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Abstract

Knowledge distillation is effective for producing small, high-
performance neural networks for classification, but these
small networks are vulnerable to adversarial attacks. This pa-
per studies how adversarial robustness transfers from teacher
to student during knowledge distillation. We find that a large
amount of robustness may be inherited by the student even
when distilled on only clean images. Second, we introduce
Adversarially Robust Distillation (ARD) for distilling robust-
ness onto student networks. In addition to producing small
models with high test accuracy like conventional distillation,
ARD also passes the superior robustness of large networks
onto the student. In our experiments, we find that ARD stu-
dent models decisively outperform adversarially trained net-
works of identical architecture in terms of robust accuracy,
surpassing state-of-the-art methods on standard robustness
benchmarks. Finally, we adapt recent fast adversarial train-
ing methods to ARD for accelerated robust distillation.

1 Introduction

State-of-the-art deep neural networks for many computer vi-
sion tasks have tens of millions of parameters, hundreds of
layers, and require billions of operations per inference (He et
al. 2016; Szegedy et al. 2016). However, networks are often
deployed on mobile devices with limited compute and power
budgets or on web servers without GPUs. Such applications
require efficient networks with light-weight inference costs
(Dziugaite, Ghahramani, and Roy 2016; Sandler et al. 2018;
Courbariaux et al. 2016; Tai et al. 2015).

Knowledge distillation was introduced as a way to trans-
fer the knowledge of a large pre-trained teacher network
to a smaller light-weight student network (Hinton, Vinyals,
and Dean 2015). Instead of training the student network on
one-hot class labels, distillation involves training the student
network to emulate the outputs of the teacher. Knowledge
distillation yields compact student networks that surpass the
performance achievable by training from scratch without a
teacher (Hinton, Vinyals, and Dean 2015).

Classical distillation methods achieve high efficiency and
accuracy but neglect security. Standard neural networks are
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easily fooled by adversarial examples, in which small per-
turbations to inputs cause mis-classification (Goodfellow,
Shlens, and Szegedy 2014; Szegedy et al. 2013). This phe-
nomenon leads to major security vulnerabilities for high-
stakes applications like self-driving cars, medical diagnosis,
and copyright control (Santana and Hotz 2016; Lee et al.
2017; Saadatpanah, Shafahi, and Goldstein 2019). In such
domains, efficiency and accuracy are not enough – networks
must also be adversarially robust.

We study distillation methods that produce robust student
networks. Unlike conventional adversarial training (Madry
et al. 2017; Shaham, Yamada, and Negahban 2018), which
encourages a network to output correct labels within an ε-
ball of training samples, the proposed Adversarially Robust
Distillation (ARD) instead encourages student networks to
mimic their teacher’s output within an ε-ball of training sam-
ples (See Figure 1). Thus, ARD is a natural analogue of ad-
versarial training but in the context of distillation. Formally,
we solve the minimax problem

min
θ

E(X,y)∼D

[
αt2 KL(St

θ(X + δθ), T
t(X))︸ ︷︷ ︸

Adversarially Robust Distillation loss

+(1− α) �(St
θ(X), y)︸ ︷︷ ︸

classification loss

]
,

(1)

where δθ = argmax‖δ‖p<ε �(S
t
θ(X + δ), y), T and S are

teacher and student networks, and D is the data generating
distribution. See Section 5 for a more thorough description.
Below, we summarize our contributions in this paper:

• We show that knowledge distillation using only natural
images can preserve much of the teacher’s robustness to
adversarial attacks (see Table 1), enabling the production
of efficient robust models without the expensive cost of
adversarial training.

• We introduce Adversarially Robust Distillation (ARD) for
producing small robust student networks. In our experi-
ments, ARD students exhibit higher robust accuracy than
adversarially trained models with identical architecture,
and ARD often exhibits higher natural accuracy simul-
taneously. Interestingly, ARD students may exhibit even
higher robust accuracy than their teacher (see Table 1).
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• We accelerate our method for efficient training by adapt-
ing fast adversarial training methods.

Model
Robust Accuracy

(Aadv)
AT ResNet18 teacher 44.46%
AT ResNet18→MobileNetV2 38.21%

AT ResNet18 ARD−−−→MobileNetV2 50.22%

Table 1: Performance of an adv. trained (AT) teacher net-
work and its student on CIFAR-10, where robust accuracy
(Aadv) is with respect to a 20-step PGD attack as in (Madry
et al. 2017). “→” denotes “knowledge distillation onto”.
“ ARD−−−→” denotes “adversarially robust distillation onto”.

