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Abstract

Subsampling is a widely used and effective method to deal
with the challenges brought by big data. Most subsampling
procedures are designed based on the importance sampling
framework, where samples with high importance measures
are given corresponding sampling probabilities. However, in
the highly noisy case, these samples may cause an unstable
estimator which could lead to a misleading result. To tackle
this issue, we propose a gradient-based Markov subsampling
(GMS) algorithm to achieve robust estimation. The core idea
is to construct a subset which allows us to conservatively cor-
rect a crude initial estimate towards the true signal. Specifi-
cally, GMS selects samples with small gradients via a prob-
abilistic procedure, constructing a subset that is likely to ex-
clude noisy samples and provide a safe improvement over the
initial estimate. We show that the GMS estimator is statisti-
cally consistent at a rate which matches the optimal in the
minimax sense. The promising performance of GMS is sup-
ported by simulation studies and real data examples.

Introduction

The rapid development of science and technology in the past
decade have introduced data of extraordinary size and com-
plexity, which brings great challenges to conventional ma-
chine learning and statistical methods. A popular way to
deal with big data is the divide and conquer strategy, which
involves partitioning the data, running a particular learning
algorithm on data segments in parallel, and then aggregat-
ing a global output by combining these individual parallel
outputs. To this end, distributed computing platforms like
Spark (Zaharia et al. 2010) and Ray (Moritz and et al 2018)
have been developed. As a computationally cheaper alterna-
tive, subsampling techniques have also drawn a great deal of
attention for processing big data (Fithian and Hastie 2014;
Halko, Martinsson, and Tropp 2011; Dereziński, Warmuth,
and Hsu 2018a; Derezinski, Warmuth, and Hsu 2018b).
These methods aim to select a representative subset from
the full data for downstreaming learning tasks. The com-
putational burden is then greatly alleviated as the selected
subset is quite small.
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Intuitively, uniform sampling is perhaps the most straight-
forward way to conduct subsampling. However, uniform
sampling can be inefficient and unstable for data with high
noise level. Therefore, we usually resort to informative sub-
sampling, where important observations are given a higher
chance to be selected. One representative informative sub-
sampling procedure is leverage score sampling (Drineas
et al. 2011; 2012; Drineas, Mahoney, and Muthukrishnan
2008; Rudi et al. 2018), which assigns sampling probabil-
ity proportional to a distance measure within the covariates.
Another informative subsampling procedure is given in (Zhu
2016), where the sampling probabilities are computed pro-
portional to the quadratic loss gradient using a pilot estima-
tor. Gradient-based subsampling (GS) notably uses informa-
tion derived from the input data as well as the response. Fol-
lowing in this spirit, the work in (Ting and Brochu 2018)
proposes an influence function as a information measure to
calculate sampling probabilities, which is shown to lead to
an asymptotically optimal sampling distribution in the sense
of minimum variance for the resulting linear estimator.

These informative subsampling methods usually boil
down to solving a weighted least squares problem which
is sensitive to unbalanced sampling probabilities. Conse-
quently, the resulting estimators can be less precise in appli-
cations (Ma, Mahoney, and Yu 2015). Moreover, these meth-
ods assign higher probabilities to samples that are highly
influential to the estimator. However, many of these sam-
ples can be noisy or outliers when the noise level is high,
and these estimators would result in a misleading conclu-
sion. In addition, the accuracy of GS and influence sampling
depends on a reliable initial estimator which would be dif-
ficult to obtain in the noisy setting. In this paper, we de-
velop a robust gradient-based Markov subsampling (GMS)
method for linear regression. The procedure is as follows:
We first obtain a crude estimator β0 based on a simple pi-
lot selection. We later show that by selecting samples with
small loss gradients, it is possible to construct a subset DS

on which the empirical loss at β0 serves as a good approx-
imation of the empirical loss at the oracle β∗. Since β0 is
a rough estimator to β∗ and quadratic loss is convex, the
least square estimator β̂ on DS is a safe improvement from
β0 towards β∗ (See Fig. 1 for an illustration). The pro-
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Figure 1: A random sample n = 200 is generated from
yi = xiβ

∗
i + εi where xi ∼ N(0, 4) , εi ∼ U(−2, 2). The

red line denotes the quadratic loss on full data, and the blue
line denotes the loss function on a subset DS generated by
the GMS procedure.

posed GMS constructs such a DS by selecting samples of
small gradient value through a Metropolis-Hastings (MH)
type procedure. By doing so, samples with large gradient
value are unlikely to be selected and outliers are avoided
with high probability. We show that under mild conditions,
the GMS estimator is statistically consistent with a rate at or-
der O(

√
d log(d)/nsub), where nsub denotes the subsample

size and d is the number of regression covariates. The su-
perior performance of GMS is also supported by simulation
studies and real-world examples.

