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Abstract

Data augmentation with Mixup (Zhang et al. 2018) has shown
to be an effective model regularizer for current art deep
classification networks. It generates out-of-manifold samples
through linearly interpolating inputs and their corresponding
labels of random sample pairs. Despite its great successes,
Mixup requires convex combination of the inputs as well as
the modeling targets of a sample pair, thus significantly limits
the space of its synthetic samples and consequently its reg-
ularization effect. To cope with this limitation, we propose
”nonlinear Mixup”. Unlike Mixup where the input and la-
bel pairs share the same, linear, scalar mixing policy, our ap-
proach embraces nonlinear interpolation policy for both the
input and label pairs, where the mixing policy for the labels is
adaptively learned based on the mixed input. Experiments on
benchmark sentence classification datasets indicate that our
approach significantly improves upon Mixup. Our empirical
studies also show that the out-of-manifold samples generated
by our strategy encourage training samples in each class to
form a tight representation cluster that is far from others.

Introduction

Despite their profound successes in many challenging real-
world applications such as image classification (Krizhevsky,
Sutskever, and Hinton 2012), speech recognition (Graves,
Mohamed, and Hinton 2013), and machine transla-
tion (Sutskever, Vinyals, and Le 2014), deep learning mod-
els typically embrace high modeling freedom with a very
large number of parameters. Such extremely high modeling
capability models thus require effective regularization tech-
niques to power the models to avoid overfitting and to gen-
eralize well. To this end, many regularizers for deep mod-
els have been introduced, including weight decay (Hanson
and Pratt 1988), dropout (Srivastava et al. 2014), stochastic
depth (Huang et al. 2016), batch normalization (Ioffe and
Szegedy 2015), and data augmentation schemes (Simard et
al. 1998; Lecun et al. 1998), amongst many others.

A recently proposed such technique, Mixup (Zhang
et al. 2018), is a simple and yet very effective, data-
augmentation based regularizer for enhancing the perfor-
mance of deep classification models. Unlike conventional
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regularizers, Mixup constrains the model on the input space
beyond the data manifold. Through linearly interpolating
random data sample pairs and their training targets in one-
hot representation, Mixup generates a synthetic set of ex-
amples with soft-labels as the training targets and use these
out-of-manifold examples to regularize the deep models.
Research has shown that Mixup and its variants (Zhang et
al. 2018; Guo, Mao, and Zhang 2019b) can dramatically
improve the predictive accuracy of the current art of deep
neural networks. Despite its demonstrated effectiveness, the
power of Mixup is still limited by its linear nature. That is,
Mixup requires a convex combination of the inputs as well as
the modeling targets of a sample pair, and thus significantly
limits the space of its synthetic samples, and consequently
its regularization effect on the training of the deep models.

In this paper, we propose nonlinear Mixup to address the
aforementioned limitation in Mixup. Unlike existing Mixup
methods (Zhang et al. 2018; Guo, Mao, and Zhang 2019b;
Verma et al. 2018) where the input pairs and label pairs share
the same linear, scalar mixing policy, our approach enables
nonlinear interpolation policy in the form of a matrix to in-
terpolate both the input pairs and label pairs, where the mix-
ing policy for the former differs from the latter. The nonlin-
ear mixing here significantly expands the synthetic sample
space for Mixup. Consider a pair of random samples in a 2D
training set. Mixup always creates synthetic samples along
the straight line between the pair. On the other hand, the non-
linear Mixup gives each dimension of the input pair an inde-
pendent mixing policy, thus allowing mixed samples spread
into a wide region between the two sample points (illustrated
in Figure 1). In addition, our nonlinear Mixup enables the
mixing policy for the labels to be adaptively learned based
on the resulting mixed input. This allows the mixed sam-
ples to be relocated during training in order to alleviate the
manifold intrusion issue. This problem occurs when a mixed
example collides with a real example in the data manifold,
but is given a soft label that is different from the label of the
real example, resulting in under-fitting and degradation of
the model performance (Guo, Mao, and Zhang 2019b).

Experiments on five benchmark sentence classification
datasets indicate that our nonlinear Mixup strategy signifi-
cantly outperforms Mixup and its variants in terms of pre-
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dictive accuracy. Our empirical studies also show that the
out-of-manifold samples created keep tuning the networks
long after the training error on the original training set is
minimal, encouraging the learning to generate, for each class
of the training samples, very tight representation cluster that
is far from other clusters.

