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Abstract

Existing research into online multi-label classification, such
as online sequential multi-label extreme learning machine
(OSML-ELM) and stochastic gradient descent (SGD), has
achieved promising performance. However, these works lack
an analysis of loss function and do not consider label depen-
dency. Accordingly, to fill the current research gap, we pro-
pose a novel online metric learning paradigm for multi-label
classification. More specifically, we first project instances and
labels into a lower dimension for comparison, then lever-
age the large margin principle to learn a metric with an effi-
cient optimization algorithm. Moreover, we provide theoreti-
cal analysis on the upper bound of the cumulative loss for our
method. Comprehensive experiments on a number of bench-
mark multi-label datasets validate our theoretical approach
and illustrate that our proposed online metric learning (OML)
algorithm outperforms state-of-the-art methods.

Introduction

Real-world applications often involve a large number of
classes, each instance of which can be assigned multiple
labels. For example, many web-related applications, such
as Twitter, Facebook and Instagram posts and RSS feeds,
are attached with multiple essential forms of categorization
tags (Zhang, Graepel, and Herbrich 2012). In the search
industry, revenue comes from clicks on ads embedded in
the result pages. Ad selection and placement can be signif-
icantly improved if ads are tagged correctly. This scenario,
referred to as ’online multi-label classification’ in a machine
learning context, is also useful in some other applications,
such as object detection in video surveillance (Popovici,
Weiler, and Grossniklaus 2014) and image retrieval in dy-
namic databases (Dong and Bhanu 2003).

In the development of multi-label classifi-
cation (Tsoumakas, Zhang, and Zhou 2012;
Gibaja and Ventura 2015), one challenge that re-
mains unsolved is that most multi-label classifica-
tion algorithms are developed in an off-line mode
(Cheng and Hüllermeier 2009; Chen and Lin 2012;
Babbar and Schölkopf 2017; Liu and Tsang 2017;
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Zhou et al. 2019b; Liu et al. 2019). These methods as-
sume that all data are available in advance for learning.
However,there are two major limitations of developing
multi-label methods under such an assumption: firstly, these
methods are impractical for large-scale datasets, since they
require all datasets to be stored in memory; secondly, it
is non-trivial to adapt off-line multi-label methods to the
sequential data. In practice, data is collected sequentially,
and data that is collected earlier in this process may expire
as time passes. Therefore, it is important to develop new
multi-label classification methods to deal with streaming
data.

Several online multi-label classification studies have re-
cently been developed to overcome the above-mentioned
limitations. For example, online learning with accelerated
nonsmooth stochastic gradient (OLANSGD) (Park and Choi
2013) was proposed to solve the online multi-label clas-
sification problem. Moreover, the online sequential multi-
label extreme learning machine (OSML-ELM) (Venkate-
san et al. 2017) is a single-hidden layer feed-forward neu-
ral network-based learning technique. OSML-ELM classi-
fies the examples by their output weight and activation func-
tion. Unfortunately, all of these online multi-label classifica-
tion methods lack an analysis of loss function and disregard
label dependencies. Many studies (Dembczynski, Cheng,
and Hüllermeier 2010; Read et al. 2011; Bhatia et al. 2015;
Yen et al. 2016; Liu, Tsang, and Müller 2017) have shown
that multi-label learning methods that do not capture la-
bel dependency usually achieve degraded prediction perfor-
mance. This paper aims to fill these gaps.
k-nearest neighbour (kNN) algorithms have achieved su-

perior performance in various applications (Deng et al.
2010). Moreover, experiments show that distance metric
learning on single-label prediction can improve the predic-
tion performance of kNN. Nevertheless, there are two prob-
lems associated with applying a kNN algorithm to an on-
line multi-label setting. Firstly, naive kNN algorithms do
not consider label dependencies. Secondly, it is non-trivial
to learn an appropriate metric for online multi-label classifi-
cation.

To break the bottleneck of kNN, we here propose a novel
multi-label learning paradigm for multi-label classification.
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More specifically, we project instances and labels into the
same embedding space for comparison, after which we learn
the distance metric by enforcing the constraint that the dis-
tance between embedded instance and its correct label must
be smaller than the distance between the embedded instance
and other labels. Thus, two nearby instances from different
labels will be pushed further. Moreover, an efficient opti-
mization algorithm is proposed for the online multi-label
scenario. In theoretical terms, we analyze the upper bound
of cumulative loss for our proposed model. A wide range of
experiments on benchmark datasets corroborate our theoret-
ical results and verify the improved accuracy of our method
relative to state-of-the-art approaches.

