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Abstract

We consider the task of learning a parametric Continuous
Time Markov Chain (CTMC) sequence model without exam-
ples of sequences, where the training data consists entirely of
aggregate steady-state statistics. Making the problem harder,
we assume that the states we wish to predict are unobserved
in the training data. Specifically, given a parametric model
over the transition rates of a CTMC and some known transi-
tion rates, we wish to extrapolate its steady state distribution
to states that are unobserved. A technical roadblock to learn
a CTMC from its steady state has been that the chain rule to
compute gradients will not work over the arbitrarily long se-
quences necessary to reach steady state —from where the ag-
gregate statistics are sampled. To overcome this optimization
challenge, we propose ∞-SGD, a principled stochastic gradi-
ent descent method that uses randomly-stopped estimators to
avoid infinite sums required by the steady state computation,
while learning even when only a subset of the CTMC states
can be observed. We apply ∞-SGD to a real-world testbed
and synthetic experiments showcasing its accuracy, ability to
extrapolate the steady state distribution to unobserved states
under unobserved conditions (heavy loads, when training un-
der light loads), and succeeding in difficult scenarios where
even a tailor-made extension of existing methods fails.

Introduction

Can we learn a parametric sequence model given only
aggregate statistics as training data? As machine learn-
ing expands into new applications, new learning paradigms
emerge, such as learning a sequence model from a set of ob-
servations without any clear time order between them.

Traditional supervised and unsupervised learning meth-
ods are essentially tasked with problems that can be learned
from examples (interpolation). In a host of key applications
of parametric sequence models, we want to extrapolate, i.e.,
take these aggregate observations and extrapolate them to a
scenario not observed in the training data.

For instance, servers in the cloud collect system logs
—aggregate statistics such as response-time distribution,
queue length distribution— under light-load conditions. Un-
der high-loads, however, these servers may disable statistics
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collection (logs) due to the potential performance penalty of
logging (Newman 2017). Capacity planning requires know-
ing how the servers perform under medium to high load con-
ditions, which requires extrapolated predictions of request
loss probability and server response times from the collected
light-load data.

Hence, in this work we consider the task of learning a
parametric Continuous Time Markov Chain (CTMC) se-
quence model —with transition rate matrix Q(x,θ) where
x are known parameters but parameters θ must be learned—
without examples of sequences, where the training data con-
sists entirely of aggregate steady-state statistics. Making the
problem harder, we further assume that the states we wish
to predict are unobserved in the training data. More specif-
ically, given an inductive bias over the transition rates of a
CTMC and some known transition rates, we wish to extrapo-
late its steady state distribution to states that are unobserved.
We focus on the application of predicting failures in queu-
ing systems under heavy loads —e.g., predicting request
loss rates in overloaded cloud services— with training data
that contains only aggregate statistics of the system under
light loads, and no observed losses. Traditionally, CTMCs
are learned from observations of their transient (sequences
given by transitions between states) not from observations
of their steady state, even less so if only a subset of the state
space is observable.

Remark 1. Extrapolation v.s. generalization error: In our
task we must make a distinction between generalization error
—which is the error on unseen data that reduces with more
training examples even without inductive biases— and ex-
trapolation error (Marcus 1998) —which is a type of gener-
alization error over unseen states and domains that does not
reduce with more training data without the help of a model-
ing assumption. Our task is to learn a parametric model that
is capable of extrapolation.

Contributions. Our work introduces the general problem
of learning a parametric CTMC from aggregate steady-state
observations (frequencies) of part of the CTMC states, fo-
cusing on queueing systems as our application. We also
introduce a novel method (∞-SGD) to learn parametric
CTMCs from aggregate steady-state observations, which
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work even if the observations are over a restricted set of
states. Our approach, ∞-SGD, is a novel, theoretically prin-
cipled, optimization approach that, among other things, uses
randomly-stopped estimators (McLeish 2011). In our exper-
iments ∞-SGD finds significantly better maximum likeli-
hood estimates than the baselines in real testbed and syn-
thetic scenarios, both for the training and test data. We also
see that ∞-SGD can successfully extrapolate from training
data under light queueing loads to predictions under heavy
loads. We expect ∞-SGD to be a useful tool in applications
that collect aggregate statistics but need to learn parametric
CTMCs.

Preliminaries

Consider a stationary and ergodic Continuous-Time Markov
Chain (CTMC) Y = (Yτ )τ≥0 over a finite state space S,
where Yτ is the state of the Markov chain at time τ . The
CTMC is governed by Kolmogorov’s Forward Equation

∂

∂τ
px,θ(τ)

T = (px,θ(τ))
TQ(x,θ), (1)

where Q(x;θ) is a transition rate matrix parameterized by
both x (a vector of observed parameters, e.g., request rate)
and θ (a vector of hidden parameters), px,θ(τ) is a column
vector of dimension |S|, with Pr[Yτ = i] = px,θ(τ)i as the
probability of being at state i ∈ S at time τ ≥ 0, given that
Y starts at state j ∈ S with probability Pr[Y0 = j] = p(0)j .

