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Abstract

Event datasets are sequences of events of various types occur-
ring irregularly over the time-line, and they are increasingly
prevalent in numerous domains. Existing work for modeling
events using conditional intensities rely on either using some
underlying parametric form to capture historical dependencies,
or on non-parametric models that focus primarily on tasks
such as prediction. We propose a non-parametric deep neural
network approach in order to estimate the underlying intensity
functions. We use a novel multi-channel RNN that optimally
reinforces the negative evidence of no observable events with
the introduction of fake event epochs within each consec-
utive inter-event interval. We evaluate our method against
state-of-the-art baselines on model fitting tasks as gauged by
log-likelihood. Through experiments on both synthetic and
real-world datasets, we find that our proposed approach out-
performs existing baselines on most of the datasets studied.

Introduction

Event stream data is collected to explore the dynamics and
behavior of a wide variety of systems including social net-
works, biochemical networks, electronic health records, and
computer logs in data centers. In a multivariate event stream,
events of multiple types (labels) occur at irregularly spaced
time stamps on a common timeline. Event models seek to
capture the joint stochastic dynamics of such event streams.
Multivariate point processes and conditional intensity func-
tions provide the mathematical framework for capturing event
dynamics (Aalen, Borgan, and Gjessing 2008). In this frame-
work, the instantaneous arrival rate of an event type at any
point in time typically depends on the history of all historical
event arrivals before that point in time.

The model fitting task for event stream data has a long
history in machine learning, including prior work in temporal
point process modeling (Gunawardana, Meek, and Xu 2011;
Parikh, Gunawardana, and Meek 2012; Weiss and Page 2013;
Bhattacharjya, Subramanian, and Gao 2018). It is fundamen-
tally different from the prediction task as it is unsupervised
since no ground truth (graph) model is given. Various mod-
els have been proposed in the literature to capture history-
dependent arrival rates including graphical event models like
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proximal graphical event models (Bhattacharjya, Subrama-
nian, and Gao 2018), forest-based point processes (Weiss and
Page 2013), piecewise-constant conditional intensity models
(Gunawardana, Meek, and Xu 2011), and Poisson networks
(Rajaram, Graepel, and Herbrich 2005), and others like non-
homogeneous Poisson processes (Goulding, Preston, and
Smith 2016), continuous time noisy-or (CT-NOR) models
(Simma et al. 2008), and Poisson cascades (Simma and Jor-
dan 2010). One drawback is that all these approaches make
assumptions about the parametric form of the corresponding
model, and this is challenging in practice without first-hand
knowledge of the underlying data generating process.

On the other hand, researchers have also proposed se-
quential deep learning techniques for event data sets (Xiao
et al. 2017b) such as recurrent marked temporal point pro-
cesses (RMTPP) (Du et al. 2016) and neural Hawkes pro-
cesses (Mei and Eisner 2017). These models use a recur-
rent neural network to capture the history dependency of
the conditional intensity function. Note that these methods
are semi-parametric; beyond just the network weights, they
make functional assumptions for how to translate the hid-
den states of the network to a corresponding event arrival
rate. They also show a remarkable similarity to the Hawkes
process where each historical event exerts an additive influ-
ence on conditional intensity, and which decays over time. In
neural Hawkes (Mei and Eisner 2017), the cell state of the
network decays exponentially. In RMTPP (Du et al. 2016),
there is a single event arrival rate whose epochs carry a
label to capture multiple event types, and this single rate
is an exponential function of the sum of a baseline inten-
sity along with additive influences from the past. While
such representations can be powerful and expressive, they
may not adequately learn general-purpose forms of history-
dependence. For example, consider history-dependence that
doesn’t involve exponential decay; examples include piece-
wise constant intensities (Gunawardana, Meek, and Xu 2011;
Bhattacharjya, Subramanian, and Gao 2018), or processes
involving time lags with delayed excitation or inhibition, or
if different event types follow varying time scales, etc. Non-
simple-decay and delayed, nonlinear intensity functions are
not satisfactorily addressed by existing works.