The remainder of this paper is organized as follows. We
first describe the related work, the online metric learning
for multi-label classification and the optimization algorithm.
Next, we introduce the upper bound of the loss function. Fi-
nally, we present the experimental results and conclude this
paper.

Related Work

Existing multi-label classification methods can be grouped
into two major categories: namely, algorithm adaptation
(AA) and problem transformation (PT). AA extends specific
learning algorithms to deal with multi-label classification
problems. Typical AA methods include (Zhang and Zhou
2006; Brinker and Hullermeier 2007; Zhou et al. 2019a).
Moreover, PT methods such as that developed by (Hsu et al.
2009a), transform the learning task into one or more single-
label classification problems. However, all of these methods
assume that all data are available for learning in advance.
These methods thus incur prohibitive computational costs on
large-scale datasets, and it is also non-trivial to apply them
to sequential data.

The state-of-the-art approaches to online multi-label clas-
sification have been developed to handle sequential data.
These approaches can be divided into two key categories:
Neural Network and Label Ranking. Neural Network ap-
proaches are based on a collection of connected units or
nodes, referred to as artificial neurons. Each connection be-
tween artificial neurons can transmit the signal from one
neuron to another. The artificial neuron that receives the sig-
nal can process it and then transmit signal to other artificial
neurons. Moreover, label ranking, another popular approach
to multi-label learning, involves a set of ranking functions
being learned to order all the labels such that relevant labels
are ranked higher than irrelevant ones.

From the neural network perspective, Ding et al. (Ding et
al. 2015) developed a single-hidden layer feedforward neu-
ral network-based learning technique named ELM. In this
method, the initial weights and the hidden layer bias are se-
lected at random, and the network is trained for the output
weights to perform the classification. Moreover, Venkate-
san et al. (Venkatesan et al. 2017) developed the OSML-
ELM approach, which uses ELM to handle streaming data.
OSML-ELM uses a sigmoid activation function and outputs
weights to predict the labels. In each step, the output weight
is learned from the specific equation. OSML-ELM converts

Notation Definition

t the round of algorithm
xt an instance presented on round t
yt corresponding label vector to xt

x nearest neighbour instance to xt

y corresponding output of x
X initialized input matrix
Y corresponding output matrix
S number of initialized instances
Vt, Pt projection matrix on round t
m,M lower bound and upper bound of λt

〈A,B〉F Frobenius inner product of A and B
|| · ||1 l1 norm
|| · ||2 l2 norm
|| · ||F Frobenius norm

Table 1: Summary of Notations

the label set from bipolar to unipolar representation in order
to solve multi-label classification problems.

Some other existing approaches are based on label rank-
ing, such as OLANSGD (Park and Choi 2013). In the ma-
jority of cases, ranking functions are learned by minimizing
the ranking loss in the max margin framework. However,
the memory and computational costs of this process are ex-
pensive on large-scale datasets. Stochastic gradient decent
(SGD) approaches update the model parameters using only
the gradient information calculated from a single label at
each iteration. OLANSGD minimizes the primal form using
Nesterov’s smoothing, which has recently been extended to
the stochastic setting.

However, none of these methods analyze the loss func-
tion, and all of them fail to capture the interdependencies
among labels; these issues have been proved to result in
degraded prediction performance. Accordingly, this paper
aims to address these issues.

Our Proposed Method

Notations

We denote the instance presented to the algorithm on round
t by xt ∈ R

p×1, and the label by yt ∈ {0, 1}q×1, and
refer each instance-label pair as an example. Suppose that
we initially have S examples in memory, denoted by D =
{(xi, yi)}Si=1. (x, y) ∈ D is a nearest neighbour to xt. The
initialized instance matrix is denoted as X ∈ R

S×p and
the correspond output matrix is denoted as Y ∈ {0, 1}S×q .
t is a positive integer. || · ||F is Frobenius norm. Vt =
(v1, v2, ..., vd) ∈ R

q×d(d < q) is projection matrix which
maps each output vector yt (q dimension) to V T yt (d di-
mension). Let P ∈ R

p×q also be the projection matrix. Each
input vector xt (p dimension) is projected to V TPTxt (d di-
mension). Then xt and yt can be compared in the projection
space(d dimension). Notations are summarized in Table 1.

