
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Reinforcement Learning with Non-Markovian Rewards

Maor Gaon, Ronen I. Brafman
Ben-Gurion University of the Negev, Beer Sheva, Israel

maorga@post.bgu.ac.il
brafman@cs.bgu.ac.il

Abstract

The standard RL world model is that of a Markov Decision
Process (MDP). A basic premise of MDPs is that the rewards
depend on the last state and action only. Yet, many real-world
rewards are non-Markovian. For example, a reward for bring-
ing coffee only if requested earlier and not yet served, is
non-Markovian if the state only records current requests and
deliveries. Past work considered the problem of modeling and
solving MDPs with non-Markovian rewards (NMR), but we
know of no principled approaches for RL with NMR. Here,
we address the problem of policy learning from experience
with such rewards. We describe and evaluate empirically four
combinations of the classical RL algorithm Q-learning and
R-max with automata learning algorithms to obtain new RL
algorithms for domains with NMR. We also prove that some
of these variants converge to an optimal policy in the limit.

Introduction

The standard reinforcement learning (RL) world model is
that of a Markov Decision Process (MDP). In MDPs, rewards
depend on the last state and action only. But a reward given
for bringing coffee only if one was requested earlier and was
not served yet, is non-Markovian if the state only records
current requests and deliveries; and so is a reward for food
served only if one’s hands were washed earlier, and no ac-
tivity that made them unclean occurred in between. An RL
agent that attempts to learn in such domains without realizing
that the rewards are non-Markovian will display sub-optimal
behavior. For example, depending on how often coffee is re-
quested and how costly making coffee is, the agent may learn
never to make coffee or always to make coffee – regardless
of the user’s requests.

We can address non-Markovian rewards (NMRs) by aug-
menting the state with information that makes the new
model Markovian. Except for pathological cases, this is al-
ways possible. For example, the robot can maintain a vari-
able indicating whether an order for coffee was received
and not served. Similarly, it can keep track of whether the
user’s hands are clean. Indeed, early work on this topic
described various methods for efficiently augmenting the
state to handle NMRs (Bacchus, Boutilier, and Grove 1996;
Thiebaux et al. 2006). More recent work leveraged our

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

better understanding of the relationship between NMRs
specified using temporal and dynamic logics and automata
to provide even better methods (Camacho et al. 2017a;
Brafman, De Giacomo, and Patrizi 2018). Yet, such model
transformations are performed offline with complete knowl-
edge of the model and the reward structure, and are not useful
for a reinforcement learning agent equipped with some fixed
state model and state variables.

In this paper, we combine our recent, better under-
standing of NMRs and automata (Camacho et al. 2017a;
Brafman, De Giacomo, and Patrizi 2018) with automata learn-
ing algorithms (Angluin 1987; Cottone, Ortolani, and Pergola
2016) and classical RL algorithms (Watkins and Dayan 1992;
Brafman and Tennenholtz 2002) to address RL with NMRs.
We describe algorithms that allow a learning agent with no
prior knowledge of the reward conditions to learn how to aug-
ment its state space with new features w.r.t. which rewards
are Markovian. The added state variables are not directly
observable. However, while regular state variables are af-
fected stochastically by actions, for the rich class of NMRs
discussed in this and past work, these state variables are af-
fected deterministically by the actions. Hence, in practice,
their value can be tracked and updated by the agent.

Like standard RL algorithms, our algorithms explore the
state space, learning a transition model or estimating the Q
function. They also maintain a record of executions (traces)
leading to a reward as well as traces not leading to a reward.
These traces are fed into an off-the-shelf automata learning al-
gorithm, yielding a deterministic finite-state automata (DFA).
The state of this DFA is added as a new state feature. Since
this feature is a regular function of the agent’s history, the
agent can constantly update it and maintain its correct value.
Given the augmented state-space, the reward is Markovian,
and is always obtained when the DFA reaches an accepting
state. The algorithm now adjusts its model to take account of
the new state space, and can continue to explore or to exploit.

We describe four algorithms of this type obtained by
combining Q-learning (Watkins and Dayan 1992) and
Rmax (Brafman and Tennenholtz 2002) with two automata
learning algorithms, the online L∗ (Angluin 1987) and the
offline EDSM (Lang, Pearlmutter, and Price 1998). We show
that under certain assumptions, the algorithms that use L∗

will converge to an optimal policy in the limit, and we evalu-
ate them empirically.

3980



Background
We briefly discuss MDPs, RL, NMRs and automata learning.

MDPs, RL and NMR

RL is usually formulated in the context of a Markov Decision
Process (MDP)M= ⟨S,A,Tr,R⟩. S is the set of states, A is
the set of actions, Tr ∶ S×A→ π(S) is the transition function
that returns for every state s and action a a distribution over
the next state. R ∶ S × A → R is the reward function that
specifies the real-valued reward received by the agent when
applying action a in state s.