The transition rate matrix Q(x,θ) is such that for i �= j,
(Q(x,θ))ij ≥ 0 describes the rate of the process transitions
from state i to state j. The diagonal (Q(x,θ))ii is such that
each row of Q(x,θ) sums to zero, irrespective of the values
of x and θ. Because Y is stationary and ergodic, the solu-
tion to Equation (1) implies a unique steady state distribution
π(x,θ) = limτ→∞ px,θ(τ).

Parameterized transition rate matrix Q(x,θ). We ex-
emplify Q(x;θ) with one of the simplest CTMCs: the birth-
death process (BD). BD has two parameters: the request
(birth) rate x = (λ) and the service (death) rate θ = (μ).
The transition rate matrix is

Q(x;θ) =

⎡
⎢⎢⎢⎢⎣
−λ λ 0 · · · 0
μ −(μ+ λ) λ · · · 0
0 μ −(μ+ λ) · · · 0
...

...
...

. . .
...

· · · · · · · · · · · · −μ

⎤
⎥⎥⎥⎥⎦ ,

where request rate λ is known but the service rate μ needs to
be learned. In our work, Q(x,θ) can be significantly more
complex, as we only assume Q(x,θ) is differentiable w.r.t.
θ. More generally, we can have an n× n matrix

Q(x;θ) =

⎡
⎢⎢⎢⎣
−∑i �=1 f1,i(x,θ) f1,2(x,θ) · · · f1,n(x,θ)

f2,1(x,θ) −∑i �=2 f2,i(x,θ) · · · f2,n(x,θ)
...

...
. . .

...
fn,1(x,θ) fn,2(x,θ) · · · −∑i �=n fn,i(x,θ)

⎤
⎥⎥⎥⎦ ,

for some appropriate set of functions {fi,j}i,j of x and θ
(whose image must be in [0,∞)).

Learning task. Consider learning θ from a set of steady-
state observations from a subset S′ ⊆ S of the states of the
CTMC Y . That is, even though Y evolves over S, the ob-
servations from states in S

′
= S\S′ are unavailable to us

—e.g., consider a system that disables statistics collection
(logs) when it reaches a set of system overload states S′.

Training data: Our training data consists of M time win-
dows from which we have observed aggregate steady state
data: D = {(xm,ym)}Mm=1, where ym,j ≡ (ym)j is the
number of steady state observations of state j ∈ S

′ at the
m-th time window.

Loss function: The minimum negative log-likelihood of
the model must be conditioned on only observing states of
S
′ in steady state (i.e., τ → ∞),

θ� = argmin
θ

M∑
m=1

L(ym, lim
τ→∞px,θ(τ)), (2)

where

L(y,π)=−
∑
j∈S′

yj log

(
πj∑

j′∈S
πj′

)
, (3)

such that the denominator ensures the observations are con-
ditioned on only observing states in S

′ —a detailed de-
scription of the math behind this conditional can be found
in Meyer (1989).

In theory, we could optimize θ in Equation (2) via
gradient descent but the derivative of Equation (2) w.r.t.
θ requires computing the derivative of the steady state
limτ→∞ px,θ(τ), which is challenging as our steady state
distribution does not have a closed-form expression.

The identifyability of Q is irrelevant to our task: In our
task, we wish to predict the steady-state distribution of unob-
served states from samples from the steady state of observed
states. Specifically, we wish to extrapolate those predictions
such that we can predict these steady state distributions even
when the observed parameters, x of Q(x,θ) change. Be-
cause there are infinitely many Q that can give the same
correct steady state distribution predictions (see Supplemen-
tary Material A1), it is irrelevant to us knowing whether we
recovered the “true” Q. In fact, in our formulation there is
no notion that we can ever learn a “true” Q. We only care if
it gives the correct steady state distribution.

Next, we review the related work.

Related Work

Inverting an MC steady state. Bernstein and Sheldon (2016)
is one of the most closely related works, showing an esti-
mator for an existing optimization approach from econo-
metrics, Conditional Least Squares (CLS) (Miller 1952;
Van Der Plas and others 1983; Kalbfleisch and Lawless
1984), which can be used to learn a Markov chain from ag-
gregate statistics. This approach, however, is not designed
to learn a parametric model (our Q(x,θ) needs derivatives
w.r.t. θ) and thus, cannot extrapolate to unobserved states
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in the training data. Moreover, our Markov chain is not ho-
mogeneous across observation time windows, requiring x to
also change, which conflicts with the assumptions in CLS.

Maystre and Grossglauser (2015) and Ragain and Ugan-
der (2016) are the also closely related works, which learn the
transition rates of a Plackett–Luce-type model CTMC from
samples of its stationary distribution. In an earlier work, Ku-
mar et al. (2015) learns a discrete-time Markov chain model
similar to the Plackett–Luce’s model in the context of Web
navigation. These earlier works, however, make domain-
specific assumptions on Q that make computing π from Q
trivial. We consider a general parametric Q(x,θ) that may
have no trivial solution.