Nonlinear Mixup for Text Classification

In this section, we first briefly describe the original Mixup
and then introduce the proposed nonlinear Mixup in details.

Mixup and wordMixup

Mixup was first introduced by Zhang et al. (Zhang et al.
2018) for image classification. In a nutshell, Mixup en-
hances the training of deep classification models by generat-
ing synthetic samples through linearly interpolating a pair of
training samples as well as their modeling targets. Given a
pair of samples (xi; yi) and (xj ; yj) from the original train-
ing set, where x denotes the input and y the one-hot encod-
ing of the corresponding class of the sample. Mixup gener-
ates a synthetic sample as follows.

x̃ij = λxi + (1− λ)xj (1)

ỹij = λyi + (1− λ)yj (2)

where λ is the mixing policy for mixing both the inputs and
modeling targets of the sample pair, and it is a scalar, sam-
pled from a Beta(α, α) distribution with a hyper-parameter
α. The generated synthetic data are then fed into the model
for training to minimize the loss function. It is worth noting
that unlike the one-hot hard label from the original data set,
Mixup creates samples with soft-label to indicate the possi-
bilities of belonging to multiple classes. Those soft-labelled
synthetic samples are clearly outside of the manifold of the
original hard-labelled training data. In other words, Mixup
regularizes the deep models by imposing constraints on the
model by making use of the regions in the input space of the
model that are outside of the data manifold. These synthetic
samples are termed out-of-manifold samples in (Guo, Mao,
and Zhang 2019b), which differ from conventional synthetic
samples associated with one-hot representation labels.

Figure 1: Illustration of sample space for nonlinear Mixup
and Mixup for a pair of samples in a 2-dimensional space.
For Mixup, the synthetic samples are created along the red
line, and the nonlinear Mixup can create samples anywhere
within the green rectangle.

Inspired by its great successes in the image domain, the
linear Mixup was recently adapted for sentence classifica-
tion in (Guo, Mao, and Zhang 2019a). The method is termed

wordMixup. Unlike image which is consist of pixels, sen-
tence is composed of a sequence of words and typically a
sentence representation is constructed to aggregate informa-
tion from those words. As an example, in the widely used
CNN (Kim 2014) model, a sentence is first represented by
a sequence of word embeddings, and then convolutional op-
erations are operated on those embeddings to generate the
sentence representation. Next, the resulting sentence embed-
dings are then passed through a soft-max layer to generate
the predictive distribution over the provided c different tar-
get categories or classes.

In wordMixup, all sentences are first zero padded to the
same length and then interpolation is conducted on the word
embeddings level. In specific, given a piece of text, such as
a sentence with N words. It can be represented as a ma-
trix B ∈ RN×d. Each row of the matrix corresponds to
one word, which is represented by a d-dimensional vector
as provided either by a learned word embedding table or be-
ing randomly generated. In the wordMixup setting, a pair
of samples (Bi; yi) and (Bj ; yj) are given, where Bi and
Bj denote the embedding vectors of the input sentence pairs
xi and xj , and yi and yj denote the corresponding class la-
bels of the samples using one-hot representation. With such
a pair of sentences, wordMixup performs the linear interpo-
lation process as follows:

˜Bij = λBi + (1− λ)Bj (3)

ỹij = λyi + (1− λ)yj (4)
Where the λ is the scalar mixing policy for mixing both the
inputs and modeling targets of the sample pair. The same
as that in the Mixup, the λ here is a scalar, sampled from
a Beta(α, α) distribution. The resulting new sample ( ˜Bij ;
ỹij) is then used for training, such as passing through a
CNN model fϕ (parameterized with ϕ) to generate the m-
dimensional sentence embedding Sij ∈ Rm:

Sij = fϕ( ˜B
ij) (5)

Finally, a linear fullyconnected layer W ∈ Rc×m produces
the distribution over the c classification classes:

ÿij = softmax(WSij) (6)

For training, cross entropy loss E is used by wordMixup:

E = ỹij logÿij (7)

Nonlinear Mixup

Similar to wordMixup, the nonlinear Mixup also mixes sam-
ple pairs on the word embedding level. But unlike word-
Mixup, where all the words share the same scalar mix-
ing policy λ, nonlinear Mixup deploys a separate mixing
policy for each of the dimensions of each of the words in
a given sentence. That is, for a sentence represented by
B ∈ RN×d, the mixing policy for the nonlinear Mixup is
a matrix Λ ∈ RN×d, where each element of Λ is indepen-
dently sampled from a Beta(α, α) distribution. The mixing
of inputs for the nonlinear Mixup is computed as follows.