The rest of this paper is organized as follows: Section 2
sets the notations and problem statement. Section 3 intro-
duces the proposed GMS algorithm. Section 4 establishes
the corresponding error bound. Section 5 presents experi-
mental results on both simulations and real-world dataset.
Section 6 concludes our work.

Notations and Preliminaries

To make our arguments in the following sections precise,
some concepts and notations are introduced.
Definition 1 (Vershynin 2018) A random variableX ∈ R is
said to be sub-Gaussian with variance proxy σ2 if E[X] = 0
and its moment generating function satisfies

E[exp(sX)] ≤ exp

(
s2σ2

2

)
, ∀s ∈ R.

We denote a sub-Gaussian random variable as X ∼
subG(σ2). More generally, a random vector X ∈ R

d is said
to be sub-Gaussian with variance proxy σ2 if E[X] = 0 and
u�X is sub-Gaussian with variance proxy σ2 for any unit
vector u ∈ Sd−1. In this case we write X ∼ subGd(σ

2).
In this paper, we consider a dataset D = (X,y) generated

according to the linear model

y = Xβ∗ + ε, (1)

where X = [x1,x2, · · · ,xn] ∈ R
n×d is a design matrix,

y = (y1, y2, · · · , yn)� ∈ R
n is a response vector , ε =

(ε1, ε2, · · · εn)� and εi ∼ subG(σ2) for i = 1, 2, · · · , n.
Denote the quadratic loss on D by L(β) =

∑n
i=1 �i(β),

where �i(β) = (yi − xiβ)
2.

We focus on the setting n � d, where the least squares
solution to model (1) is given by

βn =
1

n
Σ−1

n X�y, (2)

where Σn = X�X/n denotes the empirical covariance ma-
trix. Classic algorithms, including Cholesky decomposition,
QR decomposition and Singular Value Decomposition com-
pute βn in O(nd2) time. For a matrix M ∈ R

d×d, we de-
note its maximal and minimal eigenvalues by λmax(M) and
λmin(M). For a vector u ∈ R

d, we denote its �2 norm by
‖u‖.

The following concepts play an important role in our
theoretical analysis. Let {Xi}i≥1 be a Markov chain on a
general space X with invariant probability distribution π.
Let P (x, dy) be a Markov transition kernel on a general
space (X ,B(X )) and P ∗ be its adjoint. Denote L2(π) by
the Hilbert space consisting of square integrable functions
with respect to π. For any function h : X → R, we write
π(h) :=

∫
h(x)π(dx). Denote the additive reversibliza-

tion by R = (P + P ∗)/2. Let P t(x, dy), (t ∈ N) be the
t-step Markov transition kernel corresponding to P , then
for i ∈ N, x ∈ X and a measurable set S, P t(x, S) =
Pr(Xt+i ∈ S|Xi = x). Following the above notations, we
introduce the definitions of ergodicity and spectral gap for a
Markov chain.

Definition 2 Let M(x) be a non-negative function. For an
initial probability measure ρ(·) on B(X ), a Markov chain is
uniformly ergodic if

‖P t(ρ, ·)− π(·)‖TV ≤M(x)tn (3)

for some M(x) <∞ and t < 1, where ‖ · ‖TV denotes total
variation norm.

A Markov chain is geometrically ergodic if (3) holds for
some t < 1, which eliminates the bounded assumption on
M(x).

Definition 3 (Absolute spectral gap) A Markov operator P
admits an absolute spectral gap 1− λ if

λ := sup {‖Ph‖π : ‖h‖π = 1, π(h) = 0} < 1.

Let α(λ) := 1+λ
1−λ . Obviously, α(λ) is strictly increasing

with λ and α(λ) = 1 as λ = 0.