A solution to an MDP is a policy that assigns an action
to each state, possibly conditioned on past states and ac-
tions. The value of policy ρ at s, vρ(s), is the expected sum
of (possibly discounted) rewards when starting at s and se-
lecting actions based on ρ. Focusing on the infinite horizon,
discounted reward case, we know that every MDP has an
optimal policy, ρ∗ that maximizes the expected discounted
sum of rewards for every starting state s ∈ S, and that an op-
timal policy that is stationary and deterministic ρ∗ ∶ S → A
exists (Puterman 2005). The value function obeys Bellman’s
optimality condition (Bellman 1957)

v∗(s) =max
a∈A

R(s, a) + γ ∑
s′∈S

Tr(s, a, s′)v∗(s′)

The state-action value function, or Q-function, is defined as
Q(s, a) = R(s, a) + γ ∑

s′∈S

Tr(s, a, s′)v∗(s′)

hence
v∗(s) =max

a∈A
Q(s, a)

and
Q(s, a) = R(s, a) + γ ∑

s′∈S

Tr(s, a, s′)max
a∈A

Q(s, a)

RL algorithms attempt to find or approximate ρ∗ through
experience, without prior knowledge ofM. There are various
methods of doing this (Sutton and Barto 1998), two of which
we discuss later.

Non-Markovian Reward Decision Processes (NM-
RDPs) (Bacchus, Boutilier, and Grove 1996) extend MDPs
to allow for rewards that depend on the entire history. It has
been observed by much past work, and more recently in the
area of robotics (Littman et al. 2017) that many natural re-
wards are non-Markovian. A general NMR is a function from
(S × A)∗ to R. However, this definition is too complex to
be of practical use because of its infinite structure. For this
reason, past work focused on properties of histories that are
finitely describable, and in particular, logical languages that
are evaluated w.r.t. finite traces of states and actions, repre-
senting the agent’s history. Recent work has focused on LTLf

and LDLf (De Giacomo and Vardi 2013), in particular. There
are various technical advantages to using these languages
to specify NMRs (see, (Brafman, De Giacomo, and Patrizi
2018) for more details). Here, due to space constraints and
to make the description more accessible to RL researchers
less familiar with these logics, we exploit the fact that the
expressive power of LDLf is equivalent to that of regular
languages, with which most computer scientists are familiar.
Thus, we focus on rewards that can be described as regular
functions of the agent’s state-action history.

Automata Learning

A deterministic finite state automaton (DFA) is a tuple A =
⟨S,Σ, δ, s0, F ⟩. S is the set of states, Σ is the alphabet, δ ∶
S × Σ → S is a deterministic transition function, s0 ∈ S is
the initial state, and F ⊆ S are the final/accepting states. It is
essentially a deterministic MDP with actions Σ.

Given the equivalence between regular expressions and
DFAs, if rewards are regular functions of the agent’s state-
action history, we can try to learn an automaton that accepts
exactly those histories that led to a reward. Here we briefly
describe two such classical automata learning algorithms.
L∗ is an interactive DFA learning algorithm with an ex-

ternal oracle (a.k.a. the teacher) that provides answers to
membership and equivalence queries. In a membership query
the teacher is asked whether a string belongs to the language.
In an equivalence query, it is given a DFA. If this is the correct
DFA, the teacher notifies the learner. Otherwise, it provides
a counter-example – a string that is not correctly classified
by the DFA. This algorithm requires a polynomial number of
queries in the size of the minimal DFA.

Let Σ be our alphabet, and L the target language. At each
step of the algorithm, the learner maintains: a set Q ⊂ Σ∗ of
access words and a set T ⊂ Σ∗ of test words. v,w ∈ Σ∗ are
T-equivalent (denoted v ≡T w) if ∀u ∈ T , vu ∈ L⇔ wu ∈ L.
Q and T are separable if no two distinct words in Q are T -
equivalent. Q and T are closed if for every q ∈ Q and a ∈ Σ
there is some q′ ∈ Q such that q ⋅ a ≡T q′.

If (Q,T ) is separable and closed and we know for each
v ∈ Q ∪ T whether it is in L, then we can define a hypothesis
automatonH as follows: the states ofH are Q. ε is the initial
state. If H is in state q ∈ Q and reads a ∈ Σ, it transitions to
the unique q′ ∈ Q such that q ⋅ a ≡T q′. Such a state exists
because (Q,T ) is closed. It is unique by separability. The
accepting states ofH are those state q ∈ Q such that q ∈ L.