Hashimoto, Gifford, and Jaakkola (2016) uses far-apart
observations of a MC to learn transition probabilities,
and Pierson et al. (2018) uses cross-sectional data to learn
a temporal model; these works are focused on specific dif-
fusion processes. Our problem is also related to the more
general problem of learning over distributions Szabó et al.
(2016), which in our scenario requires a solution designed
for the task.

Randomly stopped estimators have been used in unrelated
machine learning tasks (Xu, Srivastava, and Sutton 2019)
and (Filippone and Engler 2015), with significantly different
tasks and estimators than ours. Applying randomly stopped
estimators is mostly about proving that a specific estimator
gives finite-variance estimates.

Queueing systems. Cloud computing has transformed IT
operations and management by deploying services on com-
modity hardware in public or private data centers, sav-
ing millions of dollars in both capital and operational ex-
penses (Armbrust et al. 2010; ETSI 2014). The savings in
operational expenses can only be attained if the allocation of
compute, memory, networking and storage resources scales
based on the workload (Cao et al. 2018; Amazon 2019;
Google Cloud 2019). A key problem in this elastic scaling
is anticipating overload and failures in order to proactively
allocate and initialize additional resources. This prediction
needs to be done without sufficient data on overload and
failures (Weiss and Hirsh 1998). Fortunately, several novel
cloud computing services can be modeled by queueing sys-
tems (Yang et al. 2009; Khazaei, Misic, and Misic 2012).
Existing approaches, however, require knowing the transi-
tion rate matrix rather than learning it from aggregate obser-
vations (as we do).

Learning Transition Rates from Aggregate

Steady State Metrics

In this section, we will describe why a good parametric
model of Q is key to learn a θ� that can predict the steady
state distribution of the states S

′
= S\S′ that are not ob-

served from the states that are observed S
′. We will then in-

troduce a few naı̈ve methods to learn θ� from Equation (2)
and show they are unsuitable for learning accurate CTMC
transition rates, including an extension of BPTT. Finally, we
will propose a novel approach to learn θ� that is significantly
more accurate and more computationally efficient than the
naı̈ve approaches.

For the ease of notation, sometimes we abbreviate tran-
sition rate matrix that Q ≡ Q(x,θ) and we may denote
(Q(x,θ))ij by qij .

The need for a good parametric model of Q: Without
tied parameters in Q through θ, the steady state distribution
would be flexible enough to make πi, ∀i ∈ S

′, and πj , ∀j ∈
S, have arbitrarily different probabilities. This would make
it impossible to correctly extrapolate the observed data and
predict πj for observations of states in S

′. An example is
provided in Supplementary Material A1.

Lagrangian multipliers (e.g., Conditional Least Squares)
are undesirable. To solve Equation (2), t 
 1, we can
add the condition πTQ(x,θ) = 0 as a Lagrangian multi-
plier as if π are extra learnable parameters. Then, the loss
function is redefined as

−
∑
j∈S′

yj log

(
lim
t→∞

πj∑
j′∈S′ πj′

)
+ λ‖πTQ(x,θ)‖, (4)

λ > 0, which is the Conditional Least Squares (Miller 1952)
for a CTMC, a regularization applied the definition of a
steady-state distribution. We found, however, that this ap-
proach is very challenging by design, since π is a function
of x and θ, and x varies in the training data. Hence, the La-
grangian multiplier λ depends on the loss function (which is
conditional) and on x and θ, a challenging task.

Moreover, if we assume a constant λ, the resulting ap-
proach needs to work as as a bi-level optimization proce-
dure (Bhatnagar and Borkar 1998; Colson, Marcotte, and
Savard 2007). In computing the derivatives of the loss
w.r.t. θ, there is essentially no connection between the data
({yj}j∈S′ ) and θ, which is the reason why the approach fails.
Fixing these Lagrangian multiplier issues is future work.

Solution through Uniformization and Chain Rule

Our first step to a solution is to uniformize the Markov chain
Q in order to transform the CTMC of Equation (1) into a
discrete-time Markov chain (DTMC) with probability ma-
trix P (Q(x,θ)) as described below (Jensen 1953). Hence,
we will see that an approximation of the steady-state dis-
tribution can obtained by recursively applying P (Q(x,θ)),
and the derivative of this recursive application of the transi-
tion probability can be obtained via chain rule.