Definition 4 (Right spectral gap) A Markov operator P ad-
mits an right spectral gap 1− λr if R has λr < 1, where

λr := sup {〈Rh, h〉 : ‖h‖π = 1, π(h) = 0} .
The spectral gap measures the convergence rate of a Markov
chain towards its invariant state π (Rudolf 2011). The bigger
the spectral gap, the faster the convergence to the stationary
distribution. SinceR is self-adjoint, it is known that λr ≤ λ.
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Robust Gradient-based Markov Subsampling

The idea of gradient-based learning has been studied in
the literature (Zhu 2016; Burke, Lewis, and Overton 2005;
Burke et al. 2018). Recall that GS selects samples with prob-
ability directly proportional to their gradient values, provid-
ing a natural way to apply this idea to subsampling. Al-
though GS performs well empirically, the resulting estimator
can be sensitive to highly noisy data, particularly when the
sampling ratio is small. In contrast, we explore the potential
of selecting samples with small gradients to achieve robust
estimation. To this end, we develop a gradient-based Markov
subsampling (GMS) algorithm. Concretely, GMS consists of
three steps: 1) pilot estimation; 2) gradient calculation; 3)
Markov subsampling.

• Pilot estimation. The pilot estimation β0 can be calcu-
lated by (2) based on a small random subset with size
n0 � n. We empirically show that the GMS does not
heavily rely on the quality of β0. As a result, n0 can be
chosen to the user’s preference in practice.

• Calculate gradient. Given the pilot β0, we calculate the
gradient for the i-th sample by

gi(β0) =
∂�i(β)

∂β
|β=β0 = −x�

i (yi − xiβ0). (4)

As discussed previously, we are attempting to find a sub-
set DS on which L(β∗) ≈ L(β0). Consider the first order
Taylor expansion of L(β∗) centered at the pilot β0:

L(β∗) = L(β0) +

n∑
i=1

〈gi(β0),β0 − β∗〉+Rn(β0),

where Rn is the remainder. Since β0 is considered to be a
crude estimate for β∗, β0 − β∗ is non-negligible. Thus, a
natural way to satisfies L(β0) ≈ L(β∗) is to select points
with small gi(β0), i ∈ DS .

• Markov subsampling. It has been empirically shown that
Markov chain samples may lead to more stable estimation
compared to their i.i.d. counterparts (Gong, Zou, and Xu
2015; Sun, Sun, and Yin 2018). Taking this in mind, we
implement probabilistic sampling through a Metropolis-
Hastings (MH) type procedure. Since we prefer samples
with small gradient values, we use these values to design
the probability in our acceptance step. This procedure can
be summarized as follows. At some current sample zt,
we accept a randomly selected candidate sample z∗ with
probability defined in (5). If accepted, the iteration is com-
pleted and we set z∗ = zt+1. Otherwise, a new candidate
is randomly selected and the process repeats. Finally, we
accept the last n0 elements generated by this procedure
after a user-specified burn-in period t0.

The detailed procedure is summarized in Algorithm 1.

Remark 1 It is known that the the subsamples generated
by Algorithm 1 constitute an irreducible Markov Chain
(since the transition probabilities are always positive), and
therefore are uniformly ergodic (Down, Meyn, and Tweedie
1995).
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Figure 2: (a) Oracle and pilot estimation; (b) Comparison on
10 data points selected by GS and GMS. The size of the sub-
sampled data points are scaled by their corresponding gradi-
ent value.

Remark 2 The overall computational complexity of GMS is
O(max{nsubd2, d3}). Thus, the computational burden can
be greatly reduced when nsub � n.

We give a toy example to show the potential benefits of
GMS. We generate a dataset of size 50 by yi = 2xi + εi,
where xi ∼ N(0, 3), εi ∼ U(−10, 10). Fig. 2 (a) plots the
oracle (red solid line) and pilot estimation (purple dashed
line) which is fitted by 10 randomly selected data points. Fig.
2(b) demonstrates the comparison of 10 samples selected by
GS (green circles), GMS (blue circles) respectively. The pur-
ple area denotes the range where the gradient value is less
than 15. It can be observed from Fig. 2 that samples in pur-
ple area help to correct the pilot line towards the oracle. In
other words, by selecting the data points with small gradient
values, GMS can safely improve the pilot estimation while
also avoiding distractions caused by noisy samples.