The algorithm proceeds as follows: (1) Initially, Q ∶= T ∶=
{ε}. They are clearly separable. (2) Repeatedly enlarge Q,
maintaining its separableness, until (Q,T ) is separable and
closed. This is possible because, if (Q,T ) are not closed,
there exists some q ∈ Q and a ∈ Σ such that no q′ ∈ Q is T -
equivalent to q ⋅ a. We can find them by membership queries,
and add q ⋅ a to Q. (3) Compute the hypothesis automatonH
and use it for an equivalence query. (4) If the answer is YES,
terminate with success. (5) If the answer is NO with counter
example w, let ∣w∣ = n. Using logn membership queries, one
can find some q /∈ Q and t ∈ Σ∗ such that (Q ∪ q, T ∪ t) is
separable. This is done by finding, using binary search, two
adjacent prefixes of w, w′ and w′ ⋅ a (a ∈ Σ) that yield words
that are tagged differently by the language when we do the
following process: (a) compute the state qi and qi+1 we reach
in H on w′ and w′ ⋅ a; (b) look at the words obtained by
replacing w′ and w′ ⋅ a in w with the words associated with
qi and qi+1. (c) Check their tags. (6) Goto 2.

Unlike L∗, the class of state merging algorithms (Lang,
Pearlmutter, and Price 1998), work off-line on a given set of
positive and negative samples. First, a Prefix Tree Acceptor
(PTA) is constructed. A PTA is a tree-like DFA. It is built by
taking all the prefixes of words in the sample as states and
constructing the smallest DFA on these states which is a tree

3981



and is strongly consistent with the sample (i.e., accepts every
positive sample and rejects every negative one).

State merging techniques iteratively consider an automaton
and two of its states and aim to merge them. States can be
merged if they are compatible. A minimal requirement is that
the union of prefixes associated with this state will not contain
both a positive and a negative sample. This is not sufficient
because certain merges imply other merges. For example, if
we merge a state s containing ε with a state containing a, this
means that there is a self transition from s on a. Therefore,
this state must also be merged with the prefix aa, if it exists.

Merging leads to generalization because we often merge
states containing unlabelled prefixes with states containing
labeled one. Thus, if ε is accepting and a has no label, when
we merge them, we make a accepting. In fact, due to the
example above, we must actually make a∗ accepting.

The order by which pairs of states are considered for merg-
ing is the key difference between the different state merg-
ing algorithms. Any wrong merge can affect the final DFA
dramatically, and the earlier a wrong merge is performed
the higher its impact on the final result. State merging algo-
rithms use various heuristics to select which states to merge.
They often perform the merges based on the sum of accept-
ing/rejecting states already observed in the two candidates,
preferring candidates with large numbers.

Related Work

A number of authors have recently emphasized the
fact that many desired behaviors are non-Markovian.
Littman (Littman 2015; Littman et al. 2017) discussed
the need for more elaborate reward specification for RL
for robotics. He considered scenarios where RL is used
to learn a policy in an unknown world where the reward
is not intrinsic to the world, but is specified by the de-
signer, usually in a high-level language. For this, he pro-
posed the use of a temporal logic called GLTL. Simi-
larly, (Li, Vasile, and Belta 2017) use truncated LTL as a
reward specification language, and (Camacho et al. 2017b;
Toro Icarte et al. 2018) use LTLf to specify desired complex
behavior. Because temporal formulas are evaluated over an
entire trace, it is difficult to guide the RL agent locally to-
wards desirable behaviors. (Camacho et al. 2017b) show how
to to use the theory of LTLf to use reward shaping to provide
correct and useful feedback to the learning agent early on.

In all above papers, reward specification is part of the
input. We are interested in RL when the reward model is
unknown. Some of the work on learning in partially observ-
able environments can be viewed as indirectly addressing
this problem. For example, classical work on Q-learning
with memory (Peshkin, Meuleau, and Kaelbling 2001) main-
tains and updates an external memory. Thus, it essentially
learns an extended state representation. But if we realize
that the additional reward variables are essentially states of
an automaton, we can apply a more principled approach to
learn these automata using state-of-the-art automata learn-
ing algorithms. Not surprisingly, Angluin’s famous automata
learning algorithm (Angluin 1987) and early work on learn-
ing in unobservable environments (e.g., (McCallum 1995))
have a similar flavor of identifying states with certain suf-

fixes of observations. Since then, automata learning has at-
tracted much theoretical attention because of the central
role of automata in computational theory and in linguis-
tics (de la Higuera 2010). Unfortunately, exact learning of
a target DFA from an arbitrary set of labeled examples is
hard (Gold 1978), and under standard cryptographic assump-
tions, it is not PAC-learnable (Kearns and Valiant 1989).
Thus, provably efficient automata learning is possible only
if additional information is provided, as in Angluin’s model
that includes a teacher. However, there is much work on
practical learning algorithms, and in our experimental eval-
uation, we use the FlexFringe implementation of the well
known EDSM algorithm (Lang, Pearlmutter, and Price 1998;
Verwer and Hammerschmidt 2017).