Definition 1 (Uniformized Markov Chain). Let Q(x,θ)
be a stationary and ergodic CTMC. We define a set of
Chapman-Kolmogorov equations representing the CTMC
at the events (arrivals) of a Poisson process with rate
γ(x,θ) > max(−diag(Q(x,θ))). The distribution after
t ≥ 0 of these events is

p(events)(t;x,θ)T = p(events)(0)TP (Q(x,θ))t, (5)

where p(events)(0) is some initial distribution and
P (Q(x,θ)) = I + Q(x,θ)/γ(x,θ), where I is the
identity matrix.
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By construction, since Y is ergodic and has a steady state
π, the Markov chain described by P (Q(x,θ)) has the same
steady state as the CTMC described by Q(x,θ) (Jensen
1953), i.e., for px,θ(τ) as described in Equation (1),

π(x,θ) = lim
τ→∞px,θ(τ) = lim

t→∞p(events)(t;x,θ)

= lim
t→∞(p(events)(0)TP (Q(x,θ))t)T.

(6)

Note that (P (Q(x,θ))t)ij is the probability that the CTMC
starts at state i and reaches state j after t ≥ 0 events of the
Poisson process with rate γ(x,θ) given by Definition 1.

In what follows, we sometimes denote the probability ma-
trix as P ≡ P (Q(x,θ)) and steady state distribution as
π ≡ π(x,θ) ≡ π(P (Q(x,θ))).

Chain rule to learn θ from a steady-state approximation.
Learning θ� in Equation (2) through gradient descent can be
approximated for a large enough value of t� 
 1 through
the chain rule (Werbos 1990). The derivative of the loss in
Equation (2) is

∂L(y,p(events)(t�;x,θ))

∂θk
=

∑
i �=j,
i,j∈S

(
∂L(y,p(events)(0)TP t�)

∂(P t�)ij

∂(P (Q(x,θ))t
�

)ij
∂θk

)
,

(7)

In order to compute ∂(P (Q(x,θ)))t
�

/∂θk, we have to re-
cursively apply the chain rule, which leads to a backpropa-
gation through time (BPTT)-style method.

BPTT challenges. Directly using BPTT, however, has
both theoretical and practical barriers. The theoretical chal-
lenge is finding a large-enough value of t� that allows
P (Q(x,θ))t

�

to approximate the steady-state distribution
π(x,θ) for any assignment of Q(x,θ) that our optimization
might find. The computational challenge is both of compu-
tational resources and of numerical precision.

The following definition gives a divide-and-conquer aid
to the computational challenge of calculating BPTT over
P (Q(x,θ))t

�

:
Definition 2 (Divide-and-Conquer BPTT (DC-BPTT)). As-
sume t� = 2T for some T > 1. Rather than backpropagat-
ing over t� time steps —which is difficult if t� is large due to
vanishing and exploding gradients—, we will use a divide-
and-conquer approach to reduce the backpropagation steps
to log2 t

� = T , by noting that

P 2T = ((P 2T−2

)2)2 = (· · · (P 2)2 · · · )2. (8)

That is, rather than multiplying an intermediate P t by P to
obtain P t+1, we multiply P t by itself to obtain P 2t.

Computing P t� , t� = 2T with T > 1, from Definition 2
is more computationally efficient than the naı̈ve t� multi-
plications P · · ·P because the computation graph is a tree
whose backpropagation paths from the root to the leaves
give the same derivatives at the same tree height. Unfortu-
nately, as we see in our experiments, DC-BPTT still fails in
the most challenging tasks.

Solution via Infinity Learning

An alternative to BPTT is to dive deeper into the
chain rule equations and look for mathematical equiva-
lences. Rather than using BPTT to compute the gradient
∂P (Q(x,θ))t

�

/∂θk, k ∈ S, in Equation (7), we can make
use of the following observation.

Lemma 1. Let Q(x,θ) be a K-state transition ma-
trix and P (Q(x,θ)) be its uniformized Markov Chain.
P (Q(x,θ))t is the Markov chain after t steps where t > 0,
then the gradients of P t w.r.t. θk is

∇(t)
θk
P (Q(x,θ)) ≡ ∂P (Q(x,θ))t

∂θk

=

t∑
l=1

P (Q(x,θ))
t−l ∂P (Q(x,θ))

∂θk
P (Q(x,θ))

l−1
,

(9)

where

∂P (Q(x,θ))

∂θk
=
∑
ij

∂P (Q)

∂qij

∂qij(x,θ)

∂θk
.

The proof is in the Supplementary Material B1. Because∑∞
l=1 P (Q(x,θ))l−1 diverges for any valid x and θ, it is

not obvious that Equation (9) converges to a unique fixed
point for t → ∞. In what follows we show that the gradient
in Equation (9) exists and is unique as t → ∞:

Proposition 1 (Infinite Gradient Series Simplification). Let
Q be a K-state transition rate matrix of a stationary and
ergodic MC. Equation (9) for t → ∞, henceforth denoted
∇(∞)

Q P (Q) ≡ limt→∞ ∇(t)
Q P (Q), exists and is unique

and can be redefined as

(∇(∞)
Q P (Q))ij ≡ lim

t→∞

t∑
l=1

(
P t−l ∂P (Q)

∂qij
P l−1

)

= Π

∞∑
l=0

∂P (Q)

∂qij
P l,

(10)

where Π is a matrix whose rows are the steady state distri-
bution π. Note that the diagonal i = j is trivial to compute
but should be treated as a special case.