Table 1 shows that a student may learn robust behavior
from a robust teacher, even if it only sees clean images dur-
ing distillation. Our method, ARD, outperforms knowledge
distillation for producing robust students. To gain initial in-
tuition for the differences between these methods, we visual-
ize decision boundaries for a toy problem in Figure 2. Ran-
domly generated training data are depicted as colored dots
with boxes showing the desired �∞ robustness radius. Back-
ground colors represent the classification regions of the net-
works (10-layer teacher and 5-layer student). In each case,
the network achieves perfect training accuracy. A training
point is vulnerable to attack if its surrounding box contains
multiple colors. Results in Figure 2 are consistent with our
experiments in Section 5 on more complex datasets. We see
in these decision boundary plots that knowledge distillation
from a robust teacher preserves some robustness, while ARD
produces a student who closely mimics the teacher.

2 Related Work

Early schemes for compressing neural networks involved
binarized weights to reduce storage and computation costs
(Courbariaux et al. 2016). Other efforts focused on speed-
ing up calculations via low-rank regularization and pruning
weights to reduce computation costs (Tai et al. 2015; Li et al.
2016). Knowledge distillation teaches a student network to
mimic a more powerful teacher (Hinton, Vinyals, and Dean
2015). The student is usually a small, lightweight architec-
ture like MobileNetV2 (MNV2) (Sandler et al. 2018).

Knowledge distillation has also been adapted for robust-
ness in a technique called defensive distillation (Papernot et
al. 2016). In this setting, the teacher and student have identi-
cal architectures. An initial network is trained on class labels
and then distilled at temperature t onto a network of identi-
cal architecture. Defensive distillation improves robustness
to a certain �0 attack (Papernot et al. 2016). However, defen-
sive distillation gains robustness due to gradient masking,
and this defense has been broken using �0, �∞, and �2 at-
tacks (Carlini and Wagner 2016; 2017).

Various methods exist that modify networks to achieve ro-
bustness. Some model-specific variants of adversarial train-
ing utilize surrogate loss functions to minimize the differ-
ence in network output on clean and adversarial data (Zhang

et al. 2019b; Miyato et al. 2018), feature denoising blocks
(Xie et al. 2018), and logit pairing to squeeze logits from
clean and adversarial inputs (Kannan, Kurakin, and Good-
fellow 2018). Still other methods, such as JPEG compres-
sion, pixel deflection, and image superresolution, are model-
agnostic and minimize the effects of adversarial examples by
transforming inputs (Dziugaite, Ghahramani, and Roy 2016;
Prakash et al. 2018; Mustafa et al. 2019).

Recently, there has been work on defensive-minded com-
pression. The authors of (Wijayanto et al. 2018) and (Zhao
et al. 2018) study the preservation of robustness under quan-
tization. Defensive Quantization involves quantizing a net-
work while minimizing the Lipschitz constant to encour-
age robustness (Lin, Gan, and Han 2019). While quanti-
zation reduces space complexity, it does not reduce the
number of Multiply-Add (MAdd) operations needed for in-
ference, although operations performed at lower precision
may be faster depending on hardware. Moreover, Defensive
Quantization is not evaluated against strong attackers. An-
other compression technique involves pruning (Sehwag et
al. 2019). Pruning does reduce the number of parameters in
a network, but it does not decrease network depth and thus
may not accelerate inference. Additionally, this work does
not achieve high compression ratios and does not achieve
competitive performance on CIFAR-10. Pruning maintains
the same architectural framework and does not allow a user
to compress a state-of-the-art large robust network into a
lightweight architecture of their choice. Creating small ro-
bust models is also of interest for the few-shot setting. Ad-
versarial querying approaches this problem from the meta-
learning perspective (Goldblum, Fowl, and Goldstein 2019).