Reinforcement Learning with NMRs

We present variants of Q-learning (Watkins and Dayan 1992)
and Rmax (Brafman and Tennenholtz 2002) that handle
NMR. In this paper we consider only tabular algorithms and
do not deal with function approximations. We assume that re-
wards are deterministic. In addition, we assume the agent can
identify the reward type, i.e., if two reward conditions have
identical values, the agent can differentiate between them.
While this assumption is natural in many cases (e.g., a robot
may receive equal reward for bringing coffee or bringing tea
and can distinguish between the two), it is made more for ef-
ficiency and convenience, and our approach can, in principle,
simply learn the conjunctive condition.

Learning with State Merging Algorithms

Algorithm 1 describes an algorithm that combines RL with a
state merging algorithm (SMA). The agent repeatedly applies
its favourite RL algorithm for a number of trials. Initially,
it uses the original state space. The obtained traces (and
implicitly, their prefixes) are stored in memory. Then, pro-
vided enough positive traces were collected, it calls the SMA
with the stored traces and obtains a candidate automaton.
A = ⟨SA, SM, δ, s0, F ⟩, where SA is the set of automaton
states and SM – the set of MDP states – is the automaton’s
alphabet. (We assume for the sake of simplicity, that SM also
records the last applied action).

Now, the MDP’s state space is modified to reflect the au-
tomaton learned, replacing SM with SM × SA (or SM ×
SA1⋯× SAn if there are n NMRs). Finally, in Line 10, the
information learned on the previous state space is used to
initialize the values associated with the new state space. (This
update appears in both the SMA and L∗ variants, is specific to
the RL algorithm and will be discussed later.) The algorithm
now repeats the above process with the new state space.

Learning with L∗

Algorithm 2 describes an L∗-based algorithm for learning
with NMRs. The L∗ algorithm provides the overall structure,
and the RL algorithm learns in the background as it tries to
answer queries. If L∗ asks a membership query, the agent
tries to generate the corresponding trace, until it succeeds,
at which point it can answer the query. This, of course, may
take many trials, and in our implementation, if after at most k

3982



Algorithm 1: RL with NMR and EDSM
1 Set A to some single-state automaton;
2 while time remaining do
3 Set S = SM (MDP’s state space);
4 for i = 1 to ctrials do
5 Execute one trial of RL algorithm on state space

S;
6 Store state-action-reward trace;
7 if there are more than cpos positive traces then
8 A = result of applying EDSM to the current

sample;
9 Update the state space S = SM × SA, where SA

are the states of A;
10 Use estimates learned from SM to generate

initial estimates for updated SM;

attempts we do not succeed in generating this trace, we tag the
trace as negative. In each trial, when the trace deviates from
the query trace, the algorithm continues until the end of the
trial using the current exploration policy. When L∗ asks an
equivalence query, we check our stored traces for any counter-
example. If none exists, the RL algorithm continues using
the current automaton, until a counter-example is generated
or until learning time ends.

All traces encountered are labeled and stored in memory,
and the RL algorithm updates its data structure based on the
stored samples using a state space which is the product of the
MDP’s SM and the current automaton’s SA.

Because L∗ is guaranteed to converge to the correct au-
tomaton after a bounded (in fact, polynomial) number of
queries, we can prove the following result.

Theorem 1. Assuming rewards are regular functions of the
state-action history, the RL with NMR and L∗ algorithm will
converge to an optimal policy in the limit with probability
1, if the underlying reinforcement algorithm converges to an
optimal policy in the limit and selects every action in every
state with some minimal probability ε for some ε > 0.

Proof. Since L∗ asks a finite and bounded number of queries,
to prove this result, it is sufficient to show that (a) membership
queries will be answered in finite time with probability 1, and
that (b) if the automaton hypothesized by L∗ is wrong, then
the equivallence query will be answered (correctly) in finite
time with probability 1. For (a): observe that at each step
there is probability > c, for some strictly positive value c
(determined by the transition function) of making the desired
transition when attempting to simulate trace w. Since w is
finite, then with probability 1, we will succeed in finite time.
For (b): let w be the counter-example. We need to prove
that it will be found with probability 1 in finite time. The
argument is the same as for (a), taking into account that ε-
greedy exploration implies a positive probability > c′, for
some strictly positive c′, of taking each action in each state.
Finally, once L∗ generates the correct automaton, the reward
is Markovian w.r.t. the new state space. Because the RL
algorithm converges to an optimal policy with probability 1,

Algorithm 2: RL with NMR and L∗

1 Run the L∗ algorithm;
2 while time remaining do
3 Let A be the current hypothesis automaton for L∗;
4 if L∗ asks a membership query w then
5 Done = false;
6 while Done = false do
7 while current trace is a strict prefix of w do
8 perform the next action in w;
9 end

10 if current trace equals w then
11 return an answer to L∗ based on the

label obtained;
12 Done = true;
13 else
14 continue exploring using current

exploration policy (e.g., ε-greedy) until
end of trial;

15 store the observed trace and its tag;
16 update the RL algorithm using the traces

and state space SM × SA;
17 end

18 end

19 end
20 if L∗ asks an equivalence query then
21 if log contains a counter-example then
22 return the counter example to L∗;
23 else
24 repeat
25 continue exploration recording observed

traces and updating the RL algorithm;
26 until counter-example is found;
27 return the counter-example to L∗;
28 end

29 end

30 end

so will our algorithm. Note that our algorithm may continue
exploring, but its greedy policy will be the optimal one.