In this paper, we propose a non-parametric deep learning
approach to model multivariate event data sets in continuous-
time. We seek to learn history-dependent conditional intensity
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functions in a fully data-driven, non-parametric manner, i.e.
using only network weights and activation functions, and
via learning a suitable representation of all available (strict)
histories. Firstly, we note that the inter-event interval is an
important source of information for modeling event data, i.e.
not only is the presence of an event at a point in continuous
time an important signal for learning, but also the absence
of an event at a point in time. We present a deep learning
model that reinforces this negative evidence. We also note
that real-life events exhibit multiple time scales. Historical
sequences of fixed length that are used in classical recurrent
neural networks (RNNs) do not suffice to address this issue.
We present a multi-scale, multi-channel sequential represen-
tation that is sensitive to the base rate of various event types.
Lastly, real-life data sets exhibit complex history dependen-
cies like delayed excitation due to events of either the same or
another type. We use different types of spatial (across types)
and temporal (across time) attention models. Our work is mo-
tivated by the framework of graphical event models (GEMs)
(Gunawardana and Meek 2016) where the historical event
epochs of a set of parents affect the instantaneous rate of a
child point process.

Contribution. We make the following contributions: (1)
We propose a simple, yet effective, non-parametric way to
approximately capture the continuous-time variation of his-
torical influence on conditional intensity by exploiting the
negative evidence from each successive inter-event duration.
(2) We develop an efficient multi-scale, multi-channel inter-
nal state representation, which lets us align our architecture
with graphical event models. (3) We also propose a spatio-
temporal attention model to capture whose histories (among
event labels), and which points in time are most influential
toward determining the instantaneous arrival rate for any
chosen label. The resulting proposed multi-channel neural
graphical event model (MCN-GEM) is thereby similar to
structure learning in the graphical modeling literature. We
demonstrate non-trivial gains in evaluating point process log
likelihood estimates on test data over state-of-the-art models.

Multi-Channel Neural Graphical Event Model

Following the notation in graphical event models (Gunawar-
dana and Meek 2016; Bhattacharjya, Subramanian, and Gao
2018), we denote an event dataset as D = {(li, ti)}Ni=1,
where ti is the occurrence time of the ith event, ti ∈ R

+, and
li is an event label corresponding a finite set L of possible
labels (types), where |L| = M . We assume a time ordered
dataset where at most one event may occur at any point in
continuous time. So we have ti < tj for i < j, with initial
time t0 = 0 ≤ t1 and end time tN+1 = T ≥ tN , where T is
the total time period. We denote the strict history relative to
any point t in continuous time as Ht, and this is defined as the
sequence of event epochs before time t, i.e. {(ti, li)|ti < t}.
Lastly, λk

t |Ht denotes the instantaneous conditional inten-
sity of event type k in label set L at time t. It governs the
history-dependent instantaneous rate of occurrence of event
type k at time t. Note that we use the term epoch to denote
an event epoch, i.e. an event arrival on the timeline. Fig-
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Figure 1: System overview of the proposed MCN-GEM
model with negative evidence l̄.

ure 1 shows the overall system of our proposed MCN-GEM,
which consists of three main components: a recurrent neural
network to represent the continuous time evolution, the intro-
duction of negative evidence between two consecutive arrival
epochs, and the multi-channel view with spatial and temporal
attention. Below we discuss each component in detail.

Continuous Time in Deep Event Models

Given a dataset D, a graphical event model (GEM) G is a
directed graph with nodes L and edges E . It defines a family
of marked point processes whose likelihood of data D is
(Gunawardana and Meek 2016):

p(D|θ) =
∑
l∈L

n∑
i=1

λ
li·1li
ti · e

∫ ti
ti−1

∑M
k=1 λk

τ |Hτdτ

where the indicator function 1li = 1 if li = l and zero
otherwise.