˜Bij = Λ ◦Bi + (1− Λ) ◦Bj (8)
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where ◦ denotes the Hadamard product.
With the mixing policy as a matrix instead of a scalar, the

synthetic sample space for the nonlinear Mixup and Mixup
for a pair of samples in a 2-dimensional space can be illus-
trated in Figure 1. For the linear Mixup, the synthetic sam-
ples are created along the red diagonal line, and the non-
linear Mixup can create samples anywhere within the green
rectangle. As a result, the input space of the synthetic sam-
ples created by the nonlinear Mixup is much larger than that
of the linear Mixup, thus enforcing further constraints and
potentially providing better regularization for the training.

Label Embedding One more problem needs to be re-
solved for the nonlinear Mixup. That is, the mixing policy
now is a matrix instead of a scalar, which cannot be directly
applied to the one-hot label pairs due to the dimension dif-
ference between the input and the target. To cope with this
challenge, we adopt the idea of label embedding (Bengio,
Weston, and Grangier 2010). In specific, we use a vector
z ∈ Rk to encode the one-hot representation of the model-
ing target y. That is, a matrix M ∈ Rc×k is used to repre-
sent the modeling targets where each of the c categories is
encoded as a k-dimensional vector z. To prevent the set of
c k-dimensional label vectors from being too close to each
other, a Gram-Schmidt process (Pussell and Trimble 1991)
is performed to obtain an orthogonal set of label vectors in
M .

Policy Mapping Function With the above label embed-
ding strategy, the mixing policy for the modeling targets of
a sample pair in the nonlinear Mixup is created by a Policy
Mapping Function � as follows.

Φ = �( ˜Bij) (9)

where the input for � is the mixed input ˜Bij created us-
ing Equation 8, and Φ has the same dimension as the label
embedding z. In this way, the mixing policy for the mod-
eling targets is based on the mixed input, which allows the
model to adaptively assign, based on the mixed inputs, the
proper modeling targets for the synthetic samples, namely
relocating them in the input space. Such relocation capabil-
ity greatly benefits the nonlinear Mixup model as will be
discussed in the experimental section. In practice, the � can
be simply implemented as a Sigmoid function σ as

�θ( ˜B
ij) = σ(θ vec( ˜Bij)) (10)

here vec denotes the matrix vectorization operation and θ ∈
Rk×t (t = N × d) is the parameters that will be learned
as part of the model. In other words, by tuning the θ, the
nonlinear Mixup is able to assign the proper modeling target
labels to its synthetic samples.

With the mixing policy for the label pairs in Equation 9,
the mixed label for the newly created sample is computed as

z̃ij = Φzi + (1− Φ)zj (11)

Equations 8 and 11 give us the resulting new sample ( ˜Bij ;
z̃ij), which is then passed through the sentence embedding
encoder fϕ to generate the m-dimensional sentence embed-
ding Sij ∈ Rm:

Sij = fϕ( ˜B
ij) (12)

Parameter Optimization At the last step of the nonlinear
Mixup, a linear fullyconnected layer W ∈ Rk×m produces
the predicted k-dimensional class vector over the c classifi-
cation classes:

z̈ij = WSij (13)
For training, we minimize the negative-cosine loss be-

tween the prediction vector z̈ij and its true label vector
z̃ij , through optimizing the set of parameters of the model
(θ, ϕ,W,M,B) with gradient descent:

E = −z̈ijT z̃ij (14)

It is worth noting that, although there are many degrees of
freedom (i.e., θ, ϕ,W,M, and B) for optimizing the model
to drive down the cosine loss between z̈ij and z̃ij . However,
due to the need to reduce the losses for both the real samples
and synthetic instances, the cosine loss in Equation 14 will
not be trivially reduced to zero. Also note that, in the current
implementation of nonlinear Mixup we give an equal weight
to losses for both the real samples and synthetic instances.
In the future, it would be beneficial to investigate different
weighting schemes.

In testing time, the cosine distance of the predicted vector
z̈ij and the set of c gold label vectors in M are computed,
and the closest one is chosen as the predicted label.

