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Abstract

For cross-modal subspace clustering, the key point is how to
exploit the correlation information between cross-modal data.
However, most hierarchical and structural correlation infor-
mation among cross-modal data cannot be well exploited due
to its high-dimensional non-linear property. To tackle this
problem, in this paper, we propose an unsupervised frame-
work named Cross-Modal Subspace Clustering via Deep
Canonical Correlation Analysis (CMSC-DCCA), which in-
corporates the correlation constraint with a self-expressive
layer to make full use of information among the inter-modal
data and the intra-modal data. More specifically, the proposed
model consists of three components: 1) deep canonical corre-
lation analysis (Deep CCA) model; 2) self-expressive layer;
3) Deep CCA decoders. The Deep CCA model consists of
convolutional encoders and correlation constraint. Convolu-
tional encoders are used to obtain the latent representations
of cross-modal data, while adding the correlation constraint
for the latent representations can make full use of the infor-
mation of the inter-modal data. Furthermore, self-expressive
layer works on latent representations and constrain it perform
self-expression properties, which makes the shared coeffi-
cient matrix could capture the hierarchical intra-modal cor-
relations of each modality. Then Deep CCA decoders recon-
struct data to ensure that the encoded features can preserve the
structure of the original data. Experimental results on several
real-world datasets demonstrate the proposed method outper-
forms the state-of-the-art methods.

Introduction

In machine learning, classification (Liu, Tsang, and Müller
2017; Liu and Tsang 2017) and clustering are two core
tasks. However, clustering task has attracted considerable
attention due to the fact that label information is difficult
to obtain in real applications. Most traditional clustering
methods mainly focus on the clustering problem of low-
dimensional data. Generally, traditional clustering methods
can be roughly divided into five categories: 1) Non-negative
matrix factorization (NMF) clustering (Akata, Thurau, and
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Figure 1: The illustration shows the influence of correla-
tion constraint. The learned features of two modalities in
the subspace are quite different without the correlation con-
straint, which resulting a bad shared coefficient matrix S, be-
cause it’s too difficult to reflect the different structure of two
modalities simultaneously. However, combining the correla-
tion constraint with a self-expressive layer, we can learn a
better shared coefficient matrix S. X1 and X2 are the input
data. Z1 and Z2 are the latent representations in subspace.
S1 and S2 are the self-expression coefficient matrices.

Bauckhage 2011); 2) Multi-kernel learning strategy (Guo
et al. 2014); 3) Subspace clustering methods (Chaudhuri et
al. 2009); 4) Self-representation based methods (Yin et al.
2015); 5) Graph constraint based methods (Xia et al. 2014;
Nie, Cai, and Li 2017). Among these above methods, sub-
space and self-representation based methods have received
a lot of attention and achieved remarkable results. However,
these traditional methods adopt shallow and linear embed-
ding functions to reveal the intrinsic structure of data, which
cannot simulate the high-dimensional nonlinear character-
istics of data very well. Especially, for subspace clustering
methods, high-dimensional data can easily lead to “curse of
dimensionality”.
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To solve the “curse of dimensionality” problem, Elham-
ifar et al. (2013) propose a Sparse Subspace Clustering
(SSC) method to reduce dimension. Patel et al. (2015)
propose Latent Space Sparse Subspace Clustering (LSSC)
that simultaneously performs dimensionality reduction and
sparse coding for SSC. With the development of neural net-
works, some people introduce the deep learning to solve sub-
space clustering problems (Ji et al. 2017; Sun et al. 2018;
Li et al. 2019). For instance, Ji et al. (2017) use stacked
auto-encoders as their basic model and adopt self-expression
to learn the affinity of data in latent space for clustering.
Deep Multi-modal Subspace Clustering (DMSC) (Abavisani
and Patel 2018) presents a convolutional neural network
(CNN) approach for unsupervised multi-modal subspace
clustering. However, for cross-modal (Rasiwasia et al. 2010;
Jia, Salzmann, and Darrell 2011) subspace clustering, there
are only a few superior methods. For example, Zhang et
al. (2007) propose to exploit cross-modal correlations to
cluster two modalities data. He et al. (2015) use cross-
modal learning via the pairwise constraint and aim to find
the common hidden structure of cross-modal data. These
cross-modal methods reduce the semantic gap of the inter-
modal data and improve the clustering accuracy. However,
they cannot well capture nonlinear feature for cross-modal
clustering. Moreover, cross-modal subspace clustering still
confronts the following challenges:
• How should we consider the correlations of the inter-

