learning for simplicity.
These results demonstrate the effectiveness of our methods
in both computer vision and text analysis fields. While for
LeakyReLUs and PReLUs, they only perform better on some
not all of datasets than ReLUs. Given that we do not change
the model architectures and only add several thousands of
training parameters, the performance improvements over
other activation functions are significant.

3918



0 50 100 150 200 250 300 350 400
Epoch

45

50

55

60

65

70

75

T
es

t A
cc

ur
ac

y

ReLU
LeakyReLU
LeakyReLU (A)
PReLU
PReLU (A)
ConvReLU

360 370 380 390 400
Epoch

72

73

74

75

76

77

T
es

t A
cc

ur
ac

y

ReLU
LeakyReLU
LeakyReLU (A)
PReLU
PReLU (A)
ConvReLU

77

Figure 5: Comparison of top-1 accuracy curves on the testing dataset of Cifar100 for ReLU, LeakyReLU, PReLU, and ConvReLU.
The symbol (A) in the legend indicates experiments with all layers using the Notably, both LeakyReLUs and PReLUs with
partial corresponding activation function.

Table 3: Comparison of ConvReLU with ReLU on popular networks in terms of top-1 accuracy on image classification datasets
Cifar10 and Cifar100.

Cifar10 Cifar100

Network ReLU ConvReLU ReLU ConvReLU

VGG-16 93.71% 94.01% 73.31% 74.04%
ResNet-18 94.37% 94.48% 75.17% 75.97%
DenseNet-40 94.29% 94.72% 75.87% 76.41%

Notably, both LeakyReLUs and PReLUs with partial re-
placement strategy achieve better performance than those
using the full replacement strategy on most datasets. This
shows that the proposed partial replacement strategy can
not only overcome the dying ReLU problem but also retain
the sparse representation in the network. This is shown to
be effective for LeakyReLUs and PReLUs. In experimental
studies, we will show that this partial replacement strategy
also benefits our ConvReLUs.

Figure 5 shows the test accuracy curves of different activa-
tion functions on the Cifar100 dataset. We can easily observe
from the figure that the performance of our proposed Con-
vReLU is consistently better than other activation functions
by about a margin of 0.5%. Both LeakyReLU and PReLU
with partial replacement strategy outperform their full re-
placement versions by a margin of about 1%. This again
demonstrates the effectiveness of the partial replacement
strategy.

Performance Study on Popular Networks

Our previous experiments on image classification tasks are
mainly based on the DenseNet-40. It can be argued that
our proposed activation function is only effective on this
model architecture. In this section, we wish to investigate the
performance of ConvReLUs on other popular networks such
as VGG (Simonyan and Zisserman 2015) and ResNet (He et

Table 4: Comparison of three initialization methods in terms
of top-1 Accuracy on image classification datasets Cifar10
and Cifar100.

Zero Init Random Init Glot Init

Cifar10 94.72% 94.55% 94.45%
Cifar100 76.41% 75.81% 75.44%

al. 2016). We compare the performance of ConvReLUs with
ReLUs on the Cifar10 and Cifar100 datasets, and the results
are summarized in Table 3. We can observe from these results
that our proposed ConvReLUs are consistently better than
ReLUs on both datasets using three popular deep networks.
These deep networks employ different architecture designs
and have different advantages. These results demonstrate
the superiority of our ConvReLUs over ReLUs on multiple
networks and datasets.

Performance Study of Different Initialization
Methods

Based on the DenseNet-40, we perform comparisons of the
three initialization methods discussed in Section on the
Cifar10 and Cifar100 datasets. For all the three initializa-
tion methods, we employ L2-regularization to encourage the
learned thresholds to be small. The results are summarized

3919



Figure 6: The distribution of threshold values learned in
ConvReLUs based on DenseNet-40.

Table 5: Comparison of the three initialization strategies in
terms of top-1 accuracy on image classification dataset Ci-
far10.

R1 (First) R2 (Last) R3 (All)

Cifar10 94.72% 94.34% 94.55%

in Table 4. We can observe from the results that the zero ini-
tialization method outperforms random and glot initialization
methods on both datasets. Figure 6 shows the distribution
of the learned threshold parameters in ConvReLUs. The his-
togram in the figure demonstrates that the learned thresholds
are very close to but not equal to zero. This is consistent
with our expectation on using zero initialization. This sim-
ple parameter initialization method is very suitable for our
proposed ConvReLUs.

Performance Study of Replacement Strategies

We investigate the performance of ConvReLU with different
replacement strategies. We develop three replacement strate-
gies: R1, R2, and R3. For strategy R1, we replace ReLUs
with ConvReLUs in convolution layers of the first block in
DenseNet-40. We use ConvReLUs instead of ReLUs in the
last block for strategy R2. In the strategy R3, we replace all
ReLUs by our proposed ConvReLUs.

We test these replacement strategies on DenseNet-40 using
the Cifar10 dataset. The results are summarized in Table 5.
We can see from the results that the first replacement strategy
has the best performance among the three strategies. The
observations reflected in Figure 5 demonstrate that the first
replacement strategy also benefits LeakyReLUs and PReLUs.
From the results, replacement of ReLUs in the beginning
part of the network can overcome the dying ReLU problem
and retain sparse representations for the linear classifiers
simultaneously.

Parameter Number Study

Since our proposed activation function ConvReLUs involve
more parameters than ReLUs, LeakyReLUs, and PReLUs, we
study the number of additional parameters for ConvReLUs
based on DenseNet-40. The results are given in Table 6. We
can observe from the results that ConvReLUs only needs

Table 6: Comparison of ConvReLU with other activation
functions in terms of parameter numbers based on DenseNet-
40 on the dataset Cifar10.