One may write the log-likelihood of the event data over
interval [0, T ] using the conditional intensity functions as:

logL(D) =

N∑
i=1

log λli
ti |Hti −

N+1∑
i=1

∫ ti

ti−1

M∑
k=1

λk
τ |Hτdτ (1)

Our objective is to train a deep neural network to produce
λk
t |Ht for each type k. We use a sequence modeling approach

with recurrent neural networks and long short term memory
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(LSTM) cells. The sequence of tokens that we feed into the
LSTM network is the temporally ordered event sequence D,
where each token corresponds to an event arrival, i.e., a label
and a time stamp. To model continuous time, each token is
represented in the raw input as a concatenation of its one-hot
encoded event label (1-out-of-M ) and its continuous-valued
time stamp, similar to previous work (Du et al. 2016; Mei
and Eisner 2017). The internal states of the recurrent LSTM
cell evolve in response to each current raw input. We note
that there are alternative choices for modeling continuous
time, such as contextualizing the event label embedding with
a time mask (Li, Du, and Bengio 2017).

For an event sequence D as per our notation, l0 denotes
a token that marks the beginning of the sequence and lN+1

denotes a token that marks the end of the sequence. Then for
each event epoch i in sequence D, we have 0 ≤ i < N + 1,
and we compute the hidden state hk

i for each event label k in
the augmented set L as:

hk
i = LSTMk([Emb(li), ti];hk

i−1), ∀k ∈ L
where Emb denotes the embedding matrix for label li.

Embedding consists of one embedding layer on top of one-
hot encoding of labels. hk

−1 is initialized to be all-zero vectors.
For practical computation reasons, we find that sharing the
LSTM parameters among different event labels k is sufficient,
i.e., LSTMk = LSTM.

Basic Model. Figure 2 (a) shows a basic model for history
dependent conditional intensity. The black lines show the
common timeline on which two consecutive epochs (ti, li)
are shown. The upper half shows the recurrent cells unrolled
in time,and the bottom half shows a neural network layer,
namely the λ-network, to produce the instantaneous con-
ditional intensity vector λ. The recurrent cell receives two
inputs at each sequential token (event arrival): the raw input
xi which is the concatenation of the one-hot encoded event
label li and the time stamp ti, and the penultimate value of
the internal states (hi−1, ci−1). The sub-network that pro-
duces the conditional intensity (λ(t)|Ht) takes two inputs:
the most recent internal states that are strictly before t, i.e.
in correspondence with the most recent event (say at ti < t),
and the duration (t− ti).

Modeling Continuous Time History with Negative
Evidence

Motivation on New Interval State Representation. We
note that the internal states (hi, ci) in the basic model evolve
discretely across tokens while staying fixed in between tokens.
In event modeling, the inter-event duration between any two
consecutive events is just as important as the event arrivals
themselves, as evident from the integral terms in Equation
1. As such, it is important that the internal states of the se-
quential model also reflect the continuous passage of time
in between successive events. The neural Hawkes process
(Mei and Eisner 2017) proposes capturing this continuous
variation using an exponential decay function, motivated by
the classical Hawkes process (Hawkes 1971). However, this
raises the question of whether an exponential form of de-
cay is always the best choice, and whether there is a more

non-parametric alternative that adapts to data. For example,
consider proximal graphical event models (Bhattacharjya,
Subramanian, and Gao 2018) and the more general fam-
ily of piece-wise constant intensity models (Gunawardana,
Meek, and Xu 2011) that don’t exhibit exponential decay.
We propose the use of ”fake epochs” to reinforce the nega-
tive evidence of no observable events within each inter-event
dead-space as shown in Figure 2(b).