modal data and the intra-modal data simultaneously to
learn a representative shared subspace representation to
improve clustering accuracy?

• How could we guarantee that the features encoded by the
deep network can still reflect the structural distribution of
the original data?
To overcome these challenges, we propose a novel Cross-

Modal Subspace Clustering framework via Deep Canoni-
cal Correlation Analysis (CMSC-DCCA) to improve clus-
tering performance. The proposed method consists of three
parts: deep canonical correlation analysis (Deep CCA) (An-
drew et al. 2013) model, a self-expressive layer and Deep
CCA decoders. In the Deep CCA model, we map the high-
dimensional nonlinear cross-modal data into latent represen-
tations by deep convolution encoders; meanwhile, correla-
tion constraint can maximize the correlations of the inter-
modal data. For the self-expressive layer, a self-expressive
loss function is employed for the latent representation,
which can reveal the correlation information among intra-
modal data. In addition, we add the Deep CCA decoders to
reconstruct the original data, which ensures the representa-
tions processed by the encoders can still well reflect the char-
acteristics of the original data. Figure 1 shows the purpose of
combining the correlation constraint with a self-expression
layer. Intuitively, without the correlation constraint, it is dif-
ficult to learn a shared subspace representation that reflects
the structure of two modalities data simultaneously. The
main contributions of our method are summarized as:
• We propose a novel deep cross-modal subspace cluster-

ing method (CMSC-DCCA) by incorporating the corre-
lation constraint with a self-expression layer, which can

consider both the correlations of the inter-modal data and
the distribution of the intra-modal data.

• We add Deep CCA decoders into our model to reconstruct
data, which ensures that the encoded features can well re-
flect the overall structural distribution of original data.

• We give an efficient algorithm to optimize loss function
and train the entire network at once to reduce the calcula-
tion of parameters. In addition, we perform spectral clus-
tering on shared coefficient matrix. Experiments show our
model achieves the best clustering performance.

Related work

In real life, data are often described by different modalities.
Therefore, cross-modal data processing is getting more at-
tention, which focuses on maximizing the correlations of the
inter-modal data. In this section, we provide a brief review
about the correlation studies on cross-modal data.

Among cross-modal data correlation studies, the most
representative method is based on Canonical Correlation
Analysis (CCA) (Kim, Kittler, and Cipolla 2007). The main
idea of CCA is to find the mapping vector of each modal-
ity in the subspace by maximizing the correlations of the
inter-modal data. However, CCA can only calculate the lin-
ear correlations of the inter-modal data. In real applications,
the relationships between cross-modal data may be non-
linear. To solve this problem, some nonlinear CCA meth-
ods have been proposed, such as, the Kernel Canonical
Correlation Analysis (KCCA) (Akaho 2006) and Locality
Preserving CCA (LPCCA) (Sun and Chen 2007). How-
ever, these methods have high computational complexity.
In addition, it is easy overfitting and relatively difficult to
choose a suitable kernel function for KCCA method. Deep
Canonical Correlation Analysis (Deep CCA) (Andrew et
al. 2013) method can learn complex nonlinear transforma-
tions of the inter-modal data such that the learned repre-
sentations are highly correlated through a multi-layer deep
network. The disadvantage of Deep CCA is that it cannot
reconstruct data and further results in poor clustering per-
formance. Wang et al. (2016) further propose Deep Canon-
ically Correlated Auto-encoders (DCCAE) with an auto-
encoder to reconstruct data. Deep Generalized Canonical
Correlation Analysis (DGCCA) (Benton et al. 2019) learns a
modal-independent representation to cluster, which reduces
redundant information of data. However, both DCCAE and
DGCCA methods do not consider the correlations of the
intra-modal data.