Algorithm 1 Robust Gradient-based Markov Subsampling

Input: Dataset D = (xi, yi)
n
i=1, DS = ∅, burn-in period:

t0, subsample size nsub � n.
1: Train a pilot estimator β0 based on a subsample with

size n0 = nsub and calculate gi, i = 1, 2, · · · , n by (4).
2: Randomly select a sample z1 from D, and set Ds = z1.
3: for 2 ≤ t ≤ (nsub + t0) do
4: while |DS | < t do
5: Randomly draw a candidate z∗=(x∗, y∗)
6: Calculate the acceptance probability by

p = min

{
1,

‖gt‖
‖g∗‖

}
(5)

7: Set DS = DS ∪ z∗ with probability p
8: If z∗ is accepted, set zt+1 = z∗
9: end while

10: end for
11: Denote the last nsub samples of DS as (XS ,yS).
12: Solve β̂ = argminβ ‖yS −XSβ‖2.
Output: β̂.
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Theoretical Assessment

In this section, we provide theoretical support for the pro-
posed GMS. In particular, our main interest is to bound the
difference between the GMS estimator β̂ and the oracle β∗.
The main result is given in Theorem 1, which shows that
the gradient based Markov subsampling algorithm is statisti-
cally consistent. We first present several lemmas as follows.

Lemma 1 (Vershynin 2018) IfX ∼ subG(σ2), then for any

t > 0, it holds P(|X| ≥ t) ≤ 2 exp
(

−t2

2σ2

)
.

Lemma 2 (Sun et al. 2017) Let A,B ∈ R
d×d be invertible,

then for any matrix norm ‖ · ‖∗, if ‖A−1‖∗‖A − B‖∗ < 1,
we have

‖A−1 −B−1‖∗ ≤ ‖A−1‖2∗‖A−B‖∗
1− ‖A−1‖∗‖A−B‖∗ .

Lemma 3 (Fan, Jiang, and Sun 2018) Let {xi}i≥1 be a
Markov chain with invariant measure π and right spectral
gap 1 − λr > 0. Then for any bounded function f : X →
[a, b] and any t ∈ R,

P

(∣∣∣∣∣
n∑

i=1

f(xi)− nπ(f)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−α(λr ∨ 0)−1ε2

2n(b− a)2/4

)
.

Theorem 1 Suppose that the Markov chain samples gen-
erated by GMS are with invariant distribution π and right
spectral gap 1 − λr. Let Σ̂S = 1

nsub
X�

SXS ,Σ = cov(X)

if nsub ≥ 8α(λr ∨ 0)d2‖Σ−1‖2 log(d2/δ), then with confi-
dence at least 1− 2δ,

‖β̂ − β∗‖ ≤ C

√
8d(log(d) + log(1/δ))

nsub
, (6)

where C = σ‖Σ−1‖2.

PROOF. Note that the Markov chain samples {xi}nsub
i=1 are

uniformly ergodic. Suppose that it has a stationary invariant
distribution π with right spectral gap 1 − λr. Without loss
of generality, we assume that supxj∈X ‖xj‖ ≤ 1 for j =
1, 2, · · · , nsub. Observe that

‖β̂ − β∗‖
= ‖(n−1

subX
�
SXS)

−1(n−1
subX

�
S yS)− β∗‖

= ‖(X�
SXS)

−1X�
SXSβ

∗ − β∗ + (n−1
subX

�
SXS)

−1X
�
S ε

nsub
‖

≤ ‖Σ̂−1
S − Σ−1‖ · ‖X�

S ε/nsub‖+ ‖Σ−1‖ · ‖X�
S ε/nsub‖

≤
(

‖Σ−1‖2 · ‖Σ̂S − Σ‖
1− ‖Σ̂−1

S ‖ · ‖Σ̂S − Σ‖ + ‖Σ−1‖
)

· ‖X�
S ε/nsub‖

=
‖Σ−1‖

1− ‖Σ̂−1
S ‖ · ‖Σ̂S − Σ‖ · ‖X�

S ε/nsub‖

≤ ν−1‖Σ−1‖ · ‖X�
S ε/nsub‖.

The second inequality comes from Lemma 2. Let us
first consider X�

S ε/nsub. Recall that ε ∼ subGd(σ
2),

supxj∈X ‖xj‖ ≤ 1, then the random variable x�
j ε ∼

subGd(σ
2). Denote by ε = maxj,k |Σ̂j,k − Σj,k|, we have

P(‖X�
S ε/nsub‖ ≥ ε) ≤

d∑
i=1

P(|x�
i ε| ≥ nsubε/

√
d)

≤ 2d exp

(
−nsubε

2

2dσ2

)
.