3 Problem Setup

Knowledge distillation employs a teacher-student paradigm
in which a small student network learns to mimic the output
of an often much larger teacher model (Hinton, Vinyals, and
Dean 2015). Knowledge distillation in its purist form entails
the minimization problem,

min
θ

�KD(θ), �KD(θ) = EX∼D
[
KL(St

θ(X), T t(X))
]
,

(2)

where KL is KL divergence, Sθ is a student network with
parameters θ, T is a teacher network, t is a temperature con-
stant, and X is an input to the networks drawn from data
generating distribution D. The temperature constant refers
to a number by which the logits are divided before being fed
into the softmax function. Intuitively, knowledge distillation
involves minimizing the average distance from the student’s
output to the teacher’s output over data from a distribution.
The softmax outputs of the teacher network, also referred
to as soft labels, may be more informative than true data
labels alone. In (Hinton, Vinyals, and Dean 2015), the au-
thors suggest using a linear combination of the loss function,
�KD(θ), and the cross-entropy between the softmax output
of the student network and the one-hot vector representing
the true label in order to improve natural accuracy of the stu-
dent model, especially on difficult datasets. In this case, we
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Figure 1: Adversarially Robust Distillation (ARD) works by minimizing discrepancies between the outputs of a teacher on
natural images and the outputs of a student on adversarial images.

Figure 2: A student distilled from a robust teacher is more robust than a naturally trained network, but ARD produces a more
robust network than either and closely mimics the teacher’s decision boundary. Adversarially vulnerable training points have
�∞ boxes outlined in red.

have the loss function

�KD(θ) = E(X,d)∼D
[
αt2 KL(St

θ(X), T t(X)

+(1− α)�(St
θ(X), y)

]
,

(3)

where � is the standard cross-entropy loss, and y is the label.
In our experiments, we use α = 1 except where otherwise
noted. We investigate if students trained using this method
inherit their teachers’ robustness to adversarial attacks. We
also combine knowledge distillation with adversarial train-
ing.

Adversarial training is another method for encouraging
robustness to adversarial attacks during training (Shaham,
Yamada, and Negahban 2018). Adversarial training involves
the minimax optimization problem,

min
θ

E(X,y)∼D

[
max

‖δ‖p<ε
Lθ(X + δ, y)

]
, (4)

where Lθ(X + δ, y) is the loss of network with param-
eters θ, input X perturbed by δ, and label y. Adversar-
ial training encourages a student to produce the correct
label in an ε-ball surrounding data points. Virtual Adver-
sarial Training (VAT) and TRADES instead use as a loss
function a linear combination of cross-entropy loss and
KL divergence between the network’s softmax output from
clean input and from adversarial input (Miyato et al. 2018;

Zhang et al. 2019b). The KL divergence term acts as a con-
sistency regularizer which trains the neural network to pro-
duce identical output on a natural image and adversarial im-
ages generated from the natural image. As a result, this term
encourages the neural network’s output to be constant in ε-
balls surrounding data points.

Knowledge distillation is useful for producing accurate
student networks when highly accurate teacher networks ex-
ist. However, the resulting student networks may not be ro-
bust to adversarial attacks (Carlini and Wagner 2017). We
combine the central ideas of knowledge distillation and ad-
versarial training to similarly produce robust student net-
works when robust teacher networks exist.

We focus on adversarial robustness to �∞ attacks since
these are pervasive in the robustness literature. Thus, we
carry out both adversarial training and ARD with FGSM-
based PGD �∞ attacks similarly to (Madry et al. 2017;
Zhang et al. 2019b). We re-implemented the methods from
these papers to perform adversarial training and to estab-
lish performance baselines. In our experiments, we use
WideResNet (34-10) and ResNet18 teacher models as well
as MobileNetV2 (MNV2) students (Zagoruyko and Ko-
modakis 2016; He et al. 2016; Sandler et al. 2018). Adver-
sarial training and TRADES teacher models are as described
in (Madry et al. 2017; Zhang et al. 2019b).
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4 Adversarial robustness is preserved under

knowledge distillation

The softmax output of a neural network classifier trained
with cross-entropy loss estimates the posterior distribution
over class labels on the training data distribution (Bridle
1990). Empirical study of distillation suggests that neural
networks perform better when trained on the softmax out-
put of a powerful teacher than when trained on only class
labels (Hinton, Vinyals, and Dean 2015). The distribution
of images generated by adversarial attacks with respect to a
particular model and a data generating distribution, D, may
differ from the distribution of natural images generated by
D. Distillation from a naturally trained teacher is known to
produce student models which are not robust to adversar-
ial attacks (Carlini and Wagner 2017). Thus, we suspected
that a non-robust teacher network trained on natural images
would be poorly calibrated for estimating posterior probabil-
ities on the distribution of images generated by adversarial
attacks. On the other hand, an adversarially trained teacher
network might provide a more accurate estimate of posterior
probabilities on this distribution. We compare the robustness
of student models distilled from both naturally trained and
adversarially trained teachers. If we distill from an adversar-
ially trained teacher, will the student inherit robustness?