Fake Epochs as Negative Evidence. We introduce an aux-
iliary (M+1)th label into our label set L, and refer to it as the
”fake label”. We then interject within each inter-event interval
a certain number K of fake epochs (i.e. with label M + 1)
that are spread uniformly in time over the interval. Note that
K is a hyperparameter, and Figure 2(b) shows one fake epoch
(K = 1) introduced at t̃i,i+1, which is the center of [ti, ti+1].
The fake event epoch then participates in the recurrent com-
putations like any other real event epoch. It allows using the
LSTM dynamics to further evolve the internal states within
each inter-event interval, albeit in a discrete manner i.e. at
each such fake event epoch on the timeline. The resulting
finer sequence of internal states is then a summary of all
the event trace history as well as the passage of time in the
intervening dead-space intervals. Note how the internal state
has evolved to (h̃i, c̃i) in the interior of the interval. The fake
event epochs also allow us to compute the integral terms in
Equation 1. We take a numerical quadrature procedure using
the fake epoch time stamps as the sampling time points for
the quadrature. We note that while the entire inter-event inter-
val corresponds to negative evidence in theory, the proposed
finite approximation suffices in practice as shown later in the
experimental section. Lastly, while the conditional intensity
corresponding to the fake label doesn’t enter Equation 1 in
any way, we use it to regularize the learning objective via a
target-label reconstruction term described later.

A similar intent of using fake epochs was pursued in a
different graphical model (Gopalratnam, Kautz, and Weld
2005), which proposed to model the negative evidence of no
observable events. It also has some similarity with generative
adversarial training (Ganin et al. 2016; Xiao et al. 2017a).
The fake epochs with a fake event label are akin to adversarial
sample points relative to the real set of labels. Using the fake
epochs to regularize the learning via target label reconstruc-
tion, or via binary classification of real-versus-fake makes it
similar to adversarial training.

A Multi-Channel View for Spatial and Temporal
Attention

In multivariate event data, the different labels may have dif-
ferent arrival rates. Further, they may mutually influence the
arrival rates of each other in label-specific ways in the sense
of graphical event models. It is therefore desirable to model
a label-specific hidden state. We achieve this by associating
each label with a corresponding partition of a single hidden
state vector. We achieve this by choosing the hidden state
dimension to be an integer multiple of the number of labels,
i.e. m(M + 1) for some positive integer m, and effectively
realize an m-dimensional hidden state for each label in L.
These label-specific sub-vectors are selectively channeled for
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Figure 2: Deep sequential model for conditional intensity: a) A basic model, b) A model with fake event epochs to reinforce
negative evidence.

×
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Figure 3: Spatio-temporal attention for deep graphical event
models.

computing the label-specific rates through the network layer
in Figure 2. Such a multi-channel view also enables modeling
temporal and spatial attention within the λ-network.

Spatial attention is a way to model inter-label dependence,
as in graphical event models, and temporal attention is a
way to model the lagged dependence on parental event his-
tory. For example, in a piece-wise constant intensity model
(Gunawardana, Meek, and Xu 2011), the active basis func-
tions consist of lagged intervals relative to any point in time.
We achieve these two types of dependence by maintaining
a memory bank M of historical label-specific hidden states
that span the most recent J event arrivals. Note that the above
multi-channel view gives us a total of M ∗ J hidden state
sub-vectors in M, i.e. one hidden-state sub-vector for each
real label and for each time-stamp corresponding to the most
recent J event arrivals. These raw hidden states in the mem-
ory bank are combined using an attention mechanism into a
net hidden state that becomes input for the lambda-network.
Figure 3 shows this for J = 3, where [hk

i ] in the figure de-
notes a list of hidden states indexed by label k, and at time
ti. The attention block produces a corresponding list of net
hidden states [hnet,k

i ] which enter the λ-network to produce
conditional intensities for each label at time t.

By adding an attention layer after hk
i , intensity rates can

be shown to credit the relevant event occurrences in history.
Our memory bank Mi (for each epoch i) has size J × M
to stores the raw hidden states of each of M channels from
the most recent J epochs relative to i, i.e. from (i − J) till
(i−1). Note that J is a constant hyperparameter in the model.
The net attentive hidden state is given as,

hnet,k
i = tanh(Wc[c

k
i , h

k
i ]), ∀k ∈ L

where ci is the context vector at epoch i, and is com-

puted as a weighted average of the raw hidden states in
Mi The weighting is done by an alignment vector αk

i , i.e.,
cki =

∑
m αk

imhm, where hm is each raw label-specific hid-
den state in the memory bank Mi Note that index m runs
over each of the JM hidden states in Mi thereby giving
both temporal and spatial attention. WC represents weights
to compute new hidden representation given attention. The
attention weight αk

im is derived by comparing the current raw
hidden state hk

i to each raw hidden state hm in the memory
bank at time i:

αk
im = align(hk

i , hm) =
exp(score(hk

i , hm)∑
m exp(score(hk

i , hm))

where score(hk
i , hm) = (hk

i )
Thm. We note that other

types of attentions can be used as well in the above spatio-
temporal attention model.

Training

We then use two feed-forward layers to learn intensity rate
λk
ti+1

given the net hidden state hnet,k
i and time interval

Δti+1 = ti+1 − ti:

λk
ti+1

|Hti = σ2(f2(σ1(f1([h
net,k
i ,Δti+1]))), ∀k ∈ L

where f1 and f2 are feed-forward neural layers. We use
a ReLU and softplus activation function for σ1(·) and σ2(·),
respectively. The Softplus activation ensures a positive condi-
tional intensity, which is a standard component and has been
used in previous deep models (Mei and Eisner 2017).

To train MCN-GEM, we use the same LL function as
in Equation 1 with the assumption of constant intensity in
between two consecutive events, real or fake, and this leads
to:

LL(D) =
N∑
i=1

log λli
ti |Hti −

N+1∑
i=1

Δti

M∑
k=1

λk
ti |Hti (2)

where Δti = ti − ti−1 is the time interval since the last
event.

In addition, since our model is the most non-parametric
compared to other related work, we find that adding two
regularization terms helps with generalization. First, we con-
sider the target prediction loss Lp of the next event label li+1
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given λk
ti+1

, for which we use a cross entropy loss between
ground truth li+1 and softmax(λti+1

). This classification loss
also emphasizes the adversarial nature between real and fake
epochs. Second, we add another term Lw which penalizes
the L2-norm of the weights on f1 and f2. Hence, the overall
regularized objective for training is as follows:

Ltrain = LL(D) + λpLp + λwLw (3)
For the model fitting computation task, the overall likeli-

hood objective for training is computed as Equation 3. The
testing loss is simply computed as LL(D), since our aim is
to gauge how well the model fits the data.

Empirical Evaluation

We compare our methods with state-of-the-art algorithms for
model fitting of event streams. We compare our proposed
neural method with a recent model in the GEM class, PGEM
(Bhattacharjya, Subramanian, and Gao 2018), and the most
relevant neural baseline Neural Hawkes Process (NHP) (Mei
and Eisner 2017). Some other works (Xiao et al. 2017b;
Du et al. 2016) also use neural networks but do not perform
the model fitting task. We implement MCN-GEM in Py-
torch, PGEM in Python, and use publicly available code for
NHP1. Please refer to the appendix for further implementa-
tion details of MCN-GEM, especially on choices of hyper
parameters. Our proposed MCN-noF refers to the version of
our model where no fake epochs are introduced; we show
this to highlight the effect of fake epochs. If not otherwise
specified, MCN-GEM uses one fake epoch. We use log like-
lihood as the metric to evaluate model fitting and bold the
best performing approach.

For our experiments, we divide an event dataset into 70%−
30% train-test splits. For data involving single event streams,
we perform the split based on time, i.e. select events in the
first 70% of the entire duration in the train set. For data
involving multiple streams, we split by randomly selecting
a subset of 70% of the streams in the train set. All shown
results are those evaluated on the test set. All methods are
compared in the same experimental setting.

Synthetic Datasets. We first conduct experiments using
event streams based on proximal graphical event models
(PGEMs). The data is generated following the same sam-
pling procedure described in Bhattacharjya, Subramanian,
and Gao (2018). Specifically, for each node, we first sample
the number of its parents K, the set of parents, windows, and
then intensity rates in that order. Please refer to the supple-
ment material for exact details and generating parameters.