Learning Multiple Rewards

The descriptions above focus on a single reward automaton.
To handle multiple automata, a separate automaton is learned
for each reward type. In EDSM, if multiple automata exist,
we simply need to occasionally revise the state space when
one of the automata changes due to new examples. In L∗,
we tried two schemes, which yielded identical results. In the
first approach, we prioritize the automata and query higher
priority automata first. In the second approach, we interleave
queries for different automata. All else remains the same.

The RL Algorithm

We now discuss the use of Q-learning and Rmax as the RL
algorithm in Algorithms 1 & 2.

3983



Q-learning (Watkins and Dayan 1992) is a model-free
learning algorithm that maintains an estimate of the Q func-
tion. The function is initialized arbitrarily, and is updated
following each action a as follows:

Q(s, a) = (1 − α)Q(s, a) + α ⋅ (r + γmax
a′∈A

Q(s′, a′))

where s is the state in which a was applied, r is the reward
obtained, s′ is the resulting state, 0 < α < 1 is the learning
rate, and 0 < γ < 1 is the discount factor.

To update the Q values in Line 10 of Alg. 1 and Line 16
of Alg. 2, we initialize all Q values to 0 except for states
of the form (sM, sA) where sA is an accepting state of the
automaton (i.e., one in which we will receive the NMR).
Then, we do experience replay with the stored traces while
tracking the automaton state. Thus, if we have a stored trial
s0, a1, r1, s1, a2, . . . , sn, we can simulate the state of the au-
tomaton along this trace because the automaton is determinis-
tic. We obtain an updated trace: (s0, sA,0), a1, r1, (s1, sA,1 =
δ(sA,0, s1)), . . . , (sn, sA,n = δ(sA,n−1, sn)). Because our
automaton is consistent with past traces (with which it was
trained), we know that an accepting state sA,i ∈ F will be
reached only where the NMR was obtained.

Exploration is important for the convergence of RL algo-
rithms. With NMRs, it is not enough to explore state-action
pairs, but one must also explore traces, otherwise it may
not encounter some potential rewards. In Q-learning, once
a positive NMR is obtained, it may reinforce the actions
that were executed along the trajectory. In the next iteration,
the algorithm will tend to apply these same actions, lead-
ing it to remain in the original trajectory, and to obtain the
same reward. On the positive side because the reward is non-
Markovian, we do want to strengthen the entire path. On the
negative side, this prevents us from collecting good data for
the automata learning algorithm, and the learning is done by
associating actions to state – with no higher-level view of the
path. Moreover, any stochastic effect will throw us off the
path. The algorithm may try to return to the rewarded path,
but the deviation may already rule-out the desired NMR.

If the domain is noisy, then there is a better chance of not
repeating the same trajectory even if the same policy is used,
and this helps us explore alternative traces. Otherwise, the
standard solution in regular RL is to introduce either a strong
bias for optimism, or use an ε-greedy policy. When ε is large
enough, this also induces some trace exploration.

Rmax (Brafman and Tennenholtz 2002) is a model-based
algorithm that estimates the transition function based on the
observed empirical distribution, and also learns the reward
function from observation. This algorithm has a strong ex-
ploration bias obtained by initially assuming that every state
and action that has not been sampled enough will result in a
transition to a fictitious state in which it constantly obtains
the maximal reward. The algorithm follows the optimal pol-
icy based on its current model. When it collects enough data
about a transition on a state and an action, it updates the
model, and recomputes its policy. A key parameter of the
algorithm is K – the number of times that an action a must
be performed in a state s to mark the pair (s, a) as known.
Once (s, a) is known, tr(s, a) is updated to reflect the em-

pirical distribution. Under the assumption that rewards are
deterministic, r(s, a) is updated the first time it is observed.

When an automaton A is learned, the old transition
function Trold ∶ SM × A → π(SM) and reward func-
tion Rold ∶ SM × A → R are replaced by new functions:
Trnew ∶ SM × SA × A → π(SM) and Rnew ∶ SM ×
SA ×A → R, where trnew((sM, sA), a, (s′M, δ(sA, s′)) =
trold(sM, a, s′

M
) (and all other entries are 0). In practice,

because the SA component is deterministic, there is no
need to explicitly compute and store Trnew – it is repre-
sentable using the Trold and δ. We set rnew((sM, sA), a) =
rold(sM, a) if the reward for sM, a was Markovian, and
rnew((sM, sA), a) = r if the reward for sM, a was non-
Markovian, sA ∈ F , and r was the NMR’s value. All other
entries are 0. At this stage, assumingA captures the right lan-
guage, there is no need to generate any new samples, because
the error (due to sampling) is the same as before (because A
is deterministic).
Rmaxhas an inherent optimism bias. However, this bias

induces state-action exploration, not trace exploration. To
motivate more exploration we do the following. When we
observe the result of a in s once, we do not update r(s, a)
because it may be non-Markovian. Instead, we try to observe
it multiple times to generate good input for the automata-
learning component, and to ensure that we do not under-
estimate its value. In addition, in our experiments, we run an ε-
greedy version of Rmax to encourage additional exploration.