If robustness transfers from teacher to student, we can
harness state-of-the-art robust teacher networks to produce
accurate, robust, and efficient student networks. Moreover,
since adversarial training is slow due to the bottleneck of
crafting adversarial samples for every batch, we could cre-
ate many different student networks from one teacher, and
adversarial training would only need to be performed once.
This routine of training a robust teacher and then distilling
onto robust students would be far more time efficient than
training many robust student networks individually.

4.1 Non-robust teachers produce non-robust
students

To establish a baseline for comparison, we distill a non-
robust ResNet18 teacher and evaluate against a 20-step PGD
attack as in (Madry et al. 2017). We verify known results
showing that defensive distillation is ineffective for produc-
ing adversarially robust students (Carlini and Wagner 2017).

Model Anat Aadv

ResNet18 teacher 94.75% 0.0%
ResNet18→ ResNet18 94.92% 0.0%
ResNet18→MNV2 93.53% 0.0%

Table 2: Performance of a naturally trained teacher network
and its students distilled (with t = 30) on CIFAR-10, where
robust accuracy is with respect to a 20-step PGD attack as in
(Madry et al. 2017). Anat denotes natural accuracy.

4.2 Robust teachers can produce robust students,
even distilling on only clean data

Next, we substitute in a robust adversarially trained
ResNet18 teacher network and run the same experiments.

We find that our new student networks are far more robust
than students of the non-robust teacher (see Table 3). In fact,
the student networks acquire most of the teacher’s robust
accuracy. These results confirm that robust lightweight net-
works may indeed be produced cheaply through knowledge
distillation without undergoing adversarial training.

Student Model Anat Aadv

AT ResNet18 teacher 76.54% 44.46%
AT ResNet18→ ResNet18 76.13% 40.13%
AT ResNet18→MNV2 76.86% 38.21%

Table 3: Performance of an adversarially trained ResNet18
teacher network and student networks of various sizes dis-
tilled on CIFAR-10, where robust accuracy is with respect
to a 20-step PGD attack as in (Madry et al. 2017).

4.3 Not all robust networks are good teachers,
and robustness does not transfer on some
datasets

In the previous experiments, we see that a student network
may inherit a significant amount of robustness from a robust
teacher network during knowledge distillation. However,
some robust teachers are not conducive to this robustness
transfer. We use robust WideResNet (34-10) models trained
using adversarial training and TRADES to show that while
these models do transfer robustness during knowledge dis-
tillation, they transfer less than the weaker ResNet18 teacher
network from the previous section (See Table 4). Addition-
ally, a robust WRN teacher model transfers almost no ro-
bustness under knowledge distillation against 20-step PGD
untargeted attacks on CIFAR-100, a much harder dataset for
robustness to untargeted attacks than CIFAR-10 (See Table
5). Further experiments show that robustness transfer dimin-
ishes rapidly as we decrease α from our default value of 1.

For these reasons, we develop ARD for distilling a variety
of teachers in order to produce robust students. Using ARD,
robustness is preserved on architectures and datasets that do
not transfer robustness under vanilla knowledge distillation.

Model Anat Aadv

AT WRN teacher 84.41% 45.75%
TRADES WRN teacher 84.92% 56.61%
AT WRN→MNV2 92.49% 5.46%
TRADES WRN→MNV2 85.6% 21.69%

Table 4: Robust WRN teacher models and their students on
CIFAR-10, where robust accuracy is with respect to a 20-
step PGD attack as in (Madry et al. 2017).

5 Improving the robustness of student

models with Adversarially Robust

Distillation (ARD)

We combine the central machinery from knowledge distil-
lation, adversarial training, and TRADES/VAT to produce
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Model Anat Aadv

AT WRN teacher 59.9% 28.36%
AT WRN→MNV2 25.54% 1.30%
AT WRN→MNV2

(α = 0.95) 75.94% 0.02%
AT WRN→MNV2

(α = 0.93) 76.38% 0.00%

Table 5: Robust teacher network and its students on CIFAR-
100, where robust accuracy is with respect to a 20-step PGD
attack as in (Madry et al. 2017).

small robust student models from much larger robust teacher
models using a method we call Adversarially Robust Dis-
tillation. ARD not only produces more robust students than
knowledge distillation, but ARD also works for teachers and
datasets on which knowledge distillation is ineffective for
transferring robustness. Our procedure is a natural analogue
of adversarial training but in a distillation setting. During
standard adversarial training, we encourage a network to
produce the ground truth label corresponding to a clean in-
put when the network is exposed to an adversary. Along the
same lines, our method treats the teacher network’s softmax
output on clean data as the ground truth and trains a student
network to reproduce this ground truth when exposed to ad-
versarial examples. We start with a robust teacher model, T ,
and we train the student model Sθ by solving the following
optimization problem ((1) revisited):

min
θ

E(X,y)∼D
[
αt2 KL(St

θ(X + δθ), T
t(X))