Online Metric Learning

Inspired by Hsu et al. (Hsu et al. 2009b),who stated that
each label vector can be projected into a lower dimensional
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label space, which is deemed as encoding, we propose the
following large-margin metric learning approach with near-
est neighbor constraints to learn projection. If the encoding
scheme works well, the distance between the codeword of
xt, (V TPTxt), and yt, (V T yt), should tend to be 0 and less
than the distance between codeword xt and any other output
V T y. The following large margin formulation is then pre-
sented to learn the projection matrix V :

argminV ∈Rq×d

1

2
||V ||2F + ξt

s.t. ||V TPTxt − V T yt||22 +Δ(yt, y)− ξt

≤ ||V TPTxt − V T y||22, ∀t ∈ {1, 2, · · · }
(1)

The constraints in Eq.(1) guarantee that the distance between
the codeword of xt and the codeword of yt is less than the
distance between the codeword of xt and codeword of any
other output. To give Eq.(1) more robustness, we add loss
function Δ(yt, y) as the margin. The loss function is defined
as Δ(yt, y) = ||yt − y||1, where || · ||1 is the l1 norm. Af-
ter that, we use Euclidean metric to measure the distances
between instances xt and x and then learn a new distance
metric, which improves the performance of kNN and also
captures label dependency.

To retain the information learned on the round t, we apply
above large margin formulation into online setting. Thus, we
have to define the initialization of the projection matrix and
the updating rule. We initialize the projection matrix V1 to
a non-zero matrix and set the new projection matrix Vt+1

to be the solution of the following constrained optimization
problem on round t.

V T
t+1 = argminV ∈Rq×d

1

2
||V T − V T

t ||2F
s.t. l(V ; (xt, yt)) = 0

(2)

The loss function is defined as following:

l(V ; (xt, yt)) =max{0,Δ(yt, y)−(||V TPTxt−V T y||22
− ||V TPTxt − V T yt||22)}

(3)

where the matrix P is learned through the following formu-
lation:

argminP∈Rp×q

1

2
||PTXT − Y T ||2F

Define the loss function on round t as

lt(Vt; (xt, yt)) =max{0,Δ(yt, y)−(||V T
t PTxt−V T

t y||22
− ||V T

t PTxt − V T
t yt||22)}

(4)

When loss function is zero on round t, Vt+1 = Vt. In
contrast, on those rounds where the loss function is pos-
itive, the algorithm enforces Vt+1 to satisfy the constraint
lt+1(Vt+1; (xt+1, yt+1)) = 0 regardless of the step-size re-
quired. This update rule requires Vt+1 to correctly classify
the current example with a sufficient high margin and Vt+1

have to stay as closed as Vt to retain the information learned
on the previous round.

Optimization

The optimization of Eq.(2) can be shown by using standard
tools from convex optimization (Boyd and Vandenberghe
2004). If lt = 0 then Vt itself satisfies the constraint in Eq.(2)
and is clearly the optimal solution. Therefore, we concen-
trate on the case where lt > 0. Firstly, we define the La-
grangian of the optimization problem in Eq.(2) to be,

L =
1

2
||V T − V T

t ||2F + λ(Δ(yt, y)

−(||V TPTxt − V T y||22 − ||V TPTxt − V T yt||22))
(5)

where the λ is a Lagrange multiplier.
Setting the partial derivatives of L with respect to the ele-

ments of V T to zero gives

0 =
∂L

∂V T
=V T−V T

t −2V Tλ((PTxt−y)(PTxt−y)T

− (PTxt−yt)(PTxt−yt)(P
Txt−yt)

T )

from this equation, we can get that

V T =V T
t (I−2λ((PTxt − y)(PTxt − y)T

− (PTxt − yt)(P
Txt − yt)

T ))−1

in which I stands for an identity matrix.
Inspired by (Petersen and Pedersen 2012), we use an ap-

proximation form of V T to make it easier for following cal-
culation.

V̄ T =V T
t (I+2λ((PTxt − y)(PTxt − y)T

− (PTxt − yt)(P
Txt − yt)

T ))
(6)

Define Q = VtV
T
t , A = (PTxt − y)(PTxt − y)T −

(PTxt − yt)(P
Txt − yt)

T . Plugging the approximation
formula Eq.(6) back into Eq.(5), we get a cubic function
f(λ) = aλ3 + bλ2 + cλ, λ ∈ R, where

a =4(PTxt − yt)
TATQA(PTxt − yt)

− (PTxt − y)TATQA(PTxt − y)

b =2(||V T
t A||2F − (PTxt − yt)

TQA(PTxt − yt)

− (PTxt − yt)
TATQ(PTxt − yt)