In summary, the nonlinear Mixup attains the regulariza-
tion effect by forcing the model to fit an additional set of syn-
thetic data, with the aim of further constraining the hypothe-
sis search space. The synthetic samples are created with two
conditions: between pairs of real samples and with learnable
synthetic labels. The former ensures the synthetic samples
are not too far from the given training data; the latter makes
sure those synthetic samples not to collide with the original
data set. Along with the nonlinear mixing policy, which sig-
nificantly expands the input space of the synthetic examples
over the linear version, such constrains power the nonlinear
Mixup to achieve models with less prediction biases.

Experiments

Datasets

We evaluate the nonlinear Mixup method with five bench-
mark sentence classification tasks as used for evaluating the
wordMixup and senMixup for text augmentation in (Guo,
Mao, and Zhang 2019a). They are as follows. TREC is a
question dataset with the aim of categorizing a question into
six question types (Li and Roth 2002). MR is a movie review
dataset aiming to detect positive/negative reviews (Pang and
Lee 2005). SST-1 is the Stanford Sentiment Treebank with
five categories of very positive, positive, neural, negative and
very negative (Socher et al. 2013). SST-2 dataset is the same
as SST-1 but with neutral reviews removed and binary labels.
Subj is a data set with the aim of classifying a sentence as
being subjective or objective (Pang and Lee 2004). Table 1
summarizes the statistical characteristics of the five data sets
after being tokenized.

Baselines and Settings

We evaluate our nonlinear Mixup model using the popu-
lar CNN (Kim 2014) for sentence classification model. We
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Data c l N V Test
TREC 6 10 5952 9592 500
SST-1 5 18 11855 17836 2210
SST-2 2 19 9613 16185 1821
Subj 2 23 10000 21323 CV
MR 2 20 10662 18765 CV

Table 1: Summary for the datasets after tokenization. c:
number of target labels. l: average sentence length. N: num-
ber of samples. V: vocabulary size. Test: test set size (CV
means no standard train/test split was provided and thus 10-
fold CV was used).

compare with four baselines: the original CNN (Kim 2014)
(denoted as CNNsen), and three recent text augmentation
methods including EDA (Wei and Zou 2019), wordMixup
and senMixup (Guo, Mao, and Zhang 2019a). These aug-
mentation strategies are less relied on additional text re-
sources or domain knowledge.
• CNNsen is a convolutional neural networks model, and

has been widely used for sentence classification baseline.
• EDA is a recent data augmentation method containing a

set of 4 text augmentation techniques, including synonym
replacement, random insertion, random swap, and random
deletion.

• wordMixup is the straightforward application of Mixup
on NLP tasks where linear interpolation applying on the
word embedding level.

• senMixup is the Mixup applying to NLP tasks where lin-
ear interpolation is conducted in the hidden representation
space, namely the layer before the Softmax layer.
We obtained the source codes for the comparison mod-

els from the authors in (Kim 2014) and in (Wei and Zou
2019). In our experiments, we follow the exact implemen-
tation and settings in (Kim 2014), (Guo, Mao, and Zhang
2019a), and (Wei and Zou 2019). Specifically, we use filter
sizes of 3, 4, and 5, each with 100 feature maps; dropout
rate of 0.5 and L2 regularization of 0.2 for the baseline
CNN. For datasets without a standard development set we
randomly select 10% of training data as development set.
Training is done through Adam (Kingma and Ba 2014) over
mini-batches of size 50. The pre-trained word embeddings
are 300 dimensional GloVe (Pennington, Socher, and Man-
ning 2014). For the nonlinear Mixup the mixing policy α is
set to the default value of one. The dimension of the label
embedding in the nonlinear Mixup is 100. For each dataset,
we train each model 10 times each with 80k steps, and com-
pute their mean test errors and standard deviations.

Predictive Accuracy

To evaluate the predictive performance of the nonlinear
Mixup, we conduct four sets of experiments with various
word embeddings settings: 1) learnable, randomly initialized
word embeddings (denoted as RandomTune); 2) fixed, ran-
domly initialized word embeddings (RandomFix); 3) learn-
able, pretrained word embeddings (PretrainTune), and fixed,
pretrained word embeddings (PretrainFix).