+(1− α)�(St
θ(X), y)

]
,

where δθ = argmax‖δ‖p<ε �(S
t
θ(X + δ), y), � is cross-

entropy loss, and we divide the logits of both student and
teacher models by temperature term t during training. The
t2 term is used as in (Hinton, Vinyals, and Dean 2015) since
dividing the logits shrinks the gradient. The cross-entropy
loss, which encourages natural accuracy, is a standard train-
ing loss. Thus, α is a hyperparameter that prioritizes similar-
ity to the teacher over natural accuracy. In our experiments,
we set α = 1 except where otherwise noted, eliminating the
cross-entropy term. We find that lower values of α are use-
ful for improving performance on harder classification tasks.
Our training routine involves the following procedure:

5.1 ARD works with teachers that fail to transfer
robustness under knowledge distillation

In Section 4, we saw that that some teacher networks do not
readily transfer robustness. We see through our experiments
in Table 6 that ARD is able to create robust students from
teachers whose robustness failed to transfer during knowl-
edge distillation. TRADES and adversarially trained Mo-
bileNetV2 (MNV2) models are each outperformed in both
natural and robust accuracy simultaneously by an ARD vari-
ant. In these experiments, the WideResnet teacher model
contains 20× as many parameters and performs 70× as
many MAdd operations as the MobileNetV2 student.

Algorithm 1: Adversarially Robust Distillation (ARD)
Require: Student and teacher networks S and T ,
learning rate γ, dataset {(xi, yi)}, number of steps, K,
per PGD attack, and ε maximum attack radius.

Initialize θ, the weights S;
for Epoch = 1,...,Nepochs do

for Batch = 1,...,Nbatches do
Construct adv. example x′

i for each xi ∈ Batch
by maximizing cross-entropy between Sθ(x

′
i)

and yi constrained to ‖xi − x′
i‖p < ε using

K-step PGD.
Compute∇θ�ARD({xi}, θ) =∑

i∇θ[αt
2 KL(St

θ(x
′
i), T

t(xi))
+(1− α)�(St

θ(X),y)], over the current batch.
θ ← θ − γ∇θ�ARD({xi}, θ)

Model Anat Aadv

TRADES WRN teacher 84.92% 56.61%
AT MNV2 80.50% 46.90%
TRADES MNV2 83.59% 44.79%

TRADES WRN ARD−−−→MNV2 82.63% 50.42%

TRADES WRN ARD−−−→MNV2
(α = 0.95) 84.70% 46.28%

Table 6: Performance on CIFAR-10, where robust accuracy
is w.r.t. a 20-step PGD attack as in (Madry et al. 2017).

5.2 ARD works on datasets where knowledge
distillation fails

In Section 4, we saw that a student network inherited lit-
tle robustness from an adversarially trained teacher network
on CIFAR-100. This dataset is very difficult to protect from
untargeted attacks because it contains many classes that are
similar in appearance. In Table 7, we see that a MobileNetV2
student model trained on CIFAR-100 using ARD from an
adversarially trained WideResNet is significantly more ro-
bust than an adversarially trained MobileNetV2. In fact, the
ARD model is nearly as robust as its teacher.

Model Anat Aadv

AT WRN teacher 59.90% 28.36%
AT MNV2 55.62% 22.80%

AT WRN ARD−−−→MNV2 (α = 0.93) 55.47% 27.64%

Table 7: Performance on CIFAR-100, where robust accuracy
is w.r.t. a 20-step PGD attack as in (Madry et al. 2017).

5.3 ARD can produce networks more robust than
their teacher

In some experiments, ARD student networks are more ro-
bust than their teacher. Interestingly, this behavior does not
depend on distilling from a high-capacity network to a low
capacity network; distilling Resnet18 onto itself and Mo-
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bileNetV2 onto itself using ARD results in far better robust-
ness than adversarial training alone.

We seek to understand if this increased robustness is
caused by differences between the student and teacher ar-
chitectures, and so we use ARD to distill a teacher network
onto a student network with an identical architecture. In
our experiments, ARD boosted the robustness of both the
ResNet18 and MobileNetV2 models (See Table 8).