+ (PTxt − y)TQA(PTxt − y)

+ (PTxt − y)TATQ(PTxt − y))

c =(PTxt− y)TQ(PTxt− y)−(PTxt− y)TQ(PTxt− y)

+ Δ(yt, y)

If f(λ) is non-monotonic function when λ > 0, let β > 0
to be the maximum point of f(λ). We obtain,

λt =

⎧⎨
⎩
m if f ′(λ) < 0 and λ > 0, β < m

β if m < β < M

M if f ′(λ) > 0 and λ > 0, β > M

(7)

where m,M ∈ R, 0 < m < M
Algorithm 1 provides detail of optimization. We denote

the loss suffered by our algorithm on round t by lt.
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Algorithm 1 Online Metric Learning for Multi-Label Clas-
sification

1: Set V1 to a non-zero matrix
2: Initialize D = {(xi, yi)}Si=1
3: for t = 1, 2, . . . , do
4: Receive pairwise instances: (xt, yt)
5: Find the Nearest Neighbour (x, y) ∈ D
6: Compute loss lt by Eq.(4)
7: if lt > 0 then
8: Set λt as Eq.(7)
9: Update V T = V T

t (I − 2λtA)−1

10: else
11: Vt+1 = Vt

12: end if
13: Append current instances into D
14: end for

We focus on the situation when lt > 0. The optimal solu-
tion comes from the one satisfying ∂L/∂V = 0, ∂L/∂λ =
0. Based on the derivation, Vt+1 can be update by V T

t+1 =

V T
t (I − 2λtA)

−1, where A = (PTxt − y)(PTxt − y)T −
(PTxt − yt)(P

Txt − yt)
T .

Inspired by metric learning (Kulis 2013), we use the
learned metric to select k nearest neighbours from D for
each testing instance, and conduct the predictions based on
these k nearest neighbours. The equation of the distance be-
tween codeword xj and xt in the embedding space can be
computed as (PTxj − PTxt)

TQ(PTxj − PTxt).

Loss Bound

Following the analysis in (Crammer et al. 2006), we state the
upper bounds for our online metric learning algorithm. Let
U = (u1, u2, ..., ud) ∈ R

q×d(d < q) be an arbitrary matrix.
We use the approximate form given in Eq.(6) to replace V T .
Lemma 1. Let λt as defined in Eq.(7), V =
(v1, v2, ..., vd) ∈ R

q×d(d < q), V1 is a non-zero ma-
trix. The following bound holds for any U ∈ R

q×d(d < q)

||V1 − U ||2F − ||VT+1 − U ||2F ≤ ||V1 − U ||2F
Proof. Define Ψt = ||Vt−U ||2F −||Vt+1−U ||2F , this lemma
is proved by summing Ψt over all t in 1, . . . , T and the
bounding of this sum is obviously as followed,

T∑
t=1

Ψt = ||V1 − U ||2F −||VT+1 − U ||2F≤ ||V1 − U ||2F

Lemma 2. Assume there exists some U such that
4λt〈U,ATVt〉F − 4λ2

t ||ATVt|| ≥ 5λt〈Vt, A
TVt〉F +

qc2λt

(||P ||2F r+q)
, ∀t ∈ {1, 2, ..., T}. Let V = (v1, v2, ..., vd) ∈

R
q×d(d < q). λt as defined as in Eq.(7). V1 is a non-zero

matrix. c is defined in the proof Eq.(4). We bound cumulative
||Vt||2F as follows,

T∑
t=1

||Vt||2F ≤ ||V1 − U ||2F
m · c2 − q · T

(||P ||2F r + q)

Proof. By using the operation of Frobenius norm,

||A+B||2F = ||A||2F + ||B||2F + 2〈A,B〉F
where 〈·〉F is the Frobenius inner product, we can get

Ψt = ||Vt − U ||2F − ||Vt+1 − U ||2F
= ||Vt − U ||2F − ||(I + 2λtA)TVt − U ||2F
= ||Vt − U ||2F − ||Vt − U ||2F − 4λ2

t ||ATVt||2F
− 4λt〈Vt − U,ATVt〉F

= −4λt〈Vt, A
TVt〉F + 4λt〈U,ATVt〉F

− 4λ2
t ||ATVt||2F

Using the assumption in Lemma 2, we can get that
Ψt ≥ λt〈Vt, A

TVt〉F + qc2λt

(||P ||2F r+q)
. where A = (PTxt −

y)(PTxt − y)T − (PTxt − yt)(P
Txt − yt)