The results on the learnable, randomly initialized word
embeddings are presented in Table 2. The results in Table 2
show that the nonlinear Mixup outperformed all the four
comparison baselines, ie., CNNsen, EDA, wordMixup and
senMixup, on all the five datasets. For example, when com-
pared with the CNNsen baseline, nonlinear Mixup improved
over CNNsen with a large margin on all the five datasets. For
instance, against the SST-2 and MR datasets, the improve-
ments were 3.9% and 4.9%, respectively. When compared
with wordMixup, the nonlinear Mixup increased the accu-
racy by at least 2% for four of the five testing datasets. When
compare with the senMixup, nonlinear Mixup also improved
over it by respectively 3.2%, 2.2%, and 2.7% on the SST-1,
SST-2, and MR datasets, while only slight improvement was
obtained on the Trec and Subj datasets. When consider the
comparison with the EDA method, the nonlinear Mixup im-
proved the predictive accuracy by at least 2% for all the five
datasets. Interestingly, one can see that the EDA obtained
similar predictive accuracy as the wordMixup on almost all
the five datasets.

When the randomly initialized word embeddings are fixed
during training, the results in Table 3 show that, again, the
nonlinear Mixup outperformed all the other four comparison
baselines on all the five datasets. Also, it is interesting to see
that EDA outperformed both wordMixup and senMixup on
the SST-2 and MR datasets with at lease 2.5%. For these two
data sets, the nonlinear Mixup outperformed the wordMixup
and senMixup by at least 3.8%.

The results obtained by the five testing methods when ap-
plying the GloVe pretrained word embeddings are presented
in Tables 4 and 5. Results in the tables indicate that the non-
linear Mixup improved over all the comparison baselines on
four of the five testing datasets (with a slight degradation
on the Subj dataset). For example, when compared to the
CNNsen, the nonlinear Mixup increased the predictive ac-
curacy of the baseline by at least 2.5%. When compared
with wordMixup and senMixup, the improvements were
less than that with randomly initialized word embeddings as
presented in Table 2. The largest improvement come from
the MR data set, where the nonlinear Mixup outperformed
CNNsen, wordMixup, and senMixup by 3.6%, 2.1%, and
2.8%, respectively. Similar patterns can be seen in Table 5
when the pretrained embeddings are fixed during training.

In short, these results indicate that the nonlinear Mixup
significantly outperformed the linear Mixup, the CNN base-
line, and two recent introduced text augmentation methods,
in terms of predictive accuracy, on the five benchmarking
text classification tasks.

Figure 2: Evolving gold label embeddings (left) and mixing
policies for the label pairs (right) during training.
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RandomTune Trec SST-1 SST-2 Subj MR
CNNsen† 90.2±0.20 43.6±0.19 82.3±0.47 90.6±0.45 75.5±0.36
EDA‡ 89.2±0.65 45.1±0.54 83.1±0.49 90.8± 0.44 78.0±0.79
wordMixup† 90.9±0.42 45.2±0.90 82.8±0.45 92.9±0.41 78.0±0.39
senMixup† 92.1±0.31 45.2±0.22 83.0±0.35 92.7±0.38 77.9±0.76
nonlinear Mixup 92.9±0.80 47.4±0.41 86.2±0.56 93.0±0.31 80.6±0.52

Table 2: Accuracy (%) of the testing methods with randomly initialized, trainable word embeddings. We report mean scores
over 10 runs with standard deviations (denoted ±). Best results highlighted in Bold. † indicates results extracted from the paper
in (Guo, Mao, and Zhang 2019a); ‡ indicates results obtained by running the source codes provided by the authors of (Wei and
Zou 2019).

RandomFix Trec SST-1 SST-2 Subj MR
CNNsen† 88.4±0.52 40.3±0.77 80.4±0.17 88.2±0.50 72.9±0.74
EDA‡ 90.6±0.45 40.9±0.52 80.5±0.60 89.2±0.41 76.7±0.89
wordMixup† 90.9±0.58 40.5±1.17 77.5±0.33 89.3±0.47 74.2±1.15
senMixup† 88.8±1.10 41.0±0.64 77.6±0.76 90.5±0.36 72.6±0.67
nonlinear Mixup 91.2±0.55 42.6±0.85 81.5±0.79 90.7±0.49 78.0±0.80

Table 3: Accuracy (%) obtained by the testing methods with randomly initialized and fixed word embeddings. Best results
highlighted in Bold. † indicates results extracted from the paper in (Guo, Mao, and Zhang 2019a); ‡ indicates results obtained
by running the source codes provided by the authors of (Wei and Zou 2019).