We generate 5 PGEMs, each with 5 nodes. We use default
values to generate the models as provided in the supplemen-
tary material of Bhattacharjya, Subramanian, and Gao (2018).
For each model, 10 event streams are produced with a syn-
thetic PGEM data generator, up to T = 1000. Table 1 shows
the performance of the algorithms on the test sets for the
5 PGEM models. We observe that when PGEM is the data-
generating model, all methods including neural-based models

1https://github.com/HMEIatJHU/neurawkes

Dataset PGEM NHP MCN-noF MCN-GEM

PGEM1 -6207.3 -6248.8 -6268.1 -4764.2
PGEM2 -8285.4 -8289.4 -8292.0 -5739.2
PGEM3 -7933.1 -8023.0 -8177.7 -5714.8
PGEM4 -8853.2 -8895.7 -8904.3 -5608.5
PGEM5 -7811.0 -7842.5 -7912.5 -5601.6

Table 1: Average LL score for Synthetic Datasets.

Dataset PGEM NHP MCN-noF MCN-GEM

Argentina -3150.6 -3181.9 -3559.5 -2677.9
Brazil -3865.7 -3822.3 -4242.3 -3329.0

Venezuela -1663.2 -1567.4 -1915.9 -1655.1
Colombia -1095.1 -1128.5 -1244.5 -1029.3
Mexico -1927.6 -1936.5 -2375.7 -1756.7

Table 2: Average LL score for ICEWS Datasets.

can recover a log likelihood (LL) very close to the PGEM
learner. What is particularly striking is that with the introduc-
tion of a fake epoch, MCN-GEM performs much better than
the other models, even the PGEM learner, usually by 20% to
35%. We note that the state-of-the-art PGEM learner (Bhat-
tacharjya, Subramanian, and Gao 2018) involves a greedy
coordinate ascent approach for learning the optimal windows
and graphical structure, which allows for improvement using
our non-parametric neural model with a limited number of
data. The quadrature approximation that we use (see Equa-
tion 3) across the augmented set of consecutive inter-event
intervals is effectively a fine piecewise-constant conditional
intensity model, thereby giving MCN-GEM enough expres-
sive power to effectively approximate the true generating
PGEM.

Political News Datasets. A real world example of numer-
ous, asynchronous events on a timeline are socio-political
world events. We use the Integrated Crisis and Early Warning
System (ICEWS) political event dataset (O’Brien 2010) to
test our model. This dataset is a set of dyadic events, i.e., X
does Y to Z, encoded as a set of over 100 actors and 20 high
level actions from the Conflict and Mediation Event Obser-
vations (CAMEO) ontology (Gerner et al. 2002). The events
in ICEWS take the form of “The Police (Brazil) has Verbal
Conflict with Protesters (Brazil).” Following the same pre-
processing as Bhattacharjya, Subramanian, and Gao (2018),
we restrict our attention to a 4 year time period from Jan 1,
2012 to Dec 31, 2015 and use 5 countries, 5 actor types, and
5 types of actions.

Table 2 compares model fit on these datasets across meth-
ods. Performances of PGEM and NHP are similar on these
datasets, and MCN-GEM with no fake epochs performs
worse than NHP. It is possibly harder to learn without some
parametric grounding in these datasets. However, with the
introduction of fake epochs, MCN-GEM again performs bet-
ter than the other models by 5% to 15%, with the exception of
Venezuela, on which NHP performs the best. For Venezuela,
we suspect that MCN-GEM’s proficiency in learning from
history is slightly detrimental as there are discrepancies be-
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tween train and test sets; the data exhibits a significant in-
crease in event occurrences in recent years (test set) compared
to previous years (train set).

Healthcare Dataset. Following Mei and Eisner (2017), we
also test algorithms on the MIMIC-II dataset, which includes
electronic health records from various patients with clinical
visit records in Intensive Care Unit for 7 years. Each patient
has a sequence of hospital visit events, and each event records
its time stamp and diagnosis, which serves as the event label.