The Proposed Method

In this section, we first give the motivations of Cross-Modal
Subspace Clustering via Deep Canonical Correlation Analy-
sis model. Then we introduce the framework of the proposed
model. Finally we analyze the loss functions and training
process in detail.

Motivations

According to previous related work, there are two motiva-
tions for our method as follows:
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Figure 2: The framework of our proposed method(CMSC-DCCA). X1 and X2 are the input data from two modalities. X̂1 and
X̂2 are the reconstruct data. E1 and E2 are deep convolutional encoders. Z1 and Z2 are latent representations from the outputs
of E1 and E2. S is the shared coefficient matrix. D1 and D2 are decoders.

Motivation 1: There are some cross-modal clustering
methods based on canonical correlation analysis, such as
(Zhang, Zhuang, and Wu 2007; Jin et al. 2015). However,
these methods can only learn linear feature. Although some
deep cross-modal methods (Wang et al. 2016) have been
proposed, they ignores the relationships of the intra-modal
data, which cannot well reflect the discriminant information
of data. To solve this problem, we propose a cross-modal
clustering method based on deep canonical correlation anal-
ysis, which can process high-dimensional nonlinear data
very well. In order to make full use of the relationships of the
inter-modal data and the information of the intra-modal data,
we combine the correlation constraint with a self-expression
layer to propose the deep cross-modal subspace clustering
method (CMSC-DCCA). Assume that the encoded repre-
sentations for two modalities are defined as Z1 and Z2. The
self-expression layer performs the self-expression property
for each modality: Z1=Z1S1 and Z2=Z2S2, where S1 and
S2 are the self-expression coefficient matrices. We maxi-
mize the correlations of the inter-modal data Z1 and Z2,
whose purpose is to learn a better shared coefficient ma-
trix S to replace S1 and S2 to further reflect the structure
of two modalities data simultaneously. Our method ensures
that different data with high similarities are more likely to
be clustered into one group.

Motivation 2: Deep canonical correlation analysis (Deep
CCA) (Andrew et al. 2013) solves nonlinear problems of
data using deep neural networks. However, it does not con-
sider whether the data encoded by the neural network can
maintain the overall structure of the original data. Thus, we
add decoders based on Deep CCA, which can reconstruct
the latent features from deep canonical correlation analysis
model. The decoders aim to ensure that the latent features
can reflect the structure of the original data to improve clus-
tering performance.

In this paper, our work not only considers the relation-
ships of the intra-modal data by the self-expression layer,

the correlations of the inter-modal data by the correlation
constraint, but also preserves the overall data structure by
the decoders.

The Framework of CMSC-DCCA

The proposed Cross-Modal Subspace Clustering via Deep
Canonical Correlation Analysis (CMSC-DCCA) method
consists of three parts: deep canonical correlation analysis
(Deep CCA) model, a self-expressive layer and Deep CCA
decoders. The framework is as shown in Figure 2.