PretrainTune Trec SST-1 SST-2 Subj MR
CNNsen† 92.1±0.12 46.3±0.35 86.9±0.49 94.4±0.36 79.8±0.60
EDA‡ 92.4±0.51 46.9±0.27 85.9±0.22 92.9±0.31 81.2±0.09
wordMixup† 93.7±0.80 48.2±0.91 87.1±0.26 94.7±0.45 81.3±0.28
senMixup† 93.3±0.23 48.6±0.23 87.2±0.35 94.9±0.34 80.6±0.56
nonlinear Mixup 94.7±0.29 49.3±0.42 88.6±0.29 93.9±0.19 83.4±0.36

Table 4: Accuracy (%) of the testing methods with pre-trained GloVe and trainable word embeddings. Best results highlighted
in Bold. † indicates results extracted from the paper in (Guo, Mao, and Zhang 2019a); ‡ indicates results obtained by running
the source codes provided by the authors of (Wei and Zou 2019).

PretrainFix Trec SST-1 SST-2 Subj MR
CNNsen† 92.0±0.20 44.6±0.56 85.7±0.33 94.5±0.36 79.7±0.68
EDA‡ 93.9±0.36 46.4±0.64 86.6±0.26 93.6±0.40 82.8±0.37
wordMixup† 94.2±0.52 46.6±0.85 84.5±0.54 94.3±0.23 79.7±0.52
senMixup† 94.8±0.35 46.5±0.23 84.7±0.48 95.0±0.22 80.3±0.57
nonlinear Mixup 95.1±0.28 46.8±0.52 86.8±0.34 94.1±0.13 83.3±0.56

Table 5: Accuracy (%) obtained by the testing methods with pretrained GloVe and fixed word embeddings. Best results high-
lighted in Bold. † indicates results extracted from the paper in (Guo, Mao, and Zhang 2019a); ‡ indicates results obtained by
running the source codes provided by the authors of (Wei and Zou 2019).

Ablation Studies

To better understand the working mechanism of the nonlin-
ear Mixup method, we conduct ablation studies using the
SST-1 data set with randomly initialized, tunable word em-
beddings. This data set was chosen since it is the most diffi-
cult data set (with error rate lower than 50%) in our experi-
mental studies.

Label Assignment for Synthetic Samples In Figure 2,
we visualize how the label embeddings for the gold labels
(left subfigure) and the learned mixing policies for the mod-

eling targets (right subfigure) evolve during the training on
the SST-1 data set. Note that, in our experiments, the mix-
ing policy for the inputs is a uniform distribution due to the
value of one is used in the Beta distribution.

Results in the left subfigure of Figure 2 indicate that the
embeddings for the gold labels, namely matrix M , keep re-
fining during training, but with more fluctuation at the be-
ginning of the training and gradually stabilize at the end of
the training. Results in the right subfigure of Figure 2 show
that the mixing policies for the label pairs of the nonlinear
Mixup tend to sit in the middle of [0, 1] at the beginning of
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Figure 3: Training loss (left) and validation accuracy (right)
obtained by the nonlinear Mixup.

Label Dimension Accuracy (%) Standard Deviation
5 46.52 ±0.47
10 46.92 ±0.72
50 46.82 ±0.40
100 47.42 ±0.41
300 47.50 ±0.46
500 46.14 ±0.10

Table 6: Accuracy (%) obtained when varying the dimension
of the gold label embedding in nonlinear Mixup.

nonlinear Mixup Tuned Mappings Fixed Mappings
Trec 92.9±0.80 91.2±0.63
SST-1 47.4±0.41 45.1±0.12
SST-2 86.2±0.56 84.9±0.60
Subj 93.0±0.31 90.9±0.49
MR 80.6±0.52 79.5±0.61

Table 7: Accuracy (%) of the testing methods using ran-
domly initialized, trainable embeddings with fixed Policy
Mapping Function in the nonlinear Mixup.

the training, and gradually move to put more weights to the
two ends of the policy region, namely zero and one. At the
end of the training, most of the mass sit at between [0, 0.5],
and many having the value of zero or one, indicating that at
the end of the training the learning tends to assign one of
the sample pairs’ label as the modeling target of the mixed
sample.