Function #Params Ratio

ReLU 1,035,268 0.00%
LeakyReLU 1,035,268 0.00%
LeakyReLU (A) 1,035,268 0.00%
PReLU 1,035,280 0.00%
PReLU (A) 1,035,387 0.01%
ConvReLU 1,038,184 0.28%

0.28% or less additional parameters compared to ReLUs and
other activation functions. We believe this marginal increase
in parameter number is negligible and will not cause the
over-fitting problem. This is a result of our parameter sharing
scheme used in ConvReLUs, which allows each input neuron
acts on different thresholds and avoids a large number of
extra parameters.

Conclusion

In this work, we propose the adaptive ReLUs and its vari-
ant ConvReLUs to solve the dying ReLU problem suffered
by ReLUs. The dying ReLU problem is mostly caused by
its zero activation for negative arguments. By making the
thresholds to be trainable instead of zero, adaptive ReLUs
allow each input neuron to be activated by different trainable
thresholds. Other than common parameter sharing methods
such as layer sharing used in PReLUs, we propose a novel
parameter sharing scheme, in which the trainable threshold
parameters are shared based on the weights in convolution
layers, thereby leading to our ConvReLUs. When comput-
ing with a specific weight in the convolution layer, the input
neuron is activated by its corresponding threshold. In this
way, the input neuron is acted by different thresholds without
involving excessive extra parameters in neural networks.

The experimental results on image and text classification
tasks demonstrate consistent performance improvements of
ConvReLUs compared to ReLUs, LeakyReLUs, and PReLUs.
For the extra parameters involved in ConvReLUs, we propose
to use the zero initialization method with L2-regularization
such that the trainable thresholds are close to but not equal
to zero. Both the quantitative results and the histogram of
threshold values confirm our intuitions and expectations on
the zero initialization method. Finally, we propose the par-
tial replacement strategy that helps to solve the dying ReLU
problem and retain sparse representations for linear classi-
fiers in neural networks. Our results indicate that the partial
replacement strategy can help not only our ConvReLUs but
also LeakyReLUs and PReLUs, which demonstrates its broad
applicability.

Acknowledgements

This work was supported in part by National Science Foun-
dation grants IIS-1908166 and DBI-1661289.

3920



References
Chen, N.; Chen, X.; Yu, J.; and Wang, J. 2006. Afterhy-
perpolarization improves spike programming through lower-
ing threshold potentials and refractory periods mediated by
voltage-gated sodium channels. Biochemical and Biophysical
Research Communications 346(3):938–945.
Chen, J.; Sathe, S.; Aggarwal, C.; and Turaga, D. 2017. Out-
lier detection with autoencoder ensembles. In Proceedings
of the 2017 SIAM International Conference on Data Mining,
90–98. SIAM.
Clevert, D.-A.; Unterthiner, T.; and Hochreiter, S. 2015. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.
Gao, H.; Yuan, H.; Wang, Z.; and Ji, S. 2019. Pixel trans-
posed convolutional networks. IEEE Transactions on Pattern
Analysis & Machine Intelligence 1(1):1–1.
Glorot, X., and Bengio, Y. 2010. Understanding the difficulty
of training deep feedforward neural networks. In Proceed-
ings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–256.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statis-
tics, 315–323.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving
deep into rectifiers: Surpassing human-level performance
on ImageNet classification. In Proceedings of the IEEE
International Conference on Computer Vision, 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 4700–4708.
Islam, M. M., and Islam, N. 2016. Measuring threshold
potentials of neuron cells using hodgkin-huxley model by
applying different types of input signals. Dhaka University
Journal of Science 64(1):15–20.
Johnson, R., and Zhang, T. 2017. Deep pyramid convolu-
tional neural networks for text categorization. In Proceedings
of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), volume 1, 562–
570.
Klambauer, G.; Unterthiner, T.; Mayr, A.; and Hochreiter,
S. 2017. Self-normalizing neural networks. In Advances in
Neural Information Processing Systems, 972–981.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multi-
ple layers of features from tiny images. Technical report,
Citeseer.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.

In Advances in neural information processing systems, 1097–
1105.
Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; and
Navab, N. 2016. Deeper depth prediction with fully con-
volutional residual networks. In 2016 Fourth International
Conference on 3D Vision, 239–248. IEEE.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature 521(7553):436.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1989. Backpropa-
gation applied to handwritten zip code recognition. Neural
computation 1(4):541–551.
LeCun, Y.; Bottou, L.; Orr, G.; and Muller, K. 1998a. Effi-
cient backprop. In Orr, G., and K., M., eds., Neural Networks:
Tricks of the trade. Springer.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998b.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
in ICML Workshop on Deep Learning for Audio, Speech and
Language Processing. Citeseer.
Nair, V., and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), 807–814.
Pang, B., and Lee, L. 2005. Seeing stars: Exploiting class re-
lationships for sentiment categorization with respect to rating
scales. In Proceedings of the 43rd annual meeting on asso-
ciation for computational linguistics, 115–124. Association
for Computational Linguistics.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-
cnn: Towards real-time object detection with region proposal
networks. In Advances in neural information processing
systems, 91–99.
Seifter, J.; Sloane, D.; and Ratner, A. 2005. Concepts in
medical physiology. Lippincott Williams & Wilkins.
Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. Proceed-
ings of the International Conference on Learning Represen-
tations.
Xu, B.; Wang, N.; Chen, T.; and Li, M. 2015. Empirical
evaluation of rectified activations in convolutional network.
arXiv preprint arXiv:1505.00853.
Yao, L., and Miller, J. 2015. Tiny imagenet classification
with convolutional neural networks. CS 231N.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in neural information processing systems, 649–657.

3921