Empirical Evaluation
We evaluated the algorithms on two environments: non-
Markovian multi-armed bandit (MAB) and robot world. Non-
Markovian MAB is the simplest domain on which we can
experiment with learning NMRs. While no state exploration
is needed, we need to explore actions sequences to learn the
NMR. Robot world is a grid-like domain augmented with
a variety of NMRs. For automata learning we implemented
a version of the L∗ algorithm in Python based on the GI-
Learning library (github.com/gabrer/gi-learning) and used
the EDSM implementation from the FlexFringe library (Ver-
wer and Hammerschmidt 2017) with its code changed to
support trace weights. All solvers uses ε-greedy exploration
with simulated annealing from 0.9 to 0.1 using a rate of 1e-6
updates each step. The learning rate α was set to 0.1.

Multi-Armed Bandit

MAB provides the simplest RL setting. Agents get to choose
among N machines/arms/actions in each step. In standard
MAB, an average reward is associated with each arm. In our
domain the reward is deterministic, but it is non-Markovian.
An agent that treats this problem as a standard, Markovian
MAB will learn to associate an average reward with each
arm, and will not realize that this reward is related to its past
behavior. In our experiments we considered four different
reward structure: (1) Reward for using arm 1 four consecutive
steps, followed by arm 3. (2) Like reward 1, but received with
a delay of (arbitrary) three steps. (3) Play arm 3 twice in a
row, then arm 2. (4) Reward 1 and Reward 3.

The results of these experiments are shown in Figure 1.
Each graph describes the average reward as a function of

3984



Figure 1: Non Markovian MAB Results

the number of steps of the learning algorithm. Each episode
consists of 20 steps. Tests were run for 4 million steps, with
the results evaluated every 100,000 steps (= 5,000 traces).
The discount factor was 0.99. The value plotted for each time
step is the average reward over 20 trials of the optimal policy
at this point, i.e., the greedy policy w.r.t. the current q value
or model parameters, with the best current automaton.

Q-learning optimal and Rmax optimal refer to the result
of running Q−learning and R−max when they are given the
optimal automaton ahead of time. In this case, the problem
essentially reduces to learning in a regular MAB, and the
algorithms converge to the optimal policy before we reach
the first test point (i.e., after less than 100,000 steps). We
did not plot the results of vanilla Q−learning and R−max
because the greedy policy will select a single action only, and
this results in 0 reward.

We also see the results of the four possible combinations of
Q−learning and R−max with L∗ and EDSM. L∗ performed
much better than EDSM because we can provide a relatively
efficient perfect teacher: Membership queries are easy to gen-
erate since there is a single state and the trace consists of
actions only. Equivalence queries are answered the moment
we see a mismatch between the prediction of the automaton
and the current trace, and with reasonable exploration, this
does not take too long. EDSM, too, will eventually learn
the correct DFA, but it often goes through some non opti-
mal DFAs, containing too many states (and thus with worse
generalization) or not capturing the NMR correctly. In these
cases, its average reward is lower.

Robot World

This is a 5x5 grid world, shown below, where the robot starts
in a fixed position.

The grid contains a basket, in a fixed location, and two stains
and two fruits in random locations. The stains can be cleaned
and the fruits can be picked and put in the basket. The agent
actions include moving up/down/left/right, clean, pick, and
put. The robot’s state consists of it (x, y) position, the stain
locations, the fruit locations, and the fruits held by the robot.

Move actions have their intended effect with probability of
60%. With probability 20% each, they cause a move to either
the right or the left of the intended direction. An attempt
to move outside the grid results in remaining in place. An
attempt to clean where there is no stain or pick and put when
there is no fruit has no effect. The pick, clean, and put actions
can also fail with probability 40%, in which case, the state
does not change. A constant Markovian reward of -1 is given
for every move action and every illegal action (e.g., picking a
fruit where none exists). Each trial ends after 60 steps, or if
both stains are cleaned and the fruits are in the basket.

The various NMRs were given for: (1) Picking a fruit, pro-
vided all stains were cleaned – applicable for each pick. (2)
Picking a fruit, provided all stains were cleaned, but the re-
ward is delayed by 3 time steps – applicable only for the first
pick. (3) Picking a fruit, provided the previous two actions
were move-right. (4) Both Reward 1 and 3.