According to the fact that ‖Σ̂S − Σ‖ ≤ dε. It follows from
Lemma 3 that

P(‖Σ̂S − Σ‖ ≥ ε) ≤ 2d2 exp

(
− nsubε

2

2d2α(λr ∨ 0)

)
.

Given that ‖Σ−1‖ · ‖Σ̂S − Σ‖ ≤ 1 − ν ∈ (0, 1), by taking
ν = 1/2, we know

P(‖β̂ − β∗‖ ≥ ε) ≤ P

(
‖Σ−1‖·‖Σ̂S − Σ‖ ≥ 1

2

)

+ P

(
‖Σ−1‖ · ‖X�

S ε/nsub‖ ≥ ε

2

)

≤ 2d2e
−nsubα(λr∨0)−1

8d2‖Σ−1‖2 +2de
− nsubε

2

8dσ2‖Σ−1‖2 .

Then

‖β̂ − β∗‖ ≤ σ‖Σ−1‖2
√

8d log(d/δ)

nsub

holds with confidence at least 1 − δ if nsub ≥
8α(λr ∨ 0)d2‖Σ−1‖2 log(d2/δ). This completes the
proof. �

Remark 3 Theorem 1 indicates that the GMS estimator β̂

is consistent, i.e. ‖β̂−β∗‖ → 0 as nsub → ∞. The founding
condition requires that the right spectral gap of the invariant
distribution π satisfies 1−λr > 0. GMS almost trivially sat-
isfies this condition. To see this, notice that the Markov chain
generated by GMS is uniformly ergodic, and hence geomet-
rically ergodic. Following this, it is known that λ(P ) < 1
if and only if the Markov chain is geometrically ergodic
(Roberts and Rosenthal 1997), so the condition is satisfied.

The convergence rate is with order of O(
√

d log(d)
nsub

), which
matches the optimal error bound for the i.i.d. samples in a
minimax sense.

Denote the mean squared error of the prediction Xβ̂ by
MSE(Xβ̂) = 1

n‖X(β̂−β∗)‖2. According to the inequality

MSE(Xβ̂) ≤ λmax(Σn) · ‖β̂ − β∗‖2,
we can obtain the following corollary bounding the predic-
tion error immediately from Theorem 1.

Corollary 1 Under the same conditions in Theorem 1, with
confidence at least 1− δ, it holds

MSE(Xβ̂) ≤ C2λmax(Σn) · 8d(log(d) + log(1/δ))

nsub
. (7)
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Figure 3: Boxplots of 50 times experiments for different subsampling methods with n = 1M,d = 500. From top to bottom:
M1(N),M1(U),M1(t). From left to right: sr = 0.001, 0.005, 0.01.

Experiments

To assess the performance of GMS, we conduct experiments
on both simulation studies and real data examples. All nu-
merical studies are conducted in software R on Compute
Canada clusters with 2.1 GHz CPUs and 128 GB memory.

Simulation Studies

In simulation studies, we generate the data by y = Xβ∗+ε,
where the n × d design matrix X is generated by a mix-
ture of Gaussian distributions 1

2N(μ1, σ
2
1) +

1
2N(μ2, σ

2
2)

in two different ways: (M1) μ1 = −2, σ1 = 3, μ2 =
2, σ2 = 10; (M2) μ1 = 0, σ1 = 3, μ2 = 0, σ2 = 10.
The oracle β∗ is generated uniformly from {±3,±2,±1, 0}.
We generate three different types of i.i.d. noise, includ-
ing uniform distribution with εi ∼ U(−5, 5), normal
distribution with εi ∼ N(0, 25) and Student-t distribu-
tion with εi ∼ t(2). We denote the models combining
these design matrices and noise distributions as follows:
M1(U),M1(N),M1(t),M2(U),M2(N),M2(t). Also,
we set n = 100K, 500K, 1M and with corresponding d =
50, 250, 500.

For each dataset, we compare the proposed GMS with five
representative sampling methods where each method is ap-
plied K = 50 times repeatedly. The quality of the fit is mea-
sured by the estimation error (EE):

EE =
1

K

K∑
k=1

‖β̂k − β∗‖.