Since the PGEM learner cannot handle datasets with un-
known labels during testing time, we also create a clean
version of MIMIC, MIMIC-short (MIMIC-s), ensuring that
MIMIC-s train and test have a common label set. We com-
pare our method with PGEM on MIMIC-s, and with NHP on
the original MIMIC. Table 3 shows again that MCN-GEM
with the fake epochs outperforms both NHP and PGEM by
15 ∼ 20% for the log likelihood computation.

NHP MCN-noF MCN-GEM

MIMIC -1165.0 -1380.4 -837.4

PGEM MCN-noF MCN-GEM

MIMIC-s -677.8 -704.4 -586.8

Table 3: Log likelihood for MIMIC Dataset.

Ablation Study

To gain more insights of the contribution of different com-
ponents, we also study the effectiveness of each component
of the proposed model via an ablation study, namely the ef-
fectiveness of multi-channel vs. single channel, the usage of
attention vs. no attention, and the impact of attention mem-
ory bank sizes for negative evidence. As shown in Table 4
below (showing LL with standard deviation), we conducted
an ablation study on different model components on ICEWS
Argentina. We tested single channel (SC) vs. multi-channel
(MC), one fake epoch (1F) vs. no fake (NoF), and different
memory bank sizes (M=1,2,3,5,10). We use neural Hawkes
(NHP) as the baseline. We repeat the experiments 5 times
with 5 different random seeds, reporting their average LL
along with their standard deviation.

Impact of Multi-Channel Modeling. As shown in the top
row of Table 4, the single-channel (SC noF and SC 1F) ver-
sions always perform worse than that of multi-channel ver-
sions (MC noF and MC 1F). It shows the importance of
multi-channel modeling, by letting the hidden states evolved
separately for each channel.

Impact of the Memory Bank Size. As shown in the top
row of Table 4, without the attention (equivalent to the mem-
ory size of 0), the performance of the proposed model (MC-
1F) is worse than that of NHP. The second row of Table 4
shows the performance of MCN with memory size of 1 (1M),
2 (2M), 3(3M), 5(5M), and 10 (10M), and all outperform
NHP. In addition, memory size of 3 is the best performing in

Argentina, while the larger memory sizes could degrade the
performance.

Impact of the Number of Fake Epochs

We study the impact of the number of fake epochs on the
performance of MCN-GEM through a study on the ICEWS
Argentina dataset. We vary the number of fake epochs, from
0 to 5, to see whether adding more fake epochs would fur-
ther improve the LL. We use 1F to indicate the usage of 1
fake epoch, 2F for 2 fake epochs, etc. As shown in Table
5, introducing one fake epoch has a large gain in LL. Intro-
ducing many more leads to minimal improvements, and can
even hurt the performance. We note that without fake epochs,
the computation of integral in Equation 2 is assumed to be
piece-wise constant in each inter-event interval. This would
perform badly in general, such as when there is decay, growth,
or more complex temporal variations in conditional intensity.
Even with 1 fake epoch, MCN-GEM appears effective in
approximating such variation. Introducing more fake epochs
leads to a subtle trade-off. While they allow a finer approxi-
mation in the quadrature-sum for the second term, they also
lead to an additional imbalance in the relative proportions
of real and fake epochs. This may result in reduced intensity
rates of real events at real epochs due to fitting their rates
better at the fake epochs. Fake epochs are also related to the
windows and basis functions in GEMs (Gunawardana and
Meek 2016). Instead of manually providing a set of basis
functions, MCN-GEM uses the data to adaptively infer the
start and expiration of new basis functions. It is very simple
yet effective to do so in a non-parametric way.

To visualize the impact of fake epochs on the learned
intensity rates, we plot them from MCN-GEM −noF and
MCN-GEM with one fake epoch in the ICEWS Argentina
dataset. We show only Event Type 1’s intensity rates in Fig-
ure 4, but the trends hold for all other event types. In Figure 4,
the top figure shows the rates, in blue lines, of Event Type 1
from noF over time and the bottom figure shows rates from
MCN-GEM. A red triangle in both figures indicates the rate
at the occurrence of Event Type 1, and a yellow cross indi-
cates the rate at the occurrence of all other event types. As one
can see, with the introduction of fake epochs, MCN-GEM
produces higher rates at event occurrences and lower rates at
the dead space between occurrences. This results in a sharper
intensity rate landscape. Also, it is interesting to observe that
some event occurrences lead to the increase of Event Type
1’s rate while many others do not.