Deep CCA Model: In our Deep CCA model, there are
two parts: deep convolutional encoders and correlation con-
straint. We assume that two modalities data are X1 =
{xi

1}mi=1 ∈ R
d1×m, X2 = {xi

2}mi=1 ∈ R
d2×m, where m

is the number of samples. d1 and d2 are the corresponding
dimensions of the modality 1 and the modality 2. We set
deep convolutional encoders to four layers for two modal-
ities. X1 and X2 are fed as inputs to deep convolutional
encoders to process and we can obtain the latent represen-
tations (Z1|θe1) ∈ R

o×m and (Z2|θe2) ∈ R
o×m, where

θe1 , θe2 are the parameters of deep convolutional encoders
1 and 2, and o is the output dimension of deep convolu-
tional encoders. Then we calculate the correlations between
Z1 and Z2 with the following expression:

argmax
θe1 ,θe2

corr(Z1,Z2) = argmax
θe1 ,θe2

cov(Z1,Z2)√
D(Z1)

√
D(Z2)

,

(1)
where corr(·) is the correlation between Z1 and Z2.
cov(Z1,Z2) is the covariance of Z1 and Z2, and D(Zi) is
the variance of Zi, i = 1, 2.

Self-expression layer Layer: Some self-expression based
methods (Rao et al. 2008; Elhamifar and Vidal 2013;
Abavisani and Patel 2018) have received a lot of attention,
whose goals are to express the data point as a linear com-
bination of other points in the same subspace. We obtain
the latent representations Z1 and Z2 from two modalities
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encoders and send them to the self-expression layer. In the
same space, one data point can be represented linearly by
other data points. Then we can get the equation:

Zi = ZiS, s.t., diag(S) = 0 , (2)
where S is the shared self-expression coefficient matrix for
two modalities. To avoid the trivial solution S = I, we con-
strain diag(S) = 0 . Then we can leverage the matrix S to
construct the affinity matrix by the following equation:

C =
1

2
(|S|+ |S�|). (3)

Finally, we perform spectral clustering on matrix C.

Deep CCA Decoders: The Deep CCA decoder of each
modality consists of four-layer neural network: one fully
connected layer and three deconvolution decoding layers,
which aims to reconstruct the latent representations from the
self-expression layer and maintain the structural character-
istics of the original data. In our model, the outputs Z1S
and Z2S from the self-expression layer are used as inputs
to the two deep CCA decoders. We can obtain the outputs
(X̂1|θd1) and (X̂1|θd1), where θd1 and θd2 are network pa-
rameters of the decoders.

Loss Function Analysis

The goal of the framework is to combine each part to learn
a reliable objective function. We give the loss function anal-
ysis for each part and the final objective function. Minimize
the loss function to optimize our model.

Deep CCA Loss: In the Deep CCA model, we send cross-
modal data to deep convolutional encoders and obtain the
latent representations Z1 and Z2. We need to maximize the
correlations between Z1 and Z2 to improve clustering per-
formance. According to Eq.(1), the goal is to jointly learn
parameters for both θe1 and θe2 . First we centralize data:

Z1 = Z1 − 1

m
Z11, Z1 = Z2 − 1

m
Z21. (4)

According to the calculation method of (Andrew et al.
2013), the optimization goal is:

argmax corr(Z1,Z2) = argmax tr(
√
T�T), (5)

where T = M̂
−1/2
11 M̂12M̂

−1/2
22 , M̂11 = 1

m−1Z1Z1
�

+

r1I, M̂22 = 1
m−1Z2Z2

�
+ r2I and M̂12 = 1

m−1Z1Z2
�

.
r1 > 0 and r2 > 0 are the regularization constants, and we
set parameters r1 and r2 as a relatively small value 0.001

to make matrices M̂11 and M̂22 inverse. tr(·) is the trace
function of the matrix. Then the final optimization goal for
DCCA loss is:

lossDCCA = −min tr(
√
T�T). (6)

Self-expression Loss: In the self-expression layer, to bet-
ter perform the self-expression properties and acquire a bet-
ter self-expression coefficient matrix S, we minimize the
self-expression loss function:

lossS = min ||S||2F +
2∑

i=1

||Zi − ZiS||2F
s.t., diag(S) = 0 ,

(7)

where || · ||F denotes the matrix Frobenius norm.