In all experiments, the subsample size is set by nsub =
sr ∗ n, where sr represents the sampling ratio. We set
sr = 0.001, 0.005, 0.01 for each model. If required, a pilot
estimator is calculated by uniform subsampling of size n0 =
nsub. The sampling methods considered for comparison
are: GS, leverage subsampling (LEV), unweighted lever-
age subsampling (LEVUNW) (Ma, Mahoney, and Yu 2015),
uniform sampling and influence-based sampling (Ting and
Brochu 2018). Note that LEVUNW conducts sampling iden-
tically to LEV, but solves the unweighted least squares prob-
lem instead. For influence-based sampling, the sampling
weight for (xi,yi) is proportional to ‖ψβ(xi, yi)‖, where

ψβ(xi, yi) = (yi − xiβ)Σ
−1
n xi

is the influence function.
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Table 1: EE comparison (mean ± standard deviation)×10−2 for different sampling methods for n = 1M,d = 500

Methods M1(N) M1(U) M1(t)
sr = 0.1% sr = 0.5% sr = 1% sr = 0.1% sr = 0.5% sr = 1% sr = 0.1% sr = 0.5% sr = 1%

GS 74.9(3.89) 21.7(0.68) 13.7(0.45) 42.9(1.36) 12.8(0.40) 8.33(0.26) 38.2(2.99) 8.54(0.31) 5.48(0.24)
Influence 74.5(2.97) 21.5(0.78) 13.8(0.50) 42.8(1.54) 12.8(0.35) 8.30(0.21) 38.4(3.13) 8.61(0.36) 5.47(0.19)

LEV 65.4(3.41) 21.7(0.52) 14.7(0.50) 37.6(1.64) 12.3(0.42) 8.57(0.22) 35.4(5.71) 14.1(2.51) 9.26(0.98)
LEVUWN 65.0(2.81) 21.7(0.73) 14.7(0.40) 37.4(1.47) 12.5(0.46) 8.59(0.20) 37.8(7.52) 13.2(2.25) 9.72(1.25)

UNIF 65.5(2.72) 21.6(0.66) 14.9(0.37) 37.8(1.52) 12.5(0.45) 8.64(0.25) 37.8(8.23) 13.6(2.15) 9.36(1.26)
GMS 58.6(2.36) 18.9(0.61) 13.1(0.36) 35.5(1.35) 12.0(0.31) 8.26(0.23) 22.5(3.65) 7.22(0.50) 5.30(0.22)

Table 2: EE comparison (mean ± standard deviation)×10−2 for different sampling methods for n = 1M,d = 500

Methods M2(N) M2(U) M2(t)
sr = 0.1% sr = 0.5% sr = 1% sr = 0.1% sr = 0.5% sr = 1% sr = 0.1% sr = 0.5% sr = 1%

GS 77.8(2.55) 22.2(0.67) 14.4(0.43) 43.3(1.65) 13.4(0.41) 8.62(0.24) 39.3(3.71) 8.95(0.48) 5.66(0.34)
Influence 77.4(2.53) 22.3(0.49) 14.4(0.39) 44.0(1.39) 13.4(0.36) 8.73(0.33) 39.5(3.38) 9.00(0.51) 5.68(0.36)

LEV 67.3(3.11) 22.4(0.61) 15.5(0.42) 39.3(1.26) 13.0(0.45) 8.89(0.21) 36.1(5.19) 14.1(2.22) 9.52(1.05)
LEVUWN 67.6(2.85) 22.3(0.67) 15.4(0.37) 38.7(1.52) 12.9(0.43) 8.93(0.22) 37.0(6.46) 13.2(1.39) 13.0(2.73)

UNIF 68.5(3.36) 22.5(0.64) 15.4(0.47) 38.8(1.52) 13.0(0.42) 8.81(0.31) 35.8(4.48) 13.5(2.03) 9.60(1.42)
GMS 60.5(2.68) 19.4(0.65) 13.4(0.46) 37.0(1.53) 12.6(0.43) 8.61(0.26) 22.7(1.78) 7.52(0.66) 5.65(0.88)
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Figure 4: Boxplots of 50 times experiments for different subsampling methods with n = 1M,d = 500. From top to bottom:
M2(N),M2(U),M2(t). From left to right: sr = 0.001, 0.005, 0.01.