Model Anat Aadv

AT ResNet18 76.54% 44.46%
AT MNV2 80.50% 46.90%

AT ResNet18 ARD−−−→ ResNet18 79.49% 51.21%

AT MNV2 ARD−−−→MNV2 81.22% 47.95%

AT ResNet18 ARD−−−→MNV2 79.47% 50.22%

Table 8: Performance on CIFAR-10, where robust accuracy
is w.r.t. a 20-step PGD attack as in (Madry et al. 2017).

5.4 Accelerating ARD using fast adversarial
training methods

The ARD procedure described above takes approximately
the same amount of time as adversarial training. Adversarial
training is slow since it requires far more gradient calcula-
tions than natural training. Several methods have been pro-
posed recently for accelerating adversarial training (Shafahi
et al. 2019; Zhang et al. 2019a). We similarly accelerate per-
formance for ARD by adapting “free” adversarial training
to distillation. This version, Fast-ARD, described in Algo-
rithm 2, is equally fast to knowledge distillation (see Table
10 for a list of training times). During training, we replay
each mini-batch several times in a row. On each replay, we
simultaneously compute the gradient of the loss w.r.t. the im-
age and parameters using the same backward pass. Then, we
update the adversarial attack and the network’s parameters
simultaneously. Empirically, Fast-ARD produces less robust
students than the full ARD above, but it produces higher
robust accuracy compared to models with identical archi-
tectured trained using existing accelerated free adversarial
training methods as seen in Table 9. Furthermore, Fast-ARD
from a TRADES WideResNet onto MobileNetV2 produces
a more robust student than our most robust MobileNetV2
produced during vanilla knowledge distillation and in the
same amount of training time. Our accelerated algorithm is
detailed in Algorithm 2.

5.5 ARD and Fast-ARD models are more robust
than their adversarially trained counterparts

While 20-step PGD is a powerful attack, we also test ARD
against other �∞ attackers including Momentum Iterative
Fast Gradient Sign Method (Dong et al. 2018), DeepFool
(Moosavi-Dezfooli, Fawzi, and Frossard 2016), 1000-step
PGD, and PGD with random restarts. We find that ARD and
Fast-ARD outperform adversarial training and free training
respectively across all attacks we tried (see Table 11).

Algorithm 2: Fast-ARD with free adversarial training
Requires: Student and teacher networks S and T ,
learning rate γ, norm p, dataset {(xi, yi)}, and attack
step-size r and radius ε

Initialize θ, the weights of network S, and set δ = 0.
for Epoch = 1,...,Nepochs

m do
for Batch = 1,...,Nbatches do

for j = 1,..., m do
For xi ∈ Batch, find new perturbation δ′i by
maximizing cross-entropy between
Sθ(xi + δi + δ′i) and yi over δ′i,
constrained to ‖δi + δ′i‖p < ε, using a
1-step PGD attack.

Compute the gradient of the loss function
∇θ�ARD({xi}, θ) =∑

i∇θ[αt
2 KL(St

θ(x
′
i), T

t(xi)) + (1−
α)�(St

θ(X),y)], over current batch.
δi ← δi + δ′i
θ ← θ − γ∇θ�ARD({xi}, θ)

Model Anat Aadv

Free trained MNV2 (m=4) 82.63% 23.13%

TRADES WRN F-ARD−−−−→MNV2
(m=4) 83.51% 37.07%

Free trained MNV2 (m=8) 72.30% 27.96%

TRADES WRN F-ARD−−−−→MNV2
(m=8) 76.38% 36.85%

Table 9: Performance of MobileNetV2 classifiers, free
trained and Fast-ARD, on CIFAR-10, where robust accuracy
is with respect to a 20-step PGD attack as in (Madry et al.
2017). “ F-ARD−−−−→” denotes “Fast-ARD onto”.

Model Time (hrs)
AT MNV2 41.09
TRADES WRN→MNV2 5.13

TRADES WRN ARD−−−→MNV2 41.06

TRADES WRN F-ARD−−−−→MNV2 (m=4) 5.15

TRADES WRN F-ARD−−−−→MNV2 (m=8) 5.10

Table 10: Training times for adversarial training, clean dis-
tillation, ARD, and Fast-ARD. Each model was trained with
200 parameter updates for each training image (equivalent
of 200 epochs). All models were trained on CIFAR-10 with
a single RTX 2080 Ti GPU and identical batch sizes. The
AT model and the ARD model were trained with a 10-step
PGD attack. “ F-ARD−−−−→” denotes “Fast-ARD onto”.