Graph Visualization of the Attention

One other advantage of using attention is that it can enable
visualization of the relationships among the variables as a
graph. We use the average attention of all event channels
across time to compute the graph connection. Specifically, let
A be a graph adjacency matrix with element Akq , the kth row
and qth column of A, indicating event k’s influence on the
occurrence of event q. For clarity of notation, let αk

ijq = αk
im

be the computed attention for kth channel at time ti. q ∈ M
and j ∈ J represent the (parental) event type q at time ti−j .
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NHP SC noF SC 1F MC noF MC 1F

Argentina −3154.8± 25.4 −4323.8± 35.4 −3839.4.9± 25.4 −4282.2± 58.1 −3302.6± 28.1

MC 1F 1M MC 1F 2M MC 1F 3M MC 1F 5M MC 1F 10M

Argentina −2841.0± 23.5 −2693.9± 27.0 −2682.6± 29.3 −2871.8± 126.9 −2947.3± 190.0

Table 4: Ablation study of MCN-GEM model components: LL performance on ICEWS Argentina.

noF 1F 2F 3F 4F 5F

-3559.5 -2677.9 -2652.3 -2772.1 -2803.1 -2881.0

Table 5: Study of the number of fake epochs vs. LL perfor-
mance on ICEWS Argentina.

Figure 4: Visualization of lambdas (conditional intensity
rates) for Event Type 1 in ICEWS Argentina Dataset. The top
shows rates from MCN-GEM −noF, and the figure shows
rates from MCN-GEM. Red triangles indicate the occur-
rence of Event Type 1, yellow crosses indicate the occurrence
of all other real events.

Akq =
1

T × J

T∑
i=1

J∑
j=1

αk
ijq

We then threshold Akq to remove small numerical values
and obtain Ã. We plot Ã in Figure 5 for ICEWS Argentina,
where each node is a different event type and edges repre-
sent Ã. We use 0.01 as the threshold. We include the node
label in the appendix. Some example edges learned include:
chain 36 -¿ 40 -¿ 23, which indicates that when the head of
the Argentina government cooperates with the Brazil govern-
ment, it often leads to internal conflicts between him/her and
other branches of the government, and this in turn leads to
citizens’ unhappiness with the head of the Argentina govern-
ment. Chain 55 -¿ 62 indicates that if citizens are in conflict
with protestors, citizens will likely cooperate with the police.

Figure 5: Visualization of attention graph in ICEWS Ar-
gentina Dataset.

Conclusion

We have introduced a new multi-scale multi-channel neural
GEM with two-dimensional attentions for modeling event
sequences. Our model exploits the negative evidence of no
observable events in each successive inter-event duration by
introducing fake epochs, which eliminates the need to as-
sume specific functional forms. This makes our approach
practically appealing with respect to approximately capturing
the variation of hidden states in continuous time in a non-
parametric manner. Our model combines the framework of
GEMs and the modeling power of deep neural networks. On
synthetic and benchmark model fitting datasets, our method
outperforms other state-of-the-art models by a significant
amount, demonstrating that this is a promising approach for
modeling event stream data. Alongside the lambda-network
in Figure 2, a parallel integral-lambda-network could be used
to learn the integral terms in Equation 1 with a constraint
that connects these two networks and their parameters. This
would provide an alternative to using a quadrature sum for
the integral terms.

The focus of the proposed model with negative evidence
is to fit a model for learning dependencies in event stream
data. It requires full visibility into the event sequence for the
purposes of placement or sampling of the fake epochs. This
may not be true in prediction tasks, where the exact use of
negative evidence presents an interesting future direction.
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