Due to space limitation, we only show the results for the setting n = 1M,d = 500. Other results are given in the
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Table 3: EE comparison (mean ± standard deviation) for different sampling methods for real datasets

Methods Online News Popularity Poker Hands Wave Energy Converters
sr = 0.1% sr = 0.5% sr = 1% sr = 0.1% sr = 0.5% sr = 1% sr = 0.1% sr = 0.5% sr = 1%

GS 36.4(26.7) 8.67(5.27) 7.06(4.08) 0.44(0.18) 0.118(0.039) 0.078(0.030) 1979(258.6) 767(105.1) 498(74.8)
Influence 29.8(31.9) 8.02(5.15) 5.22(2.06) 0.41(0.17) 0.125(0.036) 0.079(0.023) 1990(339.1) 696(96.1) 503(51.9)

LEV 18.6(19.1) 11.6(7.01) 8.55(4.55) 0.35(0.13) 0.12(0.04) 0.092(0.024) 1940(275.5) 801(99.1) 579(66.2)
LEVUWN 21.7(13.1) 10.3(8.38) 8.85(4.92) 0.37(0.13) 0.123(0.03) 0.078(0.023) 1868(239.8) 808(86.8) 583(66.1)

UNIF 18.1(14.2) 12.4(7.75) 7.23(3.01) 0.35(0.12) 0.135(0.035) 0.089(0.022) 1956(278.1) 815(90.5) 563(76.8)
GMS 11.4(5.24) 7.48(4.81) 5.37(2.61) 0.26(0.09) 0.119(0.034) 0.079(0.024) 1747(269.1) 762(103.9) 517(67.1)

supplementary material. Figs. 3 and 4 record the boxplots
based on 50 times empirical estimation error. The mean and
standard deviation of EE are reported in Tables 1 and 2. Sev-
eral observations are worth making about the presented re-
sults. To begin, as the subsample size increases, the mean
error and standard deviation for all methods tend to decrease
monotonically. Note that GMS achieves the lowest error for
all 6 models under all sampling ratios. In particular, GMS
outperforms other competitors significantly when the sam-
pling ratio is very small. This observation supports that the
samples generated by GMS are more informative and lead
to robust estimation. Moreover, LEV and LEVUWN per-
form quite similarly to uniform sampling. This is because
the leverage score only depends the input information. Since
both M1 and M2 are generated by mixtures of Gaussian
and hence have nearly uniform leverage scores, LEV and
LEVUWN do not show significant differences with uniform
sampling. We also observe that influence-based subsampling
performs almost identically to GS. Since the design matrix
X is generated by i.i.d. mixtures of Gaussian, Σn approx-
imates a diagonal matrix. Therefore, the influence function
assigns similar sampling probability as gradient in the sam-
pling process. In addition, in heavy-tailed noise cases, i.e.
M1(t),M2(t), GMS still achieves the lowest error, which
supports that GMS is more robust to highly noisy data.

Real Data Examples

We further evaluate the performance of GMS on 3 real-
world datasets: Online News Popularity (n = 39797, d =
61), Wave Energy Converters (n = 288000, d = 32) and
Poker Hands (n = 25010, d = 11) 1. For the WEC dataset,
we remove 16 columns due to collinearity. Since the oracle
β∗ is unknown for real datasets, we utilize βn as a proxy
to β∗ in our performance metric. The comparisons of em-
pirical estimation error with different sampling ratio are re-
ported in Table 3. It can be observed from Table 3 that GMS
still achieves the lowest error when the sampling ratio is
very low. As subsample size increases, GMS is still able to
achieve competitive performance among the 6 sampling al-
gorithms.

Conclusion

In this paper, we propose a gradient-based Markov sub-
sampling (GMS) algorithm for the linear regression prob-
lem. We analyze the performance of GMS in terms of error
bounds. The theoretical results show that the GMS estimator

1https://archive.ics.uci.edu/ml/datasets.php

is statistically consistent and the corresponding error bound
matches the optimal rate in the minimax sense. Experiments
on simulation studies and real data examples demonstrate
the effectiveness of GMS. Future work includes extending
GMS to general models (e.g. Ridge, Lasso), and acceler-
ating the burn-in process of GMS. All these problems are
under current research.
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