Regularization Effect We also plot the training loss and
testing accuracy across the 80K training steps on the SST-
1 dataset in Figure 3. Figure 3 shows that the training loss
curve of nonlinear Mixup (left subfigure) maintains a rela-
tively high level, when compared to the CNNsen baseline
where the training loss reduced to zero in less than 2k train-
ing steps. The relative high loss here allows the model to
keep tuning. Such high loss is due to the much larger space
of the synthetic samples, thus preventing the model from be-
ing over-fitted by limited number of examples. As a result, as
shown on the right subfigure, even training for a long time,
the nonlinear Mixup model is not overfitting.

Sensitivity to Label Embedding Dimension We also
evaluate the sensitivity of the dimension for the label em-
bedding in the nonlinear Mixup. We vary the dimension for
the label embedding with 2, 10, 50, 100, 300, and 500, re-

spectively. Results are presented in Table 6.
Results in Table 6 indicate that the nonlinear Mixup is

insensitive to the dimensions used. As can be seen in the
table, the accuracy obtained when varying the dimension of
the label embeddings is similar.

With Fixed Policy Mapping Function We also conduct
experiments with fixing the Policy Mapping Function in the
nonlinear Mixup as depicted in Equation 9, aiming to un-
derstand the impact of the label assignment process in the
nonlinear Mixup. Results are presented in Table 7.

Results in Table 7 indicate that when the function for label
assignment is not allowed to modified after initialization, the
predictive performance of the nonlinear Mixup degrades on
all the five testing datasets. For example, against the SST-
1, Trec, and Subj datasets, the accuracy dropped by 2.3%,
1.7%, and 2.1%, respectively.

Our hypothesis here is that allowing the Policy Mapping
Function to be tuned enabled the networks to effectively
relocate the mixed samples to avoid creating mixed sam-
ples that are collided with samples from the original dataset,
which is an inherent issue in Mixup as discussed in (Guo,
Mao, and Zhang 2019b). More discussions regarding this is-
sue will be presented in the next section.

Effect of Out-Of-Manifold Samples

In this section, we aim to visualize the impact of the out-of-
manifold samples in the nonlinear Mixup model. We present
the results on the Subjectivity dataset with a 2D bottleneck
hidden representation in the middle of the network and with
label embedding dimension of 2D as well. Doing so, we can
visualize the evolving of the learned embeddings for both the
sentences and labels. The Subjectivity data set was chosen
because it is a relative easy data set for classification and
perform well with the 2D bottleneck and label embeddings.

We trained a nonlinear Mixup with tailored architecture.
In detail, following the 512 filters generated by the CNNsen
(namely the layer before the Softmax layer), we use a fully-
connected Tanh layer of 2 units as a bottleneck layer, fol-
lowed by two more fully-connected Tanh layers with 100
and 512 units respectively. For the label embedding dimen-
sion, we also use 2 instead of 100 for visualization purpose.

Embedding Clusters We visualize the 2D bottleneck rep-
resentation for the original input samples as well as the label
embeddings at 2k, 10k, and 20k steps. For these steps, the
training errors are 80%, 100%, and 100% respectively. Re-
sults are presented in Figure 4, with positive inputs in red,
negative inputs in blue, predicted labels for positive inputs
in purple, predicted labels for negative inputs in green, and
learned label embedding for the true positive label in yellow
and true negative labels in brown.

Results in Figure 4 suggest that, as the learning pro-
gresses, the embeddings for both the inputs and true labels
are tuning: after 2k steps (left subfigure), the input embed-
dings are gradually towards separating the two classes and
the model achieves 100% accuracy at the 10kth step (mid-
dle subfigure). At the same time, the networks also learned
to generate predicted labels that are close to the gold label
embeddings as shown in the middle of Figure 4.
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Figure 4: 2D data embeddings, their corresponding predicted labels, and gold label embeddings when training on the Subjec-
tivity data set with 2k, 10k, 20k steps, where the training accuracy for these steps were 80%, 100%, and 100%, respectively.

Figure 5: At the 80kth step of training, all training data sam-
ples from the same class are projected to the same point by
the nonlinear Mixup (left subfigure). On the right, the pro-
jected embeddings of the validation data set are depicted.