Reconstruction Loss: In order to guarantee the effective-
ness of the representations processed by the Deep CCA
encoders and the self-expression layer, we add the Deep
CCA decoders to reconstruct data. The representations Z1S
and Z2S from the self-expression layer are fed to the de-
coders and we can acquire the reconstruct data (X̂1|θd1) and
(X̂2|θd1

). Minimizing errors between reconstructed data
and original data can optimize networks. Therefore, the re-
construction loss for the network is:

lossRe = min
θd1 ,θd2

2∑
i=1

||Xi − X̂i||2F. (8)

According to analysis of the loss function for each part,
the final objective function can be summarized as follows:

Loss = min
θ

||S||2F + λ1

2∑
i=1

||Zi − ZiS||2F+

λ2

2∑
i=1

||Xi − X̂i||2F − λ3tr(
√
T�T),

(9)

where λ1, λ2, λ3 > 0 denote regularization parameters.
|| · ||F is the matrix Frobenius norm. tr(·) indicates trace
function. θ is a set of network parameters which includes
θe1 , θe2 and θd1 , θd2 .

Train Steps

In the proposed model, we use two steps to train the model
and optimize the network parameters.

First Step: We pre-train the network using Eq.(8). We
send the cross-modal data X1 and X2 to deep convolu-
tional encoders E1 and E2, and obtain the reconstruction
data X̂1 and X̂2 from the decoders D1 and D2. In pre-
training step, we set the learning-rate to 0.001. Minimize
the error between the original data and the reconstruction
data to optimize the network and update encoders parame-
ters θe1 , θe2 and decoders parameters θd1

, θd2
, where we use

mean squared error (MSE) (Wang and Bovik 2009) to op-
timize the objective function. MSE is the expected value of
the square of the difference between the parameter estimate
and the true value of the parameter, which can evaluate the
degree of change of data. The smaller the value of the MSE,
the better the accuracy of the prediction model describing
the experimental data.

Second Step: We train the entire network using Eq.(9),
i.e., minimizing the total Loss including deep CCA loss
lossDCCA, the self-expression layer loss lossS and the re-
construction loss lossRe to update model parameters θe1 and
θe2 , θd1 and θd2 . We obtain the shared coefficient matrix S
from the self-expression layer, and calculate the affinity ma-
trix C = 1

2 (|S|+|S|�). Finally, we use the affinity matrix C
and spectral clustering method to complete data clustering.
The whole training process is summarized as Algorithm 1.

Experiments

In order to evaluate the performance of our proposed CMSC-
DCCA model, we conduct the experiments by comparing
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Algorithm 1 CMSC-DCCA
Input: Cross-modal data X1, X2; cluster number K
Output: θ, S
Initialized: λ1, λ2, λ3; learning rate = 0.001.
while not converge do
(1) Pre-train the networks using Eq.(8)
(2) Optimize network parameters θe1 , θe2 of encoders and
θd1 , θd2 of decoders
end
while not converge do
(3) Train the entire networks using Eq.(9)
(4) Update parameters θ including encoders parameters
θe1 , θe2 and decoders parameters θd1

, θd2

end
(5) Extract the self-expression coefficient matrix S from
the training networks
(6) Compute the affinity matrix C = 1

2 (|S|+ |S|�)
(7) Perform spectral clustering on the affinity matrix C

with ten remarkable baseline approaches on four datasets.
Specifically, we first introduce four datasets used in our pa-
per, followed by the experiment results and some analysis.