T . It is clearly
that A is a symmetric matrix. We take the SVD of A as
A = Ū ĀŪT , then using the minimum non-negative sin-
gular value of A to replace the non-positive element in
matrix Ā, and denote approximation form of matrix A as
Â. Apparently, Â is a non-negative symmetric matrix. Fur-
thermore, by using definition of Frobenius inner product
〈A,B〉F = Trace(ATB), where Trace(A) =

∑n
i=1 aii,

we can get that

〈Vt, Â
TVt〉F = Trace(V T

t ÂTVt)

= Trace(V T
t (Â

1
2T )Â

1
2Vt)

= Trace((Â
1
2Vt)

T Â
1
2Vt)

= ||Â 1
2Vt||2F

Taking the SVD of Â
1
2 as Â

1
2 = U∗A∗U∗T . Since matrix

U∗ is a unitary matrix, then ||U∗B||2F = ||B||2F , ∀B ∈
R

q×q . Let c be the minimum singular value of A∗, getting
that

||Â 1
2Vt||2F = ||U∗A∗U∗TVt||2F

= ||A∗U∗TVt||2F
≥ ||cIU∗TVt||2F
≥ c2||Vt||2F

(8)

where I is an identity matrix. Now, we get that,

Ψt ≥ c2λt||Vt||2F +
qc2λt

(||P ||2F r + q)

By summing both side of inequality on t over all t in
1, . . . , T , and using that m ≤ λt ≤ M , gives that

T∑
t=1

c2 ·m||Vt||2F +
T · qc2m

(||P ||2F r + q)
≤ ||V1 − U ||2F

Then, we can get that
T∑

t=1

||Vt||2F ≤ ||V1 − U ||2F
m · c2 − q · T

(||P ||2F r + q)

Lemma 2 has been proved.
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(a) CoreI5k (b) Enron (c) FullMedical (d) Emotions

Figure 1: Macro F1 of various methods on Corel5k, Enron, Medical and Emotions datasets.

(a) CoreI5k (b) Enron (c) FullMedical (d) Emotions

Figure 2: Example F1 of various methods on Corel5k, Enron, Medical and Emotions datasets.

(a) CoreI5k (b) Enron (c) FullMedical (d) Emotions

Figure 3: Micro F1 of various methods on Corel5k, Enron, Medical and Emotions datasets.

(a) CoreI5k (b) Enron (c) FullMedical (d) Emotions

Figure 4: Hamming Loss of various methods on Corel5k, Enron, Medical and Emotions datasets.

Based on the Lemma 2, we provide following theorem.

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples where xt ∈ R

p×1 and yt ∈ {0, 1}q×1. Vt =
(v1, v2, ..., vd) ∈ R

q×d(d < q) is projection matrix, q is
in R

n. V1 is a non-zero matrix .U ∈ R
q×d(d < q). Let r be

the upper bound of ||xt||22. Under the assumption of Lemma
2, the cumulative loss suffered on the sequence is bounded
as follow,

T∑
t=1

lt ≤ ||V1 − U ||2F (||P ||2F · r + q)

m · c2
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(a) Cal500 (b) Image (c) scene (d) slashdot

Figure 5: Macro F1 of various methods on Cal500, Image, scene and slashdot datasets.

(a) Cal500 (b) Image (c) scene (d) slashdot

Figure 6: Example F1 of various methods on Cal500, Image, scene and slashdot datasets.

(a) Cal500 (b) Image (c) scene (d) slashdot

Figure 7: Micro F1 of various methods on Cal500, Image, scene and slashdot datasets.

(a) Cal500 (b) Image (c) scene (d) slashdot

Figure 8: Hamming Loss of various methods on Cal500, Image, scene and slashdot datasets.

Proof. By using Eq.(4), we get that

lt ≤ Δ(yt, y) + ||V T
t PTxt − V T

t yt||22
and,

||PTxt − yt||22 ≤ ||PTxt||22 + ||yt||22 ≤ ||PT ||2F · r + q

Since Δ(yt, y) is defined as l1 norm, therefore Δ(yt, y)
is bounded by q. we can get y is bounded by q as well. By
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using Lemma 2, we can get,
T∑

t=1

lt ≤ T · q +
T∑

t=1

||Vt||2F · ||PT xt − yt||22

≤ T · q +
T∑

t=1

||Vt||2F · (||P ||2F · r + q)

≤ T · q + (
||V1 − U ||2F

m · c2 − q · T
(||P ||2F r + q)

)(||P ||2F · r + q)

≤ ||V1 − U ||2F (||P ||2F · r + q)

m · c2

Therefore, the cumulative loss is bounded by
||V1−U ||2F (||P ||2F ·r+q)

m·c2 . As lt is bounded, it guarantees
the performance of our proposed model for unseen data.