6 Space and time efficiency of student and

teacher models

We perform our experiments for ARD with WideResNet
(34-10) and ResNet18 teacher models as well as a Mo-
bileNetV2 student model. We consider two network quali-
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Model MI-FGSM20 DeepFool 1000-PGD 20-PGD 100-restarts
AT MNV2 50.82% 57.74% 46.51% 46.79%
ARD−−−→MNV2 55.16% 64.61% 49.98% 50.30%

Free trained MNV2 (m=4) 30.60% 41.09% 22.23% 22.94%
F-ARD−−−−→MNV2(m=4) 44.78% 60.03% 36.01% 36.88%

Table 11: Robust validation accuracy of adversarially trained and free trained MobileNetV2 and TRADES WRN ARD (and
Fast-ARD) onto MobileNetV2 on CIFAR-10 under various attacks. All attacks use ε = 8

255 .

ties for quantifying compression. First, we study space effi-
ciency by counting the number of parameters in a network.
Second, we study time complexity. To this end, we com-
pute the multiply-add (MAdd) operations performed during
a single inference. The real time elapsed during this infer-
ence will vary as a result of implementation and deep learn-
ing framework, so we use MAdd, which is invariant under
implementation and framework, to study time complexity.

The WideResNet and ResNet18 teachers we employ con-
tain ∼ 46.2M and ∼ 11.2M parameters respectively, while
the MobileNetV2 student contains ∼ 2.3M parameters. A
forward pass through the WRN and ResNet18 teacher mod-
els takes ∼ 13.3B MAdd operations and ∼ 1.1B MAdd op-
erations respectively, while a forward pass through the stu-
dent model takes ∼ 187M MAdd operations. To summa-
rize these network traits, compared to a WideResnet (34-10)
teacher, the MobileNetV2 student model:

• Contains ∼ 5% as many parameters

• Performs∼ 1.4% as many MAdd operations during a for-
ward pass

7 Discussion

We find that knowledge distillation allows a student network
to absorb a large amount of a teacher network’s robustness
to adversarial attacks, even when the student is only trained
on clean data. However, in some cases, a distilled student
model is still far less robust than the teacher. To improve
student robustness, we introduce Adversarially Robust Dis-
tillation (ARD). In our experiments, student models trained
using our method outperform similar networks trained us-
ing adversarial training in robust and often natural accuracy.
Our models exceed state-of-the-art performance on CIFAR-
10 and CIFAR-100 benchmarks. Furthermore, we develop
a free adversarial training variant of ARD and demonstrate
appreciably accelerated performance.

Recent work on distillation has produced significant im-
provements over vanilla knowledge distillation (Chen et al.
2018). We believe that Knowledge Distillation with Fea-
ture Maps could improve both natural and robust accu-
racy of student networks. Adaptive data augmentation like
AutoAugment (Cubuk et al. 2018) may also improve per-
formance of both normal knowledge distillation for ro-
bust teachers and ARD. Finally, with the recent publica-
tion of fast adversarial training methods (Shafahi et al. 2019;
Zhang et al. 2019a), we hope to further accelerate ARD.

8 Experimental details

We train our models for 200 epochs with SGD and a momen-
tum term of 2(10−4). Fast-ARD models are trained for 200

m
epochs so that they take the same amount of time as natural
distillation. We use an initial learning rate of 0.1, and we de-
crease the learning rate by a factor of 10 on epochs 100 and
150 (epochs 100

m and 150
m for Fast-ARD). We use a tempera-

ture term of 30 for CIFAR-10 and 5 for CIFAR-100. To craft
adversarial examples during training, we use FGSM-based
PGD with 10 steps, �∞ attack radius of ε = 8

255 , a step size
of 2

255 , and a random start.
A PyTorch implementation of ARD can be found at: https:

//github.com/goldblum/AdversariallyRobustDistillation

Acknowledgments

This research was generously supported by DARPA, includ-
ing the GARD program, QED for RML, and the Young Fac-
ulty Award program. Further funding was provided by the
AFOSR MURI program, and the National Science Founda-
tion (DMS).