Experiment Setup

Datasets Settings: The used datasets in our experiments
include: 1) FRGC Dataset (Yang, Parikh, and Batra 2016)
is an RGB image dataset. In our work, we randomly select
20 objects from the original dataset including 2,462 face
images. We set the data size to 32 × 32, using its origi-
nal RGB images as the first modality and its correspond-
ing gray images as the second modality; 2) Fashion-MNIST
Dataset (Xiao, Rasul, and Vollgraf 2017) is an image dataset
which contains 10 categories with a total of 70,000 dif-
ferent products: t-shirt, shirt, coat, pullover, dress, trouser,
bag, sandal, sneaker, ankle boot. The size of each image
is 28 × 28. In our work, we randomly select 200 samples
from per category to make the network easy to handle, and
extract their edge features as the second modality; 3) YTF
Dataset (Wolf, Hassner, and Maoz 2011) is a face videos
dataset which includes 3,425 videos of 1,595 different peo-
ple. In our work, we select 41 subjects from YTF dataset,
and set the size as 55× 55. We use its original RGB images
as the first modality, and the gray pictures converted from the
original RGB images as the second modality; 4) COIL-20
Dataset consists of 1440 images from 20 objects, and each
object includes 72 images that one image is captured for ev-
ery 5 degrees . In this paper, we use 1440 images and extract
their edge features. The 1440 original images and the edge
feature images are used as two modalities data.

Implementation details: In our model, we use the four-
layer encoders including three convolution encoding layers
and a fully connected layer, and the corresponding decoders
consist of a fully connected layer and three deconvolution
decoding layers. More specific settings are given in Table 1.

We implement our method and other non-linear meth-
ods with the public toolbox of PyTorch. We conduct all the
experiments on the platform of Ubuntu Linux 16.04 with

Table 1: The parameters of convolution encoders.
Encoders Convolution kernel size Stride Padding
Encoder1 4× 4 2 1
Encoder2 3× 3 1 1
Encoder3 4× 4 2 1

NVIDIA Titan Xp Graphics Processing Units (GPUs) and
64 GB memory size. We use Adam (Kingma and Ba 2015)
optimizer with default parameter setting to train our model
and set the learning rate as 0.001.

Experimental Results

Comparison with Existing Approaches: To evaluate the
performance of the proposed method, we compare with
ten algorithms, including two classic single-modal cluster-
ing methods and eight outstanding multi-modal clustering
methods. K-means clustering (Hartigan and Wong 1979)
and Deep Embedding Clustering (DEC) (Xie, Girshick,
and Farhadi 2016) are single-modal clustering methods and
are regarded as the baseline algorithms for comparison.
Robust Multi-View K-Means Clustering (RMKMC) (Cai,
Nie, and Huang 2013) integrates heterogeneous represen-
tations of large scale data; Binary Multi-View Cluster-
ing (BMVC) (Zhang et al. 2018) dexterously manipulates
multi-view image data and easily scales to large data; Joint
Framework for Deep Multi-view Clustering (DMJC) (Lin
et al. 2018) designs two ingenious variants of deep multi-
view joint clustering models; Deep Multi-modal Subspace
Clustering (DMSC) (Abavisani and Patel 2018) presents
a method based on convolutional neural network (CNN)
for unsupervised multi-modal subspace clustering; Deep
Canonical Correlation Analysis (DCCA) (Andrew et al.
2013) computes correlations between two modalities by
deep networks mapping and the correlation constraint; Deep
Canonically Correlated Auto-Encoders (DCCAE) (Wang et
al. 2016) optimizes the canonical correlations between two
learned subspace representations and reconstruct data with
the auto-encoders to ensure that the representations are
available; Deep Generalized Canonical Correlation Analy-
sis (DGCCA) (Benton et al. 2019) is a method for learning
nonlinear transformations of arbitrarily multi-modal data.
Cross-Modal Image Clustering via Canonical Correlation
Analysis (CMIC-CCA) is an algorithm that supports more
effective cross-modal image clustering with Canonical Cor-
relation Analysis (CCA). For DCCA, DCCAE and CMIC-
CCA methods, only two modalities data as inputs can be
sent to these models. For RMKMC, BMVC, DMJC, DMSC
and DGCCA methods, there are mutli-modal data as inputs
to these five models. For comparison, we select two modali-
ties data to do contrast experiments on four datasets.