Experiments

To evaluate the performance of our proposed online metric
learning algorithm, we conduct experiments on four bench-
mark datasets: Corel5k, Enron, Medical and Emotions. The
statistics of these datasets can be found in website1. All ex-
periments are conducted on a workstation with 3.20GHz In-
tel CPU and 16GB main memory, running the Windows 10
platform.

Experiment Setup

Baseline Methods We compare our OML method with
several state-of-the-art online multi-label prediction meth-
ods:
• OSML-ELM (Venkatesan et al. 2017): OSML-ELM uses

a sigmoid activation function and outputs weights to pre-
dict the labels. In each step, output weight is learned from
specific equation. OSML-ELM converts the label set from
bipolar to unipolar representation in order to solve multi-
label classification problems.

• OLANSGD (Park and Choi 2013): Based on Nesterov’s
smooth method, OLANSGD proposes to use accelerated
nonsmooth stochastic gradient descent to solve the online
multi-label classification problem. It updates the model
parameters using only the gradient information calculated
from a single label at each iteration. It then implements a
ranking function that ranks relevant and irrelevant labels.

• kNN: We adapt the k nearest neighbor(kNN) algorithm
to solve online multi-label classification problems. A Eu-
clidean metric is used to measure the distances between
instances.
In our experiment, the matrix V1 is initialized as a normal

distributed random matrix. Initially, we keep 20% of data
for nearest neighbor searching. In our experiment, M is set
to 100000 and m is set to 0.00001, while k is set to 10. The
codes are provided by the respective authors. Parameter λ in
OLANSGD is chosen from among {10−6, 10−5, · · · , 100}
using five-fold cross validation. We use the default parame-
ter for OSML-ELM.

1http://mulan.sourceforge.net

Performance Measurements To fairly measure the
performance of our method and baseline methods, we con-
sider the following evaluation measurements (Mao, Tsang,
and Gao 2013; Zhang et al. 2015):

• Micro-F1: computes true positives, true negatives, false
positives and false negatives over all labels, then calcu-
lates an overall F-1 score.

• Macro-F1: calculates the F-1 score for each label, then
takes the average of the F-1 score.

• Example-F1: computes the F-1 score for all labels of each
testing sample, then takes the average of the F-1 score.

• Hamming Loss: computes the average zero-one score for
all labels and instances.

The smaller the Hamming Loss value, the better the perfor-
mance; moreover, the larger the value of the other three mea-
surements, the better the performance.

Prediction Performance

Figures 1 to 8 present the four measurement results for
our method and baseline approaches in respect of various
datasets. From these figures, we can see that:

• OML outperforms OSML-ELM and OLANSGD on var-
ious datasets, this is because neither of the latter ap-
proaches consider the label dependency.

• kNN is comparable to OSML-ELM and OLANSGD on
most datasets, which demonstrates the competitive per-
formance of kNN.

• OML achieves better performance than kNN on all
datasets. This result illustrates that our proposed method
is able to learn an appropriate metric for online multi-label
classification.

Our experiments verify our theoretical studies and the mo-
tivation of this work: in short, our method is able to capture
the interdependencies among labels, while also overcoming
the bottleneck of kNN.

Conclusion

Current multi-label classification methods assume that all
data are available in advance for leaning. Unfortunately, this
assumption hinders off-line multi-label methods from han-
dling sequential data. OLANSGD and OSML-ELM have
overcome this limitation and achieved promising results in
online multi-label classification; however, these methods
lack a theoretical analysis for their loss functions, and also
do not consider the label dependency, which has been proven
to lead to degraded performance. Accordingly, to fill the
current research gap on streaming data, we here propose a
novel online metric learning method for multi-label classifi-
cation based on the large margin principle. We first project
instances and labels into the same embedding space for com-
parison, then learn the distance metric by enforcing the con-
straint that the distance between an embedded instance and
its correct label must be smaller than the distance between
the embedded instance and other labels. Thus, two nearby
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instances from different labels will be pushed further. More-
over, we develop an efficient online algorithm for our pro-
posed model. Finally, we also provide the upper bound of
cumulative loss for our proposed model, which guarantees
the performance of our method on unseen data. Extensive
experiments corroborate our theoretical results and demon-
strate the superiority of our method.
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