Each experiment consists of 25,000,000 steps. The policy
was evaluated every 1,000,000 steps. The discount factor was
0.999999. When learning the automaton, we ignore actions
with no effect (e.g., moving outside the grid, picking a non-
existent fruit). Policies are evaluated by taking their average
discounted reward over 20 episodes. Each point on the graphs
is an average of 11 runs with an error bar of +/- STD.

Results appear in Figure 2. We plot the optimal Q-learning
and R-max values (where the correct automata were given)
as baselines. Both converge quickly to near-optimal behavior.
We also plot the four variants of RL with L∗ and EDSM, and
the results of vanilla Q-learning and R-max, which assume
that the domain is Markovian.
Rmax – Reward Scheme 1: Both the optimal solver and

EDSM find the optimal policy. The optimal solver takes
roughly 2M steps while EDSM improves logarithmically
and achieves sub-optimal results after roughly 8M steps. L∗
and vanilla fail to make significant progress. Specifically, L∗
fails due to the sparsity of observable traces, hence resulting
in an inferior teacher. This results in a slowly learned big
DFA that over-fitted to the specific map.

Q-learning – Reward Scheme 1: The performance is in-
ferior to Rmax Since each evaluated policy re-evaluate the
last 50,000 saved traces collected via current best exploration
policy, the result policy tends to be biased toward those sub-
optimal observations. EDSM achieved a better result than the
optimal DFA solver since it uses DFAs that partially encode

3985



Figure 2: Non Markovian Robot World Results

the current grid object positions, hence result with a slight bet-
ter policy for that specific grid map. Vanilla Q-learning fails
to find a good policy, and due to explorations and the stochas-
tic dynamics, fluctuates greatly between different evaluation
points, although a general improving trend can be observed.
Rmax – Reward Scheme 2: vanilla Q-learning is very noisy

and fails to converge. The optimal solver finds the best policy
roughly after 1M steps. EDSM improves gradually toward
the optimal policy and L∗ still fails to converge.

Q-learning – Reward Scheme 2: Both the optimal solver
and EDSM converge to the optimal policy roughly after 3M
steps. Vanilla is still noisy and converges to a sub-optimal
policy after 25M steps with very high STD. L∗ shows some
improvement but still perform poorly.

Both – Reward Scheme 3: Both the optimal solver and L∗

converge to the optimal policy roughly after 6M & 10M steps.
EDSM is stuck on a sub-optimal policy and finds a single
NMR (slightly inferior to the one found by Q-learning). The
vanilla algorithms fail to find a policy that achieves any NMR.

Rmax – Reward Scheme 4: Optimal finds the best policy
after roughly 5M steps. Both L∗and EDSM find sub-optimal
policies with 2 NMRs after roughly 8M steps. The vanilla
policy fails to find a policy that achieve any NMR.

Q-learning – Reward Scheme 4: Both the optimal solver
and L∗ converge to a sub-optimal policy, achieving half of
the NMR’s roughly after 15M steps. EDSM converges on
a sub-optimal policy achieving 1 NMR and vanilla finds a
policy with 1 NMR that highly depends on the stochastic
behaviour of the world.

To ensure convergence in the above scenarios, we gradu-
ally limited trace length towards that of the minimal positive
one because when traces are too long, the resulting DFAs
are too large. We also limited the number of negative traces

to 1K. Since any prefix of a positive/negative trace is also
negative, their number increases quickly. Thus, we maintain
them in a FIFO structure. Finally, if the resulting DFA has
more than 20 states, we consider this a failure. In that case,
the maximal length of the negative traces is reduce by 50%
and the algorithm is called again. This process continues until
a DFA is inferred or a maximum of 20 failures.

Discussion and Future Work

From the experiments we see that L∗ is better suited for learn-
ing short, simple reward models as in MAB. Not surprisingly,
EDSM, which does better in grammar learning, is better in
the more realistic and challenging robot-world. Even when
EDSM learns an approximate model of optimal DFA, this
model still allows Rmax and Q-learning to converge on a
decent sub-optimal policy.

Another observation is that the vanilla Rmax policy can
essentially learn a fixed desirable trace if such a trace is
representable in the policy. This cannot happen in MAB
because there is a single state, and the optimal policy re-
peats the same action. But in Robot World, good traces do
not require acting differently in the same state, and this al-
lows the vanilla algorithm to perform better than the more
sophisticated DFA learning algorithms on some scenarios.
However, from preliminary additional tests conducted, this
phenomenon becomes much less likely as domain size in-
creases. Interestingly, vanilla Q-learning usually has many
fluctuations and is not able to converge to some policy. We
are not sure why it does not learn a good path.