On the right of Figure 4, where the training accuracy has
reached 100%, the network is still tuning using the newly
created mixed samples. As can been seen, both the input and
label embeddings are continuously tuning after the 10k step.
At the end of the 20k training steps (right subfigure), the
input embeddings are separated into two tight clusters with
distance far away than that of the 10kth step (middle sub-
figure). Also, as a result, the predicted labels are also highly
overlapped with the embeddings of the gold labels.

These results suggest that the out-of-manifold samples
help create tight representation cluster for training samples
in each class and widen the gap between these clusters.
These turnings happened long after the training accuracy on
the original training set was not able to further increase.

Manifold Intrusion Avoidance Recall that, nonlinear
Mixup expands the synthetic sample space from line to re-
gion for a sample pair (as illustrated in Figure 1), thus in-
creasing the possibility of collision with the original sam-
ples. Nevertheless, we here argue that with the learnable
Policy Mapping Function that is based on the input pairs,
the networks is able to relocate the mixed sample to better
avoid the manifold intrusion issue. In other words, through
adaptively assigning soft-labels for the synthetic samples,
the networks are in a position to re-locate the mixed sam-
ples to avoid collision with the original data samples.

In our experiments, keep training the nonlinear Mixup
allows the networks to be tuned with new out-of-manifold
samples that have not been seen before. Consequently, at the
end of the 80kth training step, as depicted in the left subfig-

ure of Figure 5, all original samples belonging to the same
class are projected to the same point. This observation sug-
gests that at the end of the training, the model may have dif-
ficulty to find a valid space to avoid the intrusion issue. By
collapsing the real samples of each class to a single point,
the model can effectively alleviate the manifold intrusion is-
sue because any mixing of the original data point pairs will
not collide with samples from the original data points.

We also depicted the embeddings of the test samples on
the right of Figure 5. The right subfigure shows that the em-
beddings of the test data samples are also squeezed into two
clusters, but with much larger overlapped area than that of
the training samples in the left subfigure.

Related Work

Data augmentation is still a less touched area in natural
language processing tasks due to high complexity of lan-
guage. To this end, popular text augmentation approaches
aim to transform the text with word replacements with ei-
ther synonyms from handcrafted ontology such as a Word-
Net (Zhang, Zhao, and LeCun 2015) or word similarity
(Wang and Yang 2015; Kobayashi 2018). Some other NLP
data augmentation methods are often devised for specific
domains or require extra text resources (Sennrich, Had-
dow, and Birch 2015; Fadaee, Bisazza, and Monz 2017;
Sahin and Steedman 2018). Recently, Easy Data Augmen-
tation (EDA) (Wei and Zou 2019) is proposed. This ap-
proach contains a set of 4 different text augmentation tech-
niques: synonym replacement, random insertion, random
swap, and random deletion. Unlike these methods, our non-
linear Mixup does not rely on domain knowledge or addi-
tional text resources and leverages out-of-manifold samples.

Our method closely relates to wordMixup (Guo, Mao,
and Zhang 2019a), which is a straightforward adaptation
of Mixup in image to sentence classification. Also, our
approach is related to senMixup (Guo, Mao, and Zhang
2019a), which is exactly the same as wordMixup except that
the interpolation is performed on the last hidden layer. Un-
like wordMixup and senMixup which deploy linear interpo-
lation with a scalar policy, our method embraces a nonlinear
interpolation policy. Also, the input and label in the word-
Mixup and senMixup share the same mixing policy. On the
contrary, nonlinear Mixup learns the mixing policy for the
modeling target pairs based on the mixed input pairs.
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Conclusion and Future Work

We proposed ”nonlinear Mixup” to relax the constraint of
convex combination in Mixup. The nonlinear mixing policy
significantly expands the synthetic sample space for Mixup.
Also, the newly introduced target-mixing policy function al-
lows the network to relocate the synthetic samples during
training to alleviate the manifold intrusion issue.

We conducted experiments on several benchmark sen-
tence classification datasets, showing that our approach sig-
nificantly outperformed Mixup and its variants in terms of
predictive accuracy. We also empirically demonstrated that
the out-of-manifold samples created by our method encour-
age the learning to form tight representation clusters (one for
samples in each class) that are far from each other.

Our future research will investigate the time sensitivity
property (Golatkar, Achille, and Soatto 2019) and the work-
ing mechanism (Archambault et al. 2019) of the nonlinear
Mixup in terms of its regularization effect.
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