The proof in the Supplementary Material B2 shows that
∇(∞)

Q P (Q) converges because the term inside the sum con-
verges to a matrix of zeros as l → ∞. Using Proposition 1 it
is easy to prove that Equation (9) converges as t → ∞.

While Proposition 1 shows that ∇(∞)
Q P (Q) converges,

evaluating the infinite sum in Equation (10) is challenging.
Truncating the sum would make the gradient biased, deviat-
ing the fixed point solution of Equation (2). To circumvent
the infinite sum in Equation (10), we propose ∞-SGD, a
numerically stable stochastic gradient descent method that
can optimize gradients with infinite sums —as long as the
sum is a weakly convergent series. Our experiments show
that ∞-SGD consistently outperforms BPTT in stability to
hyperparameters in convergence rate, and in estimation ac-
curacy.
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Theorem 1 (Infinity Stochastic Gradient Descent
(∞-SGD)). Let Q be the transition rate matrix of a
stationary and ergodic CTMC. Assume strictly positive
values for the learnable parameters θ(h) at the h-th
step of the optimization. Let P (Q(x,θ(h))) be its uni-
formized transition probability matrix per Definition 1.
Let L(y,π) be as in Equation (3). Reparameterize
L̃(y,x,θ(h)) = L(y,π(x,θ(h))) as the loss function with
respect to θ(h). Let X(h) ∼ Geometric(p(h)), X(h) ∈ Z

+,
be an independent sample of a Geometric distribution
with p(h) < δ(h), where δ(h) is the spectral gap of
P (Q(x,θ(h))). Then, for 0 < ε � 1 and for all learnable
parameters θ,

θ
(h+1)
k = max

(
θ
(h)
k − η(h)∇θk

L̃(y,x,θ)
∣∣∣
θ=θ(h)

, ε
)
,

where

∇θk
L̃(y,x,θ) =

∑

ij

∑

mn

(p(events)(0))m
∂L(y,π)

∂πn

∣∣∣∣
π=π(x,θ)

× π(x,θ)nΓijmn(x,θ)
∂Q(x,θ)ij

∂θk

with h = 0, 1, . . . , where π(x,θ) is the steady state distri-
bution defined in Equation (6), η(h) is the learning rate with∑∞

h=0 η
(h) = ∞,

∑∞
h=0

(
η(h)

)2
< ∞, and

Γijmn(x,θ)=

X(h)∑
t=0

[
∂P (Q(x,θ))

∂qij

P (Q(x,θ))t

P[X(h) > t]

]
mn

, (11)

is a stochastic gradient descent method that minimizes
Equation (2).

The proof of the theorem is in the Supplementary Material
B3. The main insight is the use of Proposition 1 to produce
a randomly-stopped unbiased estimator. The requirement in
Theorem 1 that p(h) < δ(h) comes from a loose bound, i.e.,
in practice p(h) can be relatively large (larger than the spec-
tral gap) as our empirical results show —e.g., all of our em-
pirical results use the constant p(h) = 0.1, ∀h. We have also
tested some experiments with p(h) = 0.01, which works as
well as p(h) = 0.1 (see Supplementary Material C4). As it is
application-dependent, the value of p(h) should be seen as a
hyperparameter. In what follows we introduce our empirical
results.

Results

In this section, we contrast the accuracy and convergence
of ∞-SGD (Theorem 1) against DC-BPTT (Definition 2)
and find that ∞-SGD is more stable and consistently learns
more accurate models. The primary application of our ex-
periments is predicting request loss rates in a queueing sys-
tem from data that has no observed losses, under the fol-
lowing conditions: (a) we learn θ� of Equation (2) as a
function of known request rate xlight ∈ Λlight under light
load (no losses) in the training data, and predict πheavy, the
steady state request loss rates under heavy loads in the test
data (out-of-sample extrapolation), where πheavy is such that

(
πheavy

)T
Q(xheavy;θ�) = 0 with xheavy > max(Λlight);

moreover, (b) only part of the state space is observed in the
training data, S′ ⊂ S, and we wish to predict the steady state
probability of the unobservable states S′ = S\S′.

Baseline method. Due to the absence of methods on para-
metric inference of CTMCs from steady-state observations,
our main baseline is the DC-BPTT of Definition 2. In most
of our simulations, we set t� = 128 = 27 and p(events)(0) =
1T/|S| throughout all our experiments.We also tested BPTT
without divide and conquer but find the optimization un-
stable due to the long backpropagation paths. We tested
t� ∈ {16, 128} and found that smaller values of t� are eas-
ier to optimize but —as expected— generally produce worse
approximations of the steady state for heavy loads.