References

Bridle, J. S. 1990. Probabilistic interpretation of feedfor-
ward classification network outputs, with relationships to
statistical pattern recognition. In Neurocomputing. Springer.
227–236.
Carlini, N., and Wagner, D. 2016. Defensive distilla-
tion is not robust to adversarial examples. arXiv preprint
arXiv:1607.04311.
Carlini, N., and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), 39–57. IEEE.
Chen, W.-C.; Chang, C.-C.; Lu, C.-Y.; and Lee, C.-R. 2018.
Knowledge distillation with feature maps for image classifi-
cation. arXiv preprint arXiv:1812.00660.
Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830.
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2018. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and
Li, J. 2018. Boosting adversarial attacks with momentum.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 9185–9193.

4002



Dziugaite, G. K.; Ghahramani, Z.; and Roy, D. M. 2016. A
study of the effect of jpg compression on adversarial images.
arXiv preprint arXiv:1608.00853.
Goldblum, M.; Fowl, L.; and Goldstein, T. 2019. Adver-
sarially robust few-shot learning: A meta-learning approach.
arXiv preprint arXiv:1910.00982.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Kannan, H.; Kurakin, A.; and Goodfellow, I. 2018. Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373.
Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G. B.; Seo,
J. B.; and Kim, N. 2017. Deep learning in medical imaging:
general overview. Korean journal of radiology 18(4):570–
584.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P.
2016. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710.
Lin, J.; Gan, C.; and Han, S. 2019. Defensive quanti-
zation: When efficiency meets robustness. arXiv preprint
arXiv:1904.08444.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083.
Miyato, T.; Maeda, S.-i.; Ishii, S.; and Koyama, M. 2018.
Virtual adversarial training: a regularization method for su-
pervised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2574–2582.
Mustafa, A.; Khan, S. H.; Hayat, M.; Shen, J.; and Shao, L.
2019. Image super-resolution as a defense against adversar-
ial attacks. arXiv preprint arXiv:1901.01677.
Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A.
2016. Distillation as a defense to adversarial perturbations
against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), 582–597. IEEE.
Prakash, A.; Moran, N.; Garber, S.; DiLillo, A.; and Storer,
J. 2018. Deflecting adversarial attacks with pixel deflection.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 8571–8580.
Saadatpanah, P.; Shafahi, A.; and Goldstein, T. 2019. Adver-
sarial attacks on copyright detection systems. arXiv preprint
arXiv:1906.07153.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-

ear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4510–4520.
Santana, E., and Hotz, G. 2016. Learning a driving simula-
tor. arXiv preprint arXiv:1608.01230.
Sehwag, V.; Wange, S.; Mittal, P.; and Jana, S. 2019. To-
wards compact and robust deep neural networks. arXiv
preprint arXiv:1906.06110.
Shafahi, A.; Najibi, M.; Ghiasi, A.; Xu, Z.; Dickerson,
J.; Studer, C.; Davis, L. S.; Taylor, G.; and Goldstein,
T. 2019. Adversarial training for free! arXiv preprint
arXiv:1904.12843.
Shaham, U.; Yamada, Y.; and Negahban, S. 2018. Under-
standing adversarial training: Increasing local stability of su-
pervised models through robust optimization. Neurocomput-
ing 307:195–204.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818–2826.
Tai, C.; Xiao, T.; Zhang, Y.; Wang, X.; et al. 2015. Convolu-
tional neural networks with low-rank regularization. arXiv
preprint arXiv:1511.06067.
Wijayanto, A. W.; Jin, C. J.; Madhawa, K.; and Murata, T.
2018. Robustness of compressed convolutional neural net-
works. In 2018 IEEE International Conference on Big Data
(Big Data), 4829–4836. IEEE.
Xie, C.; Wu, Y.; van der Maaten, L.; Yuille, A.; and He, K.
2018. Feature denoising for improving adversarial robust-
ness. arXiv preprint arXiv:1812.03411.
Zagoruyko, S., and Komodakis, N. 2016. Wide residual
networks. arXiv preprint arXiv:1605.07146.
Zhang, D.; Zhang, T.; Lu, Y.; Zhu, Z.; and Dong, B. 2019a.
You only propagate once: Painless adversarial training using
maximal principle. arXiv preprint arXiv:1905.00877.
Zhang, H.; Yu, Y.; Jiao, J.; Xing, E. P.; El Ghaoui, L.; and
Jordan, M. I. 2019b. Theoretically principled trade-off
between robustness and accuracy. arXiv preprint arXiv:
1901.08573.
Zhao, Y.; Shumailov, I.; Mullins, R.; and Anderson, R. 2018.
To compress or not to compress: Understanding the interac-
tions between adversarial attacks and neural network com-
pression. arXiv preprint arXiv:1810.00208.

4003