The most interesting question for future work is how to
induce good exploration of good traces to improve the in-
put to the automata learning algorithm. Better exploration is
also likely needed to improve our ability to learn multiple

3986



rewards, which was challenging for our algorithms. It seems
that once we find one reward, this strongly biases our algo-
rithms, and more focused exploration is probably needed to
learn additional rewards. Yet another reason to improve ex-
ploration is the large sample sizes required to learn. Perhaps
we need trace-oriented exploration. For example, a policy
that with probability ε performs a number of random trials,
or something similar.

Another important direction for future work is attempt-
ing to better integrate the two learning tasks. Right now, our
exploration policy is not informed by the decisions that the
automata learning algorithms must make (except when at-
tempting to answer membership queries). For example, it
may be possible to bias exploration when using EDSM to
help EDSM make better merge decisions.

Stochastic rewards are another challenge because it is dif-
ficult to differentiate between stochastic Markovian rewards
and NMRs. To identify them, we probably need more explo-
ration. Then, we need to compare different hypothesis and
see which one explains the data better.

Finally, very recently, (Camacho and McIlraith 2019) sug-
gested learning LTLf formulas directly, instead of learning
the automaton. This approach can be much more efficient
if the reward corresponds to a small LTLf formula, which
is quite natural in many cases, and we believe adapting our
algorithms by replacing the automata learning algorithms
with this method is a promising direction for future work.

Summary

We described a number of variants of algorithms that combine
RL techniques with automata learning to learn in MDPs with
NMRs. We proved that one such variant converges in the
limit, and empirically evaluated all variants on two domains.
To the best of our knowledge, our work is the first to explore
this problem. It highlights the many challenges that this set-
up raises, and provides a solid starting point for addressing
this problem and motivation for much future work.

Acknowledgements

We thank the reviewers for their useful comments. This work
was supported by ISF Grants 1651/19, by the Israel Ministry
of Science and Technology Grant 54178, and by the Lynn
and William Frankel Center for Computer Science.

References

Angluin, D. 1987. Learning regular sets from queries and
counterexamples. Inf. Comput. 75(2):87–106.
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
behaviors. In AAAI-96, 1160–1167.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Brafman, R., and Tennenholtz, M. 2002. R-max – a general
polynomial time algorithm for near-optimal reinforcement
learning. JMLR 3:213–231.
Brafman, R.; De Giacomo, G.; and Patrizi, F. 2018.
LTLf/LDLf non-Markovian rewards. In AAAI, 1771–1778.

Camacho, A., and McIlraith, S. A. 2019. Learning inter-
pretable models expressed in Linear Temporal Logic. In
ICAPS-19, 621–630.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2017a. Decision-making with non-markovian rewards: From
LTL to automata-based reward shaping. In RLDM-17, 279–
283.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2017b. Non-markovian rewards expressed in LTL: guiding
search via reward shaping. In SOCS-17, 159–160.
Cottone, P.; Ortolani, M.; and Pergola, G. 2016. Gl-learning:
an optimized framework for grammatical inference. In
CompSysTech-16, 339–346.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI-13,
854–860.
de la Higuera, C. 2010. Grammatical Inference: Learning
Automata and Grammars. New York, NY, USA: Cambridge
University Press.
Gold, E. M. 1978. Complexity of automaton identification
given data. Informatica and Control 37(3):302–320.
Kearns, M., and Valiant, L. G. 1989. Cryptographic limita-
tions on learning boolean formulae and finite automata. In
STOC-89, 433–444.
Lang, K. J.; Pearlmutter, B. A.; and Price, R. A. 1998. Results
of the abbadingo one DFA learning competition and a new
evidence-driven state merging algorithm. In ICGI-98, 1–12.
Li, X.; Vasile, C. I.; and Belta, C. 2017. Reinforcement
learning with temporal logic rewards. In IROS-17, 3834–
3839.
Littman, M. L.; Topcu, U.; Fu, J.; Jr., C. L. I.; Wen, M.;
and MacGlashan, J. 2017. Environment-independent task
specifications via GLTL. CoRR abs/1704.04341.
Littman, M. L. 2015. Programming agent via rewards. In
Invited talk at IJCAI.
McCallum, A. K. 1995. Instance-based state identification
for reinforcement learning. NIPS-95 7:377–384.
Peshkin, L.; Meuleau, N.; and Kaelbling, L. P. 2001. Learn-
ing policies with external memory. CoRR cs.LG/0103003.
Puterman, M. L. 2005. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Thiebaux, S.; Gretton, C.; Slaney, J.; Price, D.; and Kabanza,
F. 2006. Decision-theoretic planning with non-markovian
rewards. JAIR 25:17–74.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R. A.; and McIl-
raith, S. A. 2018. Teaching multiple tasks to an RL agent
using LTL. In AAMAS-18, 452–461.
Verwer, S., and Hammerschmidt, C. A. 2017. flexfringe: A
passive automaton learning package. In ICSME-17, 638–642.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Ma-
chine Learning 8(3/4):279–292.

3987