Infinity learning. Our experiments also test our proposed
approach, ∞-SGD, with X(h) ∼ Geometric(p) of Theo-
rem 1, where p is a constant success probability, i.e., E[X] =
1/p. In most of our experiments, p = 0.1, that is, on aver-
age we consider only the first ten terms in the sum of Equa-
tion (10). Contrast, ∞-SGD’s 10 summation terms with ma-
trix powers that need no chain rule, with the baseline DC-
BPTT approach (Definition 2) where P (Q(x,θ))128 needs
to be computed together with a chain rule to compute gradi-
ents over the matrix multiplications. It is no surprise that ∞-
SGD is a more stable optimization method (no vanishing or
exploding gradients); interestingly, ∞-SGD also works well
on the tested slow-mixing CTMCs, while baseline methods
like DC-BPTT fail in these scenarios (see Supplementary
Material C5).

Relaxing the parametric model. In some of our
experiments, we will construct transition rate matrix
Q′(x,θ, Q̃) = Q(x,θ) + Q̃ with an α‖Q̃‖22 regularization
penalty, α > 0, where Q̃ is an additional non-parametric
learnable matrix s.t. Q̃ij = 0 whenever (Q(x,θ))ij �= 0,
otherwise Q̃ij is a learnable parameter of our model. This
allows some uncertainty on the form of our parametric mod-
els. It also allows us to learn the parameters through an in-
terpolation between parametric and non-parametric CTMC
models.

The regularization term α‖Q̃‖22 is added to the negative
log-likelihood loss in Equation (2) to ensure that we can
control how much flexibility we want. With small values of
α, we are testing how overparameterization, i.e., having too
many extra parameters in Q′, affects learning and general-
ization. Our experiments show that α 
 1 gives the best re-
sults, i.e., the correct parametric model works best. We also
see that α ≈ 1 still gives competitive results (refer to Supple-
mentary Material C3), showing that some model flexibility
is tolerable. In contrast, we see that α = 0.1 tends to signifi-
cantly hurt our ability to extrapolate queue losses in the test
data.
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Table 1: [MAPE] Simulation results showing MAPE/100 (〈Mean Absolute Error〉/〈true value〉) errors between predicted steady
state and ground-truth for failure states in test data (heavy load). Training data collected under light loads and restricted observed
states (queues zero and one). Mixing rates are determined by the spectral gaps δn observed in training data over multiple time
windows (n = 1, . . . , 50). With 95% confidence intervals.

δn (spectral gap) DC-BPTT t� = 16 DC-BPTT t� = 128 ∞-SGD (p = 0.1)

Testbed Emulation (Upper Trig.) N/A 1.43× 101 ± 0.00 1.88× 101 ± 0.00 9.33× 10−1 ± 8.91× 10−2

M/M/1/K (fast-mix) [0.022, 0.043] 2.04× 10−1 ± 2.86× 10−4 1.32 ± 4.94× 10−3 1.18× 10−2 ± 8.01× 10−3

M/M/1/K (slow-mix) [0.005, 0.008] 8.91× 103 ± 2.02× 102 6.68× 101 ± 7.61 8.88× 10−1 ± 1.48
M/M/m/m+ r [0.013, 0.024] 4.11× 10−1 ± 4.47× 10−2 4.01× 10−1 ± 8.86× 10−2 1.52× 10−1 ± 8.50× 10−2

M/M/Multiple/K [0.068, 0.096] 9.09× 10−1 ± 1.20× 10−2 4.03× 101 ± 6.74× 10−2 2.27× 10−1 ± 1.47× 10−2

Table 2: [MSE] Simulation results showing MSE errors between predicted steady state and ground-truth for failure states in
test data (heavy load). Training data collected under light loads and restricted observed states (queues zero and one). Mixing
rates are determined by the spectral gaps δn observed in training data over multiple time windows (n = 1, . . . , 50). With 95%
confidence intervals.

δn (spectral gap) DC-BPTT t� = 16 DC-BPTT t� = 128 ∞-SGD (p = 0.1)

Testbed Emulation (Upper Trig.) N/A 4.80× 10−1 ± 0.00 8.45× 10−1 ± 0.00 2.41× 10−3 ± 5.20× 10−4

M/M/1/K (fast-mix) [0.022, 0.043] 6.81× 10−3 ± 1.99× 10−5 2.45× 10−1 ± 1.84× 10−3 4.98× 10−5 ± 5.37× 10−5

M/M/1/K (slow-mix) [0.005, 0.008] 1.14× 10−2 ± 1.54× 10−4 4.84× 10−4 ± 1.99× 10−4 9.36× 10−4 ± 1.58× 10−3

M/M/m/m+ r [0.013, 0.024] 4.25× 10−2 ± 7.25× 10−3 2.87× 10−2 ± 1.09× 10−2 6.65× 10−3 ± 5.61× 10−3

M/M/Multiple/K [0.068, 0.096] 8.97× 10−3 ± 1.24× 10−4 6.84× 10−1 ± 1.99× 10−3 5.34× 10−4 ± 8.23× 10−5