Performance Evaluation: We adopt two metrics (i.e.,
clustering accuracy (ACC) (Kuhn 1955), normalized mutual
information (NMI) (Xu, Liu, and Gong 2003)) to evaluate
the performance by comparing with ten baseline methods on
four datasets. The correct clustering should assign the high
similarity data to the same group, and different data to dif-
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Table 2: The clustering accuracy rate(ACC)(%) and the normalized mutual information(NMI)(%) on four datasets.

Methods Fashion-MNIST COIL-20 FRGC YTF

ACC NMI ACC NMI ACC NMI ACC NMI
kmeans 51.27 49.99 57.49 73.22 23.62 27.12 56.01 75.23

DEC 51.80 54.60 68.00 80.25 37.80 50.50 37.10 44.60
RMKMC 53.32 52.87 60.97 74.93 23.52 25.85 57.21 74.56
BMVC 45.36 38.05 34.31 40.33 41.51 45.92 28.13 38.28
DMJC 61.41 63.41 72.99 81.58 44.07 59.79 61.15 77.40
DMSC 59.55 65.07 74.10 86.82 60.28 75.51 62.80 80.16
DCCA 52.74 53.82 55.76 64.91 22.91 24.75 45.19 60.35

DCCAE 55.95 52.93 61.60 71.56 32.33 31.22 45.57 60.15
DGCCA 56.28 57.04 54.01 62.40 23.76 24.53 47.26 61.38

CMIC-CCA 53.45 51.15 59.93 72.98 31.03 34.58 59.70 76.11
CMSC-DCCA 62.95 68.33 82.64 91.45 70.80 78.55 66.15 82.67

(a) (b) (c) (d)

Figure 3: The effect of parameters λ1, λ2 and λ3 on Fashion-MNIST dataset, where λ1 is the regularization parameter of the
self-expression error, λ2 is the regularization parameter of the reconstruction error and λ3 is the regularization parameter of the
correlation calculation. (a) and (b) are the clustering results in terms of ACC and NMI, when fixing λ3 and varying λ1 and λ2.
(c) and (d) are clustering results in terms of ACC and NMI, when fixing λ1, and varying λ2 and λ3.

ferent groups. Therefore, the bigger the values of ACC and
NMI are, the better the clustering performance of the corre-
sponding method will be.

The clustering performances of our method and compari-
son algorithms on four datasets are reported in Table 2. From
the presented results, we can have the following observa-
tions: 1) our proposed CMSC-DCCA model can achieve the
best performance on all the four datasets in terms of both
ACC and NMI, which verifies the impact of improved clus-
tering performance via the correlations between inter-modal
and intra-modal data. 2) Our proposed model significantly
outperforms both K-means and DEC among most cases, e.g.,
on the FRGC dataset, K-means and DEC are only 23.62%
and 37.80% for ACC, and 27.12% and 50.50% for NMI.
That is because they are single modality clustering methods,
which does not consider information of other modalities. 3)
The reason why DCCA obtains poor clustering performance
is that it cannot reconstruct data to ensure that the represen-
tations after the encoded network can still reflect the struc-
ture of the original data; since DCCAE cannot consider the
relationships among intra-modal data, which causes ACC
and NMI to be 32.33% and 31.22% on the FRGC dataset;
CMIC-CCA is limited to linear transformations and cannot

handle the problems of nonlinear data mapping, resulting
in clustering performance low. Additionally, our proposed
model also performs better than DMJC and DMSC because
these two methods cannot make full use of the correlations
among the inter-modal data.