Testbed Experiments

We now contrast DC-BPTT against ∞-SGD in a real-world
testbed emulating a Voice-over-LTE (VoLTE) system in a
wireless cellular network. The testbed is configured as a sin-
gle server with a waiting queue of size K = 20. The train-
ing data (86 time windows) is generated under light loads
(with mean 7.7 and median 3 call losses) and the test data
(137 time windows) under heavy loads (with mean 135.2
and median 254 call losses). Moreover, we also restrict the
observations in the training data, S′ ⊂ S, to queue sizes one
and two, estimated from the request processing delays col-
lected at the clients. We define Q(x;θ) symbolically using
Pytorch’s autodiff function (Paszke et al. 2017). The Supple-
mentary Material C1 contains the details of our experimental
setup and methodology. We study two parametric Q(x,θ)
models:

(A) M/M/1/K model: We start with arguably the most fun-
damental CTMC parametric model of a queueing system,
the M/M/1/K queue with a single server and a single queue
of size K = 21, which can hold up to 20 requests waiting for
service. The queue can be described by a CTMC Q(xm, θ�),
where service requests arrive according to a Poisson process
with request rate xm assumed constant over time window m
—the length of a time window is the minimum time resolu-
tion of our logs (one second). If a new request arrives when
the queue is full, it is dropped by the server. Service times
are exponentially distributed with rate θ�, assumed constant
—the service rate capacity of the system. We assume K is
known. The request call rate xm at time window n is known
while θ is the only parameter that needs to be learned. The
system is assumed in steady state even over short time win-
dows.

(B) Upper Triangular model: Since it is difficult to fit a
real system with an exact CTMC queueing model, we con-
sider an embedded birth-death process Q(xm;θ�), called
Upper Triangular model, which sets the upper triangular

portion of Q to xm in the upper diagonal and zeros ev-
erywhere else. This model (setting the upper triangular to
zeros) indicates that only a client request can increase the
queue size. The lower triangular part of Q is populated with
different parameters that we will learn, which implies learn-
ing |θ�| = |S|(|S| − 1)/2 parameters for a CTMC with |S|
states. The learnable parameters θ are initialized with ze-
ros and learned with either DC-BPTT or ∞-SGD. We also
know the maximum queue size K = 21 as in the M/M/1/K
scenario. Since we want to predict overload, we add a new
state to represent that case. Any arrival after reaching the last
state, when the current queue size is K, will force the system
to transit to this overload state. Thus, we have |S| = K + 2.

Results. Figure 1a shows the mean absolute percentage
error (MAPE) between the predicted call drop probability
(given the call request rate) and the true call drop probabil-
ity in the test data under heavy loads, for the upper triangu-
lar and M/M/1/K parametric model learned with ∞-SGD.
The Upper Triangular model achieves much lower test mean
squared error (MSE) (2.57 × 10−3 ± 5.75 × 10−4) corre-
sponding to MAPE of about 80% to 100% over test call drop
probabilities in the range [0.0045, 0.1629], i.e., it more ac-
curately extrapolates the training data (light loads, just ob-
serving queues of size one and two) to the test (heavy loads,
full queue). The M/M/1/K parametric model is too simple
and performs poorly with test MAPE of 449% (test MSE is
reasonable at 7.78× 10−2).

We also investigate the transition rate matrix learned by
upper triangular model in Figure 1c. We note that the learned
queue is quite similar to an M/M/1/K, but the service rate
is decreasing as the queue size is increasing. Surprisingly,
this is a real phenomenon when real systems start to be-
come overloaded (Jain and Ramakrishnan 1988). We also
see some reset transitions, where the system goes from a full
queue to a nearly empty queue. Finally, Figure 1b shows that
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(a) (Training curves) Effect of parametric
models on test MAPE (learned with ∞-
SGD).

(b) (Training curves) Effect of learning
methods on test MAPE of upper triangu-
lar model.

(c) Q(x,θ�) learned by upper triangular
model with ∞-SGD. Upper triangular (x)
is removed or shows zeros, lower triangular
shows θ�.

Figure 1: Real-world experiment results on VoLTE testbed. (a-b) Test error (MAPE) of unseeing failure state —here, ground-
truth of dropped call probability— under heavy load (while training under light loads), as a function of training epochs. In these
plots we verify the better generalization and stability of ∞-SGD. (a) Shows that more flexible Upper Triangular parametric
model has much smaller (near-zero) test error than the more strict M/M/1/K parametric model. (b) Shows that ∞-SGD sig-
nificantly outperforms DC-BPTT (which fails to learn). (c) Learned Q(x,θ�) by the upper triangular parametric model with
∞-SGD, showing an emergent block structure.

only ∞-SGD can learn the Q of the upper triangular model
—which has |S|(|S|− 1)/2 = 210 parameters—, while DC-
BPTT has vanishing gradients for both t� ∈ {16, 128} —we
note that t� = 16 has a smaller loss than t� = 128. Finally,
Tables 1 and 2 reaches the obvious conclusion that ∞-SGD
learns significantly better models for extrapolation over the
test data than DC-BPTT.

In what follows we explore the differences between DC-
BPTT and ∞-SGD in synthetic experiments.

Synthetic Experiments

We now turn our attention to simulations. Due to space limi-
tations, we give a succinct description of the experiments,
relegating details and additional results to Supplementary
Materials C2, C3, C4, and C5.

Birth-death queues: We start with arguably the most fun-
damental parametric CTMC queueing system, the diagonal
structure of the birth-death process. The birth-death process
approximates a number of queueing systems, such as the
M/M/1/K queue with a single queue of size K and a sin-
gle server, and the M/M/m/K queue with m servers that has
been used to approximate cloud services (Yang et al. 2009;
Khazaei, Misic, and Misic 2012). Since queue size K must
be larger than m to support all servers, the M/M/m/K queue
is typically denoted as M/M/m/m+ r, where r ≥ 0.

Training and testing data. Structures used to simulate
data are provided in Supplementary Material A3. We pre-
define the service rates (θ� = 25 for M/M/1/K (slow-mix
and fast-mix), θ� = 5 for M/M/5/5+r, θ� = (15, 10, 5)
for M/M/Multiple/K) and queue sizes K = 20 (r = 15),
then at each time window in the training data we sample
a request rate uniformly in the interval x ∈ [11, 15] (light
load), except for M/M/1/K slow-mix x ∈ [21, 30] (to de-
crease the spectral gap). At test time, in the test data, we
sample a request rate uniformly in the interval x ∈ [31, 60]
(heavy load), except for M/M/1/K slow-mix x ∈ [11, 40] (to
decrease the spectral gap). We assume we only observe the

queue size if it is empty or it has exactly one request, i.e.,
S
′ = {0, 1}. This emulates a common trend in logging crit-

ical infrastructure systems, where logging stops as soon as
the server load is non-trivial (Newman 2017). We also have
extra results with different transition rates (in an easier task
where ∞-SGD does even better) and more details on our
training and test data generation in Supplementary Materi-
als C2 and C5.

Results. Our goal is to predict the request loss probabil-
ity against ground-truth under a range of both heavy and
lighter loads, while training under a narrow range of light
loads. In the M/M/1/K and M/M/m/m+r simulations, the
training data consists of the aggregate frequencies observed
for queue sizes zero and one during one second, along with
the request rate. For M/M/Mutiple/K, aggregate frequencies
for queue sizes zero to three are observed.

Tables 1 and 2 compare the extrapolation error of DC-
BPTT and ∞-SGD in our synthetic experiment using MAPE
and MSE errors, respectively. Our approach, ∞-SGD, is
consistently better than DC-BPTT over all simulations and
on both error metrics (MAPE and MSE). For a slow-mixing
M/M/1/K, ∞-SGD extrapolation MAPE error is 1/100-th
of DC-BPTT MAPE error, considering the confidence inter-
val. In some of the scenarios, DC-BPTT finds gradient van-
ishing problems (failing to learn) giving very large errors
(see training curves in Supplementary Material C5), while
∞-SGD never fails to obtain gradients that can reduce the
loss during the optimization.

MAPE result shows that t� ≤ 128 is not enough to
see the slow-mixing chain in steady state. Success in MSE
for slow mixing while failing in MAPE shows that DC-
BPTT has trouble learning parametric CTMCs well enough
to predict out-of-sample (extrapolated) target states that have
small probabilities. Moreover, DC-BPTT t� = 16 tends to
achieve lower errors (both MAPE and MSE) than DC-BPTT
t� = 128 in the M/M/1/K fast mixing scenarios.

We now look at ground-truth θ� parameters and their
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estimates θ̂ from ∞-SGD. We note that the estimates are
very close to the true values. In the M/M/1/K model (true
θ� = 25), the (slow mixing) scenario gives θ̂ = 25.003,
and (fast mixing) gives θ̂ = 25.083. For M/M/m/m+r (with
true θ� = 5) obtains θ̂ = 5.15. For M/M/Multiple/K, ∞-
SGD obtains θ̂ = (13.5, 8.3, 5.4), close to the ground truth
θ� = (15, 10, 5). This conclusively shows ∞-SGD to be a
reliable optimization method.

Conclusions

This work introduces ∞-SGD, the first theoretically prin-
cipled optimization approach that can accurately learn gen-
eral parametric Continuous Time Markov Chains (CTMCs)
from aggregate steady-state observations. Our approach, ∞-
SGD, works even when the observations are over a restricted
set of states. We have shown that ∞-SGD finds significantly
better maximum likelihood estimates than the baseline (DC-
BPTT) in both a real testbed and synthetic scenarios. More-
over, in the context of queueing systems, ∞-SGD consis-
tently better extrapolates from training data in light loads to
heavy loads in test data. We expect ∞-SGD to be a useful
tool in other tasks where parametric models are needed and
sequence data is only available as aggregate frequencies.
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