Parameters Analysis: In our model, there are three regu-
larization parameters λ1, λ2 and λ3 and we simultaneously
adjust them to obtain the best model. However, for simplic-
ity and evaluating the effect of each parameter in our ex-
periments, we fix one and vary the other two for each time.
Firstly, we fix the regularization parameters of the correla-
tion calculation λ3, and vary the regularization parameters
of the self-expression error and the reconstruction error λ1

and λ2 in range {0.01, 0.1, 1, 10, 100}. Then we fix λ1, and
also vary λ2 and λ3 in the same range. Since the strategies
of setting parameters are the same on all the four datasets,
we only show the effect of parameters on Fashion-MNIST
dataset for simplicity. From the presented in Figure 3, no-
tice that: 1) our method can achieve the best ACC and NMI
values on Fashion-MNIST dataset when λ1 = 0.1, λ2 = 1
and λ3 = 1; 2) our method is robust because the changes
of parameters have a little influence on the clustering perfor-
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(a) Fashion-MNIST (b) COIL-20 (c) FRGC (d) YTF

Figure 4: The loss curves of our method on four datasets, i.e., Fashion-MNIST, COIL-20, FRGC and YTF datasets. We set
10000 epochs to train the entire network and obtain a loss value for each 100 epochs.

mance. But the influence of parameters can not be ignored
because they also boost clustering performance to some ex-
tent. In addition, the values of best parameters are λ1 = 1,
λ2 = 1 and λ3 = 1 for YTF dataset, and are λ1 = 0.1,
λ2 = 1 and λ3 = 1 for both FRGC and COIL-20 datasets.

Convergence Analysis: In order to investigate the conver-
gence of our proposed model, in this subsection, we plot
the corresponding loss of Eq. (9) on four datasets. As de-
spicted in Figure 4, the values of objective function loss de-
crease with respect to iterations on all the four datasts, and
the values approach to be a fixed value after a few iterations
(less than 20 iterations), where each iteration includes 100
epochs. Therefore, our proposed optimization algorithm is
reliable and converges quickly.

Through the above analysis, we can find that the cluster-
ing performance of our proposed method is highly related
to the following aspects: 1) The regularization parameters
play a key role in clustering performance. We thus fix the
best regularization parameters to train network which aims
to learn better network parameters; 2) The clustering per-
formance is closely associated with the number of the pre-
training epochs. Appropriate pre-training epochs can im-
prove overall clustering performance; 3) Data preprocessing
and initialization methods also have a certain impact on the
clustering performance.

Ablation Study: In this subsection, we perform ablation
study to analyze the role of each part in our model. For sim-
plicity, we conduct experiments on Fashion-MNIST dataset
with different components ablation, i.e., without correlation
constraint in deep CCA model, without a self-expressive
layer and without deep CCA decoders. As shown in Table 3,
we can observe: 1) the correlation constraint has a certain
impact on clustering performance, which maximizes the cor-
relations of inter-modal data and obtains a better common
subspace representation; 2) the self-expression layer has a
significant effect on the proposed model, i.e., the relation-
ships among intra-modal data play an important role in clus-
tering performance; 3) deep CCA decoders have the biggest
impact on the proposed method, whose role is to ensure the
overall structure of original data and make the encoded data
reliable. These above observations indicate that all the three
components in our proposed model are designed reasonably.

Table 3: Ablation Study on Fashion-MNIST dataset in terms
of ACC (%) and NMI (%).

Methods ACC NMI
Without correlation constraint 60.25 61.02

Without self-expression 55.75 56.01
Without decoder 50.50 52.77
CMSC-DCCA 62.95 68.33

Conclusion

We propose a novel clustering method named Cross-Modal
Subspace Clustering via Deep Canonical Correlation Anal-
ysis (CSMC-DCCA). We maximize the correlations of the
inter-modal data to make data with high similarities better
clustered into the same group by the correlation constraint
and make full use of the information of the intra-modal data
by the self-expression layer. We construct the shared sub-
space coefficient matrix based on the self-expression layer.
At the same time, we reconstruct the data by the decoders
to ensure the overall structure of the original data. Then we
optimize the objective function by training the entire net-
work and apply the spectral clustering method to implement
clustering. Our experiments demonstrate that the proposed
method provides significant improvement over the several
state-of-the-art clustering